

Table of Contents

TOPIC 031: SOFTWARE DEVELOPMENT AND WEB TECHNOLOGIES. Ê1
031.1 Software Development Basic . Ê2

031.1 Lesson 1 . Ê3

Introduction . Ê3

Source Code. Ê3

Programming Languages . Ê5

Guided Exercises . Ê11

Explorational Exercises . Ê12

Summary . Ê13

Answers to Guided Exercises . Ê14

Answers to Explorational Exercises . Ê15

031.2 Web Application Architecture . Ê16
031.2 Lesson 1 . Ê18

Introduction . Ê18

Clients and Servers . Ê18

The Client Side . Ê19

Varieties of Web Clients . Ê20

Languages of a Web Client . Ê21

The Server Side . Ê23

Handling Paths from Requests . Ê23

Database Management Systems . Ê24

Content Maintenance . Ê24

Guided Exercises . Ê26

Explorational Exercises . Ê27

Summary . Ê28

Answers to Guided Exercises . Ê29

Answers to Explorational Exercises . Ê30

031.3 HTTP Basics . Ê31
031.3 Lesson 1 . Ê33

Introduction . Ê33

The ClientÕs Request. Ê34

The Response Header . Ê37

Static and Dynamic Content . Ê39

Caching . Ê39

HTTP Sessions. Ê40

Guided Exercises . Ê42

Explorational Exercises . Ê43

Summary . Ê44

Answers to Guided Exercises . Ê45

Answers to Explorational Exercises . Ê46

TOPIC 032: HTML DOCUMENT MARKUP . Ê47
032.1 HTML Document Anatomy . Ê48

032.1 Lesson 1 . Ê49

Introduction . Ê49

Anatomy of an HTML Document . Ê49

Document Header . Ê53

Guided Exercises . Ê57

Explorational Exercises . Ê58

Summary . Ê59

Answers to Guided Exercises . Ê60

Answers to Explorational Exercises . Ê61

032.2 HTML Semantics and Document Hierarchy . Ê63
032.2 Lesson 1 . Ê65

Introduction . Ê65

Text . Ê66

Headings . Ê66

Line Breaks . Ê68

Horizontal Lines . Ê69

HTML Lists . Ê70

Inline Text Formatting . Ê75

Preformatted Text . Ê80

Grouping Elements . Ê81

HTML Page Structure . Ê83

Guided Exercises . Ê91

Explorational Exercises . Ê92

Summary . Ê93

Answers to Guided Exercises . Ê95

Answers to Explorational Exercises . Ê97

032.3 HTML References and Embedded Resources . Ê104
032.3 Lesson 1 . Ê105

Introduction . Ê105

Embedded Content . Ê105

Links . Ê109

Guided Exercises . Ê112

Explorational Excercises . Ê113

Summary . Ê114

Answers to Guided Exercises . Ê115

Answers to Explorational Exercises . Ê116

032.4 HTML Forms . Ê117
032.4 Lesson 1 . Ê118

Introduction . Ê118

Simple HTML Forms . Ê118

Input for large texts: textarea . Ê125

Lists of Options . Ê126

The hidden Element Type . Ê130

The File Input Type . Ê131

Action Buttons . Ê131

Form Action and Methods . Ê132

Guided Exercises . Ê134

Explorational Exercises . Ê135

Summary . Ê136

Answers to Guided Exercises . Ê137

Answers to Explorational Exercises . Ê138

TOPIC 033: CSS CONTENT STYLING. Ê140
033.1 CSS Basics. Ê141

033.1 Lesson 1 . Ê142

Introduction . Ê142

Applying Styles . Ê143

Guided Exercises . Ê150

Explorational Exercises . Ê151

Summary . Ê152

Answers to Guided Exercises . Ê153

Answers to Explorational Exercises . Ê154

033.2 CSS Selectors and Style Application . Ê155
033.2 Lesson 1 . Ê156

Introduction . Ê156

Page-Wide Styles . Ê156

Restrictive Selectors . Ê158

Special Selectors . Ê163

Guided Exercises . Ê165

Explorational Exercises . Ê166

Summary . Ê167

Answers to Guided Exercises . Ê168

Answers to Explorational Exercises . Ê169

033.3 CSS Styling . Ê170
033.3 Lesson 1 . Ê171

Introduction . Ê171

CSS Common Properties and Values . Ê171

Colors . Ê171

Background . Ê174

Borders . Ê176

Unit Values . Ê176

Relative Units . Ê177

Fonts and Text Properties . Ê178

Guided Exercises . Ê181

Explorational Exercises . Ê182

Summary . Ê183

Answers to Guided Exercises . Ê184

Answers to Explorational Exercises . Ê185

033.4 CSS Box Model and Layout . Ê186
033.4 Lesson 1 . Ê187

Introduction . Ê187

Normal Flow . Ê187

Customizing Normal Flow . Ê194

Responsive Design . Ê198

Guided Exercises . Ê200

Explorational Exercises . Ê201

Summary . Ê202

Answers to Guided Exercises . Ê203

Answers to Explorational Exercises . Ê204

TOPIC 034: JAVASCRIPT PROGRAMMING. Ê205
034.1 JavaScript Execution and Syntax . Ê206

034.1 Lesson 1 . Ê207

Introduction . Ê207

Running JavaScript in the Browser . Ê207

Browser Console . Ê210

JavaScript Statements . Ê211

JavaScript Commenting . Ê212

Guided Exercises . Ê214

Explorational Exercises . Ê215

Summary . Ê216

Answers to Guided Exercises . Ê217

Answers to Explorational Exercises . Ê218

034.2 JavaScript Data Structures . Ê219
034.2 Lesson 1 . Ê220

Introduction . Ê220

High-Level Languages . Ê220

Declaration of Constants and Variables . Ê221

Types of Values . Ê223

Operators . Ê227

Guided Excercises . Ê230

Explorational Excercises . Ê231

Summary . Ê232

Answers to Guided Exercises . Ê233

Answers to Explorational Exercises . Ê234

034.3 JavaScript Control Structures and Functions . Ê235
034.3 Lesson 1 . Ê236

Introduction . Ê236

If Statements . Ê236

Switch Structures . Ê241

Loops . Ê243

Guided Exercises . Ê247

Explorational Exercises . Ê248

Summary . Ê249

Answers to Guided Exercises . Ê250

Answers to Explorational Exercises . Ê251

034.3 Lesson 2 . Ê253

Introduction . Ê253

Defining a Function . Ê253

Function Recursion . Ê258

Guided Exercises . Ê262

Explorational Exercises . Ê263

Summary . Ê264

Answers to Guided Exercises . Ê265

Answers to Explorational Exercises . Ê266

034.4 JavaScript Manipulation of Website Content and Styling . Ê267
034.4 Lesson 1 . Ê268

Introduction . Ê268

Interacting with the DOM . Ê268

HTML Content . Ê269

Selecting Specific Elements . Ê271

Working with Attributes . Ê272

Working with Classes . Ê275

Event Handlers . Ê276

Guided Exercises . Ê279

Explorational Exercises . Ê280

Summary . Ê281

Answers to Guided Exercises . Ê282

Answers to Explorational Exercises . Ê283

TOPIC 035: NODEJS SERVER PROGRAMMING. Ê284
035.1 NodeJS Basics . Ê285

035.1 Lesson 1 . Ê286

Introduction . Ê286

Getting Started . Ê287

Guided Exercises . Ê294

Explorational Exercises . Ê295

Summary . Ê296

Answers to Guided Exercises . Ê297

Answers to Explorational Exercises . Ê298

035.2 NodeJS Express Basics . Ê299
035.2 Lesson 1 . Ê301

Introduction . Ê301

Initial Server Script . Ê301

Routes . Ê304

Adjustments to the Response . Ê308

Cookie Security . Ê311

Guided Exercises . Ê312

Explorational Exercises . Ê313

Summary . Ê314

Answers to Guided Exercises . Ê315

Answers to Explorational Exercises . Ê316

035.2 Lesson 2 . Ê317

Introduction . Ê317

Static Files . Ê318

Formatted Output . Ê318

Templates . Ê323

HTML Templates . Ê325

Guided Exercises . Ê329

Explorational Exercises . Ê330

Summary . Ê331

Answers to Guided Exercises . Ê332

Answers to Explorational Exercises . Ê333

035.3 SQL Basics . Ê334
035.3 Lesson 1 . Ê335

Introduction . Ê335

SQL . Ê335

SQLite . Ê336

Opening the Database . Ê337

Structure of a Table . Ê337

Data Entry . Ê338

Queries . Ê339

Changing the Contents of the Database . Ê340

Closing the Database . Ê342

Guided Exercises . Ê344

Explorational Exercises . Ê345

Summary . Ê346

Answers to Guided Exercises . Ê347

Answers to Explorational Exercises . Ê348

Imprint . Ê349

Topic 031: Software Development and Web Technologies

Web Development Essentials (030) (Version 1.0) |

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 1

031.1 Software Development Basic

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 031.1

Weight

1

Key knowledge areas

¥ Understand what source code is

¥ Understand the principles of compilers and interpreters

¥ Understand the concept of libraries

¥ Understand the concepts of functional, procedural and object-oriented programming

¥ Awareness of common features of source code editors and integrated development
environments (IDE)

¥ Awareness of version control systems

¥ Awareness of software testing

¥ Awareness of important programming languages (C, C++, C#, Java, JavaScript, Python, PHP)

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

2 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#031.1_Software_Development_Basics_.28weight:_1.29

031.1 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 031 Software Development and Web
Technologies

Objective: 031.1 Software Development Basics

Lesson: 1 of 1

Introduction
The very first computers were programmed through the grueling process of plugging cables into
sockets. Computer scientists soon started a never-ending search for easy ways to tell the computer
what to do. This chapter introduces the tools of programming. It discusses the key ways that text
instructionsÑprogramming languagesÑrepresent the tasks a programmer wants to accomplish,
and the tools that change the program into a form called machine language that a computer can
run.

NOTE In this text, the terms program and application are used interchangeably.

Source Code

A programmer normally develops an application by writing a textual description, called source
code, of the desired task. The source code is in a carefully defined programming language that
represents what the computer can do in a high-level abstraction humans can understand. Tools
have also been developed to let programmers as well as non-programmers express their thoughts
visually, but writing source code is still the predominant way to program.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 3

In the same way that a natural language has nouns, verbs, and constructions to express ideas in a
structured way, the words and punctuation in a programming language are symbolic
representations of operations that will be performed on the machine.

In this sense, source code is not very different from any other text in which the author employs
the well-established rules of a natural language to communicate with the reader. In the case of
source code, the ÒreaderÓ is the machine, so the text cannot contain ambiguities or
inconsistenciesÑeven subtle ones.

And like any text that discusses some topic in depth, the source code also needs to be well
structured and logically organized when developing complex applications. Very simple programs
and didactic examples can be stored in the few lines of a single text file, which contains all the
programÕs source code. More complex programs can be subdivided into thousands of files, each
with thousands of lines.

The source code of professional applications should be organized into different folders, usually
associated with a particular purpose. A chat program, for example, can be organized into two
folders: one that contains the code files that handle the transmission and reception of messages
over the network, and another folder that contains the files that build the interface and react to
user actions. Indeed, it is common to have many folders and subfolders with source code files
dedicated to very specific tasks within the application.

Moreover, the source code is not always isolated in its own files, with everything written in a
single language. In web applications, for example, an HTML document can embed JavaScript code
to supplement the document with extra functionality.

Code Editors and IDE

The variety of ways in which source code can be written can be intimidating. Therefore, many
developers take advantage of tools that help with writing and testing the program.

The source code file is just a plain text file. As such, it can be edited by any text editor, no matter
how simple. To make it easier to distinguish between source code and plain text, each language
adopts a self-explanatory filename extension: .c for the C language, .py for Python, .js for
JavaScript, etc. General-purpose editors often understand the source code of popular languages
well enough to add italics, colors, and indentation to make the code understandable.

Not every developer chooses to edit source code in a general-purpose editor. An integrated
development environment (IDE) provides a text editor along with tools to help the programmer
avoid syntactic errors and obvious inconsistencies. These editors are particularly recommended
for less experienced programmers, but experienced programmers use them as well.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

4 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Popular IDEs such Visual Studio, Eclipse, and Xcode intelligently watch what the programmer
types, frequently suggesting words to use (autocompletion) and verifying code in real-time. The
IDEs can even offer automated debugging and testing to identify issues whenever the source code
changes.

Some more experienced programmers opt for less intuitive editors such as Vim, which offer
greater flexibility and do not require installation of additional packages. These programmers use
external, standalone tools to add the features that are built-in when you use an IDE.

Code Maintenance

Whether in an IDE or using standalone tools, itÕs important to employ some kind of version control
system (VCS). Source code is constantly evolving because unforeseen flaws need to be fixed and
enhancements need to be incorporated. An inevitable consequence of this evolution is that fixes
and enhancements can interfere with other parts of applications in a large code base. Version
control tools such as Git, Subversion, and Mercurial record all changes made to the code and who
made the change, allowing you to trace and eventually recover from an unsuccessful
modification.

Furthermore, version control tools allow each developer on the team to work on a copy of the
source code files without interfering with the work of other programmers. Once the new versions
of source code are ready and tested, corrections or improvements made to one copy can be
incorporated by other team members.

Git, the most popular version control system nowadays, allows many independent copies of a
repository to be maintained by different people, who share their changes as they desire. However,
whether using a decentralized or centralized version control system, most teams maintain one
trusted repository whose source code and resources can be relied on. Several online services offer
storage for repositories of source code. The most popular of these services are GitHub and GitLab,
but the GNU projectÕs Savannah is also worth mentioning.

Programming Languages

A wide variety of programming languages exist; each decade sees the invention of new ones. Each
programming language has its own rules and is recommended for particular purposes. Although
the languages show superficial differences in syntax and keywords, what really distinguishes the
languages are the deep conceptual approaches they represent, known as paradigms .

Paradigms

Paradigms define the premises on which a programming language is based, especially concerning

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 5

how the source code should be structured.

The developer starts from the language paradigm to formulate the tasks to be performed by the
machine. These tasks, in turn, are symbolically expressed with the words and syntactic
constructions offered by the language.

The programming language is procedural when the instructions presented in the source code are
executed in sequential order, like a movie script. If the source code is segmented into functions or
subroutines, a main routine takes care of calling the functions in sequence.

The following code is an example of a procedural language. Written in C, it defines variables to
represent the side, area and volume of geographical shapes. The value of the side variable is
assigned in main() , which is the function invoked when the program is executed. The area and
volume variables are calculated in the square() and cube() subroutines that precede the main
function:

#include <stdio.h>

float side ;

float area ;

float volume ;

void square (){ area = side * side ; }

void cube (){ volume = area * side ; }

int main (){

Ê side = 2;

Ê square ();

Ê cube ();

Ê printf ("Volume: %f \n " , volume);

Ê return 0;

}

The order of actions defined in main() determines the sequence of program states, characterized
by the value of the side , area , and volume variables. The example ends after displaying the value
of volume with the printf statement.

On the other hand, the paradigm of object-oriented programming (OOP) has as its main
characteristic the separation of the program state into independent sub-states. These sub-states
and associated operations are the objects, so called because they have a more or less independent
existence within the program and because they have specific purposes.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

6 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Distinct paradigms do not necessarily restrict the type of task that can be performed by a
program. The code from the previous example can be rewritten according to the OOP paradigm
using the C++ language:

#include <iostream>

class Cube {

Ê float side ;

Ê public:

Ê Cube(float s){ side = s; }

Ê float volume () { return side * side * side ; }

};

int main (){

Ê float side = 2;

Ê Cube cube (side);

Ê std :: cout << "Volume: " << cube . volume () << std :: endl ;

Ê return 0;

}

The main() function is still present. But now there is a new word, class , that introduces the
definition of an object. The defined class, named Cube, contains its own variables and
subroutines. In OOP, a variable is also called an attribute and a subroutine is called a method .

ItÕs beyond the scope of this chapter to explain all the C++ code in the example. WhatÕs important
to us here is that Cube contains the side attribute and two methods. The volume() method
calculates the cubeÕs volume.

It is possible to create several independent objects from the same class, and classes can be
composed of other classes.

Keep in mind that these same features can be written differently and that the examples in this
chapter are oversimplified. C and C++ have much more sophisticated features that allow much
more complex and practical constructions.

Most programming languages do not rigorously impose one paradigm, but allow programmers to
choose various aspects of one paradigm or another. JavaScript, for example, incorporates aspects
of different paradigms. The programmer can decompose the entire program into functions that do
not share a common state with each other:

function cube (side){

Ê return side * side * side ;

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 7

}

console . log (" Volume: " + cube (2));

Although this example is similar to procedural programming, note that the function receives a
copy of all the information necessary for its execution and always produces the same result for
the same parameter, regardless of changes that happen outside the functionÕs scope. This
paradigm, called functional , is strongly influenced by mathematical formalism, where every
operation is self-sufficient.

Another paradigm covers declarative languages, which describe the states you want the system to
be in. A declarative language can figure out how to achieve the specified states. SQL, the universal
language for querying databases, is sometimes called a declarative language, although it really
occupies a unique niche in the programming pantheon.

There is no universal paradigm that can be adopted to any context. The choice of language may
also be restricted by which languages are supported on the platform or execution environment
where the program will be used.

A web application that will be used by the browser, for example, will need to be written in
JavaScript, which is a language universally supported by browsers. (A few other languages can be
used because they provide converters to create JavaScript.) So for the web browserÑsometimes
called the client side or front end of the web applicationÑthe developer will have to use the
paradigms allowed in JavaScript. The server side or back end of the application, which handles
requests from the browser, is normally programmed in a different language; PHP is most popular
for this purpose.

Regardless of paradigm, every language has pre-built libraries of functions that can be
incorporated into code. Mathematical functionsÑlike the ones illustrated in the example codeÑ
donÕt need to be implemented from scratch, as the language already has the function ready to use.
JavaScript, for example, provides the Math object with the most common math operations.

Even more specialized functions are usually available from the language vendor or third-party
developers. These extra resource libraries can be in source code form; i.e., in extra files that are
incorporated into the file where they will be used. In JavaScript, embedding is done with import
from :

import { OrbitControls } from ' modules/OrbitControls.js ' ;

This type of import, where the embedded resource is also a source code file, is most often used in
so-called interpreted languages . Compiled languages allow, among other things, the incorporation

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

8 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

of pre-compiled features in machine language, that is, compiled libraries. The next section
explains the differences between these types of languages.

Compilers and Interpreters

As we already know, source code is a symbolic representation of a program that needs to be
translated into machine language in order to run.

Roughly speaking, there are two possible ways to do the translation: converting the source code
beforehand for future execution, or converting the code at the moment of its execution.
Languages of the first modality are called compiled languages and languages of the second
modality are called interpreted languages . Some interpreted languages provide compilation as an
option, so that the program can start faster.

In compiled languages, there is a clear distinction between the source code of the program and the
program itself, which will be executed by the computer. Once compiled, the program will usually
work only on the operating system and platform for which it was compiled.

In an interpreted language, the source code itself is treated as the program, and the process of
converting to machine language is transparent to the programmer. For an interpreted language, it
is common to call the source code a script . The interpreter translates the script into the machine
language for the system itÕs running on.

Compilation and Compilers

The C programming language is one of the best-known examples of a compiled language. The C
languageÕs greatest strengths are its flexibility and performance. Both high-performance
supercomputers and microcontrollers in home appliances can be programmed in the C language.
Other examples of popular compiled languages are C++ and C# (C sharp). As their names suggest,
these languages are inspired by C, but include features that support the object-oriented paradigm.

The same program written in C or C++ can be compiled for different platforms, requiring little or
no change to the source code. It is the compiler that defines the target platform of the program.
There are platform-specific compilers as well as cross-platform compilers such as GCC (which
stands for GNU Compiler Collection) that can produce binary programs for many distinct
architectures.

NOTE

There are also tools that automate the compilation process. Instead of invoking the
compiler directly, the programmer creates a file indicating the different
compilation steps to be performed automatically. The traditional tool used for this
purpose is make, but a number of newer tools such as Maven and Gradle are also in
widespread use. The entire build process is automated when you use an IDE.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 9

The compilation process does not always generate a binary program in machine language. There
are compiled languages that produce a program in a format generically called bytecode. Like a
script, bytecode is not in a platform-specific language, so it requires an interpreter program that
translates it into machine language. In this case, the interpreter program is simply called a
runtime .

The Java language takes this approach, so compiled programs written in Java can be used on
different operating systems. Despite its name, Java is unrelated to JavaScript.

Bytecode is closer to machine language than source code, so its execution tends to be
comparatively faster. Because there is still a conversion process during the execution of the
bytecode, it is difficult to obtain the same performance as an equivalent program compiled into
machine language.

Interpretation and Interpreters

In interpreted languages such as JavaScript, Python, and PHP, the program does not need to be
precompiled, making it easier to develop and modify it. Instead of compiling it, the script is
executed by another program called an interpreter. Usually, the interpreter of a language is
named after the language itself. The interpreter of a Python script, for example, is a program
called python . The JavaScript interpreter is most often the web browser, but scripts can also be
executed by the node program outside a browser. Because it is converted to binary instructions
every time it is executed, an interpreted language program tends to be slower than a compiled
language equivalent.

Nothing prevents the same application from having components written in different languages. If
necessary, these components can communicate through a mutually understandable application
programming interface (API).

The Python language, for example, has very sophisticated data mining and data tabulation
capabilities. The developer can choose Python to write the parts of the program that deal with
these aspects and another language, such as C++, to perform the heavier numeric processing. It is
possible to adopt this strategy even when there is no API that allows direct communication
between the two components. Code written in Python can generate a file in the proper format to
be used by a program written in C++, for example.

Although it is possible to write almost any program in any language, the developer should adopt
the one that is most in line with the applicationÕs purpose. In doing so, you benefit from the reuse
of already tested and well-documented components.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

10 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Guided Exercises
1. What kind of program can be used to edit source code?

2. What kind of tool helps to integrate the work of different developers into the same code base?

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 11

Explorational Exercises
1. Suppose you want to write a 3D game to be played in the browser. Web apps and games are

programmed in JavaScript. Although it is possible to write all the graphic functions from
scratch, it is more productive to use a ready-made library for this purpose. Which third-party
libraries provide capabilities for 3D animation in JavaScript?

2. Besides PHP, what other languages can be used on the server side of a web application?

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

12 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Summary
This lesson covers the most essential concepts of software development. The developer must be
aware of important programming languages and the proper usage scenario for each. This lesson
goes through the following concepts and procedures:

¥ What source code is.

¥ Source code editors and related tools.

¥ Procedural, object-oriented, functional, and declarative programming paradigms.

¥ Characteristics of compiled and interpreted languages.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 13

Answers to Guided Exercises
1. What kind of program can be used to edit source code?

In principle, any program capable of editing plain text.

2. What kind of tool helps to integrate the work of different developers into the same code base?

A source or version control system, such as Git.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

14 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Answers to Explorational Exercises
1. Suppose you want to write a 3D game to be played in the browser. Web apps and games are

programmed in JavaScript. Although it is possible to write all the graphic functions from
scratch, it is more productive to use a ready-made library for this purpose. Which third-party
libraries provide capabilities for 3D animation in JavaScript?

There are many options for 3D graphics libraries for JavaScript, such as threejs and BabylonJS.

2. Besides PHP, what other languages can be used on the server side of a web application?

Any language supported by the HTTP server application used on the server host. Some
examples are Python, Ruby, Perl, and JavaScript itself.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 15

031.2 Web Application Architecture

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 031.2

Weight

2

Key knowledge areas

¥ Understand the principle of client and server computing

¥ Understand the role of web browsers and be aware of commonly used web browsers

¥ Understand the role of web servers and application servers

¥ Understand common web development technologies and standards

¥ Understand the principles of APIs

¥ Understand the principle of relational and non-relational (NoSQL) databases

¥ Awareness of commonly used open source database management systems

¥ Awareness of REST and GraphQL

¥ Awareness of single-page applications

¥ Awareness of web application packaging

¥ Awareness of WebAssembly

¥ Awareness of content management systems

Partial list of the used files, terms and utilities

¥ Chrome, Edge, Firefox, Safari, Internet Explorer

¥ HTML, CSS, JavaScript

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

16 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#031.2_Web_Application_Architecture_.28weight:_2.29

¥ SQLite, MySQL, MariaDB, PostgreSQL

¥ MongoDB, CouchDB, Redis

Web Development Essentials (030) (Version 1.0) | 031.2 Web Application Architecture

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 17

031.2 Lesson 1

Certificate: Web Development Essentials

Version: 1.0

Topic: 031 Software Development and Web
Technologies

Objective: 031.2 Web Application Architecture

Lesson: 1 of 1

Introduction
The word application has a broad meaning in technological jargon. When the application is a
traditional program, executed locally and self-sufficient in its purpose, both the applicationÕs
operating interface and the data processing components are integrated in a single ÒpackageÓ. A
web application is different because it adopts the client/server model and its client portion is based
on HTML, which is obtained from the server and, in general, rendered by a browser.

Clients and Servers
In the client/server model, part of the work is done locally on the client side and part of the work is
done remotely, on the server side . Which tasks are performed by each party varies according to
the purpose of the application, but in general itÕs up to the client to provide an interface to the
user and to layout the content in an attractive manner. ItÕs up to the server to run the business

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

18 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

end of the application, processing and responding to requests made by the client. In a shopping
application, for example, the client application displays an interface for the user to choose and
pay for the products, but the data source and the transaction records are kept on the remote
server, accessed via the network. Web applications perform this communication over the
Internet, usually via the Hypertext Transfer Protocol (HTTP).

Once loaded by the browser, the client side of the application initiates interaction with the server
whenever necessary or convenient. Web application servers offer an application programming
interface (API) that defines the available requests and how those requests should be made. Thus,
the client constructs a request in the format defined by the API and sends it to the server, which
checks for any prerequisites for the request and sends back the appropriate response.

While the client, in the form of a mobile application or desktop browser, is a self-contained
program with regard to the user interface and instructions for communicating with the server,
the browser must obtain the HTML page and associated componentsÑsuch as images, CSS, and
JavaScriptÑthat define the interface and instructions for communicating with the server.

The programming languages and platforms used by client and server are independent, but use a
mutually understandable communication protocol. The server portion is almost always
performed by a program without a graphical interface, running in highly available computing
environments so that it is always ready to respond to requests. In contrast, the client portion runs
on any device that is capable of rendering an HTML interface, such as smartphones.

In addition to being essential for certain purposes, the adoption of the client/server model allows
an application to optimize several aspects of development and maintenance, since each part can
be designed for its specific purpose. An application that displays maps and routes, for example,
does not need to have all maps stored locally. Only maps relating to the location of the usersÕs
interest are required, so only those maps are requested from the central server.

The developers have direct control over the server, so they can also modify the client that is
provided by it. This allows developers to improve the application, to a greater or lesser extent,
without the need the user to explicitly install new versions.

The Client Side
A web application should run the same way on any of the most popular browsers, as long as the
browser is up to date. Some browsers may be incompatible with recent innovations, but only
experimental applications use features not yet widely adopted.

Incompatibility issues were more common in the past, when different browsers had their own
rendering engine and there was less cooperation in formulating and adopting standards. The

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 19

rendering engine is the main component of the browser, as it is responsible for transforming
HTML and other associated components into the visual and interactive elements of the interface.
Some browsers, notably Internet Explorer, needed special treatment in the code so as not to break
the pages expected functioning.

Today, there are minimal differences between the main browsers, and incompatibilities are rare.
In fact, the Chrome and Edge browsers use the same rendering engine (called Blink). The Safari
browser, and other browsers offered on the iOS App Store, use the WebKit engine. Firefox uses an
engine called Gecko. These three engines account for virtually all browsers used today. Although
developed separately, the three engines are open source projects and there is cooperation
between their developers, which facilitates compatibility, upkeep, and the adoption of standards.

Because browser developers have taken so much effort to stay compatible, the server is not
normally linked to a single type of client. In principle, an HTTP server can communicate with any
client that is also capable of communicating via HTTP. In a map application, for example, the
client can be a mobile application or a browser that loads the HTML interface from the server.

Varieties of Web Clients

There are mobile and desktop applications whose interface is rendered from HTML and, like
browsers, can use JavaScript as a programming language. However, unlike the client loaded in the
browser, the HTML and the necessary components for the native client to function are locally
present since the installation of the application. In fact, an application that works this way is
virtually identical to an HTML page (both are even likely to be rendered by the same engine).
There are also progressive web apps (PWA), a mechanism that allows you to package web
application clients for offline useÑlimited to functions that do not require immediate
communication with the server. Regarding what the application can do, there is no difference
between running the browser or packaged in a PWA, except that in the latter the developer has
more control over what is stored locally.

Rendering interfaces from HTML is such a recurring activity that the engine is usually a separate
software component, present in the operating system. Its presence as a separate component
allows different applications to incorporate it without having to embed it in the application
package. This model also delegates the maintenance of the rendering engine to the operating
system, facilitating updates. It is very important to keep such a crucial component up to date in
order to avoid possible failures.

Regardless of their delivery method, applications written in HTML run on an abstraction layer
created by the engine, which functions as an isolated execution environment. In particular, in the
case of a client that runs on the browser, the application has at its disposal only those resources
offered by the browser. Basic features, such as interacting with page elements and requesting files

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

20 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

over HTTP, are always available. Resources that may contain sensitive information, such as access
to local files, geographic location, camera, and microphone, require explicit user authorization
before the application is able to use them.

Languages of a Web Client

The central element of a web application client that runs on the server is the HTML document. In
addition to presenting the interface elements that the browser displays in a structured way, the
HTML document contains the addresses for all files required for the correct presentation and
operation of the client.

HTML alone does not have much versatility to build more elaborate interfaces and does not have
general-purpose programming features. For this reason, an HTML document that should function
as a client application is always accompanied by one or more sets of CSS and JavaScript.

The CSS can be provided as a separate file or directly in the HTML file itself. The main purpose of
CSS is to adjust the appearance and layout of the elements of the HTML interface. Although not
strictly necessary, more sophisticated interfaces usually require modifications to the CSS
properties of the elements to suit their needs.

JavaScript is a practically indispensable component. Procedures written in JavaScript respond to
events in the browser. These events can be caused by the user or non-interactive. Without
JavaScript, an HTML document is practically limited to text and images. Using JavaScript in HTML
documents allows you to extend interactivity beyond hyperlinks and forms, making the page
displayed by the browser like a conventional application interface.

JavaScript is a general-purpose programming language, but its main use is in web applications.
The features of the browser execution environment are accessible through JavaScript keywords,
used in a script to perform the desired operation. The term document , for example, is used in
JavaScript code to refer to the HTML document associated with the JavaScript code. In the context
of the JavaScript language, document is a global object with properties and methods that can be
used to obtain information from any element on the HTML document. More importantly, you can
use the document object to modify its elements and to associate them with custom actions written
in JavaScript.

A client application based on web technologies is multiplatform, because it can run on any device
that has a compatible web browser.

Being confined to the browser, however, imposes limitations on web applications compared to
native applications. The intermediation performed by the browser allows higher level
programming and increases security, but also increases the processing and memory consumption.

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 21

Developers are continually working on browsers to provide more features and improve the
performance of JavaScript applications, but there are intrinsic aspects to the execution of scripts
such as JavaScript that impose a disadvantage on them compared to native programs for the same
hardware.

A feature that significantly improves the performance of JavaScript applications running on the
browser is WebAssembly . WebAssembly is a kind of compiled JavaScript that produces source
code written in a more efficient, lower-level language, such as the C language. WebAssembly can
accelerate mainly processor-intensive activities, because it avoids much of the translation
performed by the browser when running a program written in conventional JavaScript.

Regardless of the implementation details of the application, all HTML code, CSS, JavaScript, and
multimedia files must first be obtained from the server. The browser obtains these files just like
an Internet page, that is, with an address accessed by the browser.

A web page that acts as an interface to a web application is like a plain HTML document, but adds
additional behaviors. On conventional pages, the user is directed to another page after clicking on
a link. Web applications can present their interface and respond to user events without loading
new pages in the browserÕs window. The modification of this standard behavior in HTML pages is
done via JavaScript programming.

A webmail client, for example, displays messages and switches between message folders without
leaving the page. This is possible because the client uses JavaScript to react to user actions and
make appropriate requests to the server. If the user clicks on the subject of a message in the inbox,
a JavaScript code associated with this event requests the content of that message from the server
(using the corresponding API call). As soon as the client receives the response, the browser
displays the message in the appropriate portion of the same page. Different webmail clients may
adopt different strategies, but they all use this same principle.

Therefore, in addition to providing the files that make up the client to the browser, the server
must also be able to handle requests such as that of the webmail client, when it asks for the
content of a specific message. Every request that the client can make has a predefined procedure
to respond on the server, whose API can define different methods to identify which procedure the
request refers to. The most common methods are:

¥ Addresses, through a Uniform Resource Locator (URL)

¥ Fields in the HTTP header

¥ GET/POST methods

¥ WebSockets

One method may be more suitable than another, depending on the purpose of the request and

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

22 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

other criteria taken into account by the developer. In general, web applications use a combination
of methods, each in a specific circumstance.

The Representational State Transfer (REST) paradigm is widely used for communication in web
applications, because it is based on the basic methods available in HTTP. The header of an HTTP
request starts with a keyword that defines the basic operation to be performed: GET,POST, PUT
,DELETE, etc., accompanied by a corresponding URL where the action will be applied. If the
application requires more specific operations, with a more detailed description of the requested
operation, the GraphQL protocol may be a more appropriate choice.

Applications developed using the client/server model are subject to instabilities in
communication. For this reason, the client application must always adopt efficient data transfer
strategies to favor its consistency and not harm the user experience.

The Server Side
Despite being the main actor in a web application, the server is the passive side of the
communication, just responding to requests made by the client. In web jargon, server can refer to
the machine that receives the requests, the program that specifically handles HTTP requests, or
the recipient script that produces a response to the request. This latter definition is the most
relevant in the context of web application architecture, but they are all closely related. Although
they are only partially in the scope of the application server developer, the machine, operating
system, and HTTP server cannot be ignored, because they are fundamental to running the
application server and often intersect.

Handling Paths from Requests

HTTP servers, such as Apache and NGINX, usually require specific configuration changes to meet
the needs of the application. By default, traditional HTTP servers directly associate the path
indicated in the request to a file on the local file system. If a websiteÕs HTTP server keeps its HTML
files in the /srv/www directory, for example, a request with the path /en/about.html will
receive the content of the file /srv/www/en/about.html as a response, if the file exists. More
sophisticated websites, and especially web applications, demand customized treatments for
different types of requests. In this scenario, part of the application implementation is modifying
HTTP server settings to meet application requirements.

Alternatively, there are frameworks that allow you to integrate the management of HTTP requests
and the implementation of the application code in one place, allowing the developer to focus more
on the applicationÕs purpose than on platform details. In Node.js Express, for example, all request
mapping and corresponding programming are implemented using JavaScript. As the

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 23

programming of clients is usually done in JavaScript, many developers consider it a good idea
from the perspective of code maintenance to use the same language for client and server. Other
languages commonly used to implement the server side, either in frameworks or in traditional
HTTP servers, are PHP, Python, Ruby, Java, and C#.

Database Management Systems

It is up to the discretion of the development team how the data received or requested by the client
is stored on the server, but there are general guidelines that apply to most cases. It is convenient
to keep static contentÑimages, JavaScript and CSS code that do not change in the short termÑas
conventional files, either on the serverÕs own file system or distributed across a content delivery
network (CDN). Other kinds of content, such as email messages in a webmail application, product
details in a shopping application, and transaction logs, are more conveniently stored in a database
management system (DBMS).

The most traditional type of database management system is the relational database . In it, the
application designer defines data tables and the input format accepted by each table. The set of
tables in the database contains all the dynamic data consumed and produced by the application. A
shopping app, for example, may have a table that contains an entry with the details of each
product in the store and a table that records items purchased by a user. The table of purchased
items contains references to entries in the product table, creating relationships between the
tables. This approach can optimize storage and access to the data, as well as allow queries in
combined tables using the language adopted by the database management system. The most
popular relational database language is the Structured Query Language (SQL, pronounced
ÒsequelÓ), adopted by the open source databases SQLite, MySQL, MariaDB, and PostgreSQL.

An alternative to relational databases is a form of database that does not require a rigid structure
for the data. These databases are called non-relational databases or simply NoSQL. Although they
may incorporate some features similar to those found in relational databases, the focus is on
allowing greater flexibility in storage and access to stored data, passing the task of processing that
data to the application itself. MongoDB, CouchDB, and Redis are common non-relational database
management systems.

Content Maintenance
Regardless of the database model adopted, applications have to add data and probably update it
over the life span of the applications. In some applications, such as webmail, users themselves
provide data to the database when using the client to send and receive messages. In other cases,
such as in the shopping application, itÕs important to allow the applicationÕs maintainers to modify
the database without having to resort to programming. Many organizations therefore adopt some

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

24 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

kind of content management system (CMS), which allows non-technical users to administer the
application. Therefore, for most web applications, itÕs necessary to implement at least two types of
clients: a non-privileged client, used by ordinary users, and privileged clients, used by special
users to maintain and update the information presented by the application.

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 25

Guided Exercises
1. What programming language is used together with HTML to create web applications clients?

2. How does the retrieval of a web application differ from that of a native application?

3. How does a web application differ from a native application in access to the local hardware?

4. Cite one characteristic of a web application client that makes it distinct from an ordinary web
page.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

26 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Explorational Exercises
1. What feature do modern browsers offer to overcome the poor performance of CPU-intensive

web application clients?

2. If a web application uses the REST paradigm for client/server communication, which HTTP
method should be used when the client requests the server to erase a specific resource?

3. Cite five server scripting languages supported by the Apache HTTP server.

4. Why are non-relational databases considered easier to maintain and upgrade than relational
databases?

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 27

Summary
This lesson covers the concepts and standards in web development technology and architecture.
The principle is simple: the web browser runs the client application, which communicates with
the core application running in the server. Albeit simple in principle, web applications must
combine many technologies to adopt the principle of client and server computing over the web.
The lesson goes through the following concepts:

¥ The role of web browsers and web servers.

¥ Common web development technologies and standards.

¥ How web clients can communicate with the server.

¥ Types of web servers and server databases.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

28 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Answers to Guided Exercises
1. What programming language is used together with HTML to create web applications clients?

JavaScript

2. How does the retrieval of a web application differ from that of a native application?

A web application is not installed. Instead, parts of it run on the server and the client interface
runs in an ordinary web browser.

3. How does a web application differ from a native application in access to the local hardware?

All access to the local resources, such as storage, cameras, or microphones, are mediated by the
browser and require explicit user authorization to work.

4. Cite one characteristic of a web application client that makes it distinct from an ordinary web
page.

The interaction with traditional web pages is basically restricted to hyperlinks and sending
forms, while web application clients are closer to a conventional application interface.

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 29

Answers to Explorational Exercises
1. What feature do modern browsers offer to overcome the poor performance of CPU-intensive

web application clients?

The developers can use WebAssembly to implement the CPU-intensive parts of the client
application. WebAssembly code generally has better performance than traditional JavaScript,
because it requires less translation of instructions.

2. If a web application uses the REST paradigm for client/server communication, which HTTP
method should be used when the client requests the server to erase a specific resource?

REST relies on standard HTTP methods, so it should use the standard DELETE method in this
case.

3. Cite five server scripting languages supported by the Apache HTTP server.

PHP, Go, Perl, Python, and Ruby.

4. Why are non-relational databases considered easier to maintain and upgrade than relational
databases?

Unlike relational databases, non-relational databases do not require data to fit rigid predefined
structures, making it easier to implement changes in the data structures without affecting
existing data.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

30 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

031.3 HTTP Basics

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 031.3

Weight

3

Key knowledge areas

¥ Understand HTTP GET and POST methods, status codes, headers and content types

¥ Understand the difference between static and dynamic content

¥ Understand HTTP URLs

¥ Understand how HTTP URLs are mapped to file system paths

¥ Upload files to a web serverÕs document root

¥ Understand caching

¥ Understand cookies

¥ Awareness of sessions and session hijacking

¥ Awareness of commonly used HTTP servers

¥ Awareness of HTTPS and TLS

¥ Awareness of web sockets

¥ Awareness of virtual hosts

¥ Awareness of common HTTP servers

¥ Awareness of network bandwidth and latency requirements and limitations

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 31

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#031.3_HTTP_Basics_.28weight:_3.29

Partial list of the used files, terms and utilities

¥ GET, POST

¥ 200, 301, 302, 401, 403, 404, 500

¥ Apache HTTP Server (httpd), NGINX

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

32 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

031.3 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 031 Software Development and Web
Technologies

Objective: 031.3 HTTP Basics

Lesson: 1 of 1

Introduction
The HyperText Transfer Protocol (HTTP) defines how a client asks the server for a specific
resource. Its working principle is quite simple: the client creates a request message identifying the
resource it needs and forwards that message to the server via the network. In turn, the HTTP
server evaluates where to extract the requested resource and sends a response message back to
the client. The reply message contains details about the requested resource, followed by the
resource itself.

More specifically, HTTP is the set of rules that define how the client application should format
request messages that will be sent to the server. The server then follows HTTP rules to interpret
the request and format reply messages. In addition to requesting or transferring requested
content, HTTP messages contain extra information about the client and server involved, about the
content itself, and even about its unavailability. If a resource cannot be sent, a code in the
response explains the reason for the unavailability and, if possible, indicates where the resource
was moved.

The part of the message that defines the resource details and other context information is called

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 33

the header of the message. The part following the header, which contains the content of the
corresponding resource, is called the payload of the message. Both request messages and response
messages can have a payload, but in most cases, only the response message has one.

The ClientÕs Request

The first stage of an HTTP data exchange between the client and the server is initiated by the
client, when it writes a request message to the server. Take, for example, a common browser task:
to load an HTML page from a server hosting a website, such as
https://learning.lpi.org/en/ . The address, or URL, provides several pieces of relevant
information. Three pieces of information appear in this particular example:

¥ The protocol: HyperText Transfer Protocol Secure (https), an encrypted version of HTTP.

¥ The web hostÕs network name (learning.lpi.org)

¥ The location of the requested resource on the server (the /en/ directoryÑin this case, the
English version of the home page).

NOTE
A Uniform Resource Locator (URL) is an address that points to a resource on the
Internet. This resource is usually a file that can be copied from a remote server, but
URLs can also indicate dynamically generated content and data streams.

How the Client Handles the URL

Before contacting the server, the client needs to convert learning.lpi.org to its corresponding
IP address. The client uses another Internet service, the Domain Name System (DNS), to request the
IP address of a host name from one or more predefined DNS servers (DNS servers are usually
automatically defined by the Internet Service Provider, ISP).

With the serverÕs IP address, the client tries to connect to the HTTP or HTTPS port. Network ports
are identification numbers defined by the Transmission Control Protocol (TCP) to intertwine and
identify distinct communication channels within a client/server connection. By default, HTTP
servers receive requests on TCP ports 80 (HTTP) and 443 (HTTPS).

NOTE

There are other protocols used by web applications to implement client/server
communication. For audio and video calls, for example, it is more appropriate to
use WebSockets, a lower level protocol that is more efficient than HTTP for
transferring data streams in both directions.

The format of the request message that the client sends to the server is the same in HTTP and
HTTPS. HTTPS is already more widely used than HTTP, because all data exchanges between client

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

34 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

and server are encrypted, which is an indispensable feature to promote privacy and security on
public networks. The encrypted connection is established between client and server even before
any HTTP message is exchanged, using the Transport Layer Security (TLS) cryptographic protocol.
By doing this, all HTTPS communication is encapsulated by TLS. Once decrypted, the request or
response transmitted over HTTPS is no different from a request or response made exclusively
over HTTP.

The third element of our URL, /en/ , will be interpreted by the server as the location or path for
the resource being requested. If the path is not provided in the URL, the default location / will be
used. The simplest implementation of an HTTP server associates paths in URLs with files on the
file system where the server is running, but this is just one of the many options available on more
sophisticated HTTP servers.

The Request Message

HTTP operates through a connection already established between client and server, usually
implemented in TCP and encrypted with TLS. In fact, once a connection meeting the requirements
imposed by the server is ready, an HTTP request typed by hand in plain text could generate the
response from the server. In practice, however, programmers rarely need to implement routines
to compose HTTP messages, as most programming languages provide mechanisms that automate
the making of the HTTP message. In the case of the example URL,
https://learning.lpi.org/en/ , the simplest possible request message would have the
following content:

GET /en/ HTTP/1.1

Host: learning.lpi.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0

Accept: text/html

The first word of the first line identifies the HTTP method . It defines which operation the client
wants to perform on the server. The GET method informs the server that the client requests the
resource that follows it: /en/ . Both client and server may support more than one version of the
HTTP protocol, so the version to be adopted in the data exchange is also provided in the first line:
HTTP/1.1 .

NOTE

The most recent version of the HTTP protocol is HTTP/2. Among other differences,
messages written in HTTP/2 are encoded in a binary structure, whereas messages
written in HTTP/1.1 are sent in plain text. This change optimizes data transmission
rates, but the content of the messages is basically the same.

The header can contain more lines after the first one to contextualize and help identify the

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 35

request to the server. The Host header field, for example, may appear redundant, because the
serverÕs host has obviously been identified by the client in order to establish the connection and
itÕs reasonable to assume that the server knows its own identity. Nonetheless, itÕs important to
inform the host of the expected host name in the request header, because it is common practice to
use the same HTTP server to host more than one website. (In this scenario, each specific host is
called virtual host .) Therefore, the Host field is used by the HTTP server to identify which one the
request refers to.

The User-Agent header field contains details about the client program making the request. This
field can be used by the server to adapt the response to the needs of a specific client, but it is more
often used to produce statistics about the clients using the server.

The Accept field is of more immediate value, because it informs the server about the format for
the requested resource. If the client is indifferent about the resource format, the Accept field can
specify */* as the format in.

There are many other header fields that can be used in an HTTP message, but the fields shown in
the example are enough to request a resource from the server.

In addition to the fields in the request header, the client can include other complementary data in
the HTTP request that will be sent to the server. If this data consists only of simple text
parameters, in the format name=value , they can be added to the path of the GET method. The
parameters are embedded in the path after a question mark and are separated by ampersand (&)
characters:

GET /cgi-bin/receive.cgi?name=LPI&email=info@lpi.org HTTP/1.1

In this example, /cgi-bin/receive.cgi is the path to the script on the server that will process
and possibly use the parameters name and email , obtained from the request path. The string that
corresponds to the fields, in the format name=LPI&email= info@lpi.org , is called query string
and is supplied to the receive.cgi script by the HTTP server that receives the request.

When the data is made up of more than short text fields, itÕs more appropriate to send it in the
payload of the message. In this case, the HTTP POST method must be used so that the server
receives and processes the messageÕs payload, according to the specifications indicated in the
request header. When the POST method is used, the request header must provide the size of the
payload that will be sent next and how the body is formatted:

POST /cgi-bin/receive.cgi HTTP/1.1

Host: learning.lpi.org

Content-Length: 1503

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

36 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

mailto:info@lpi.org

Content-Type: multipart/form-data; boundary=------------------------405f7edfd646a37d

The Content-Length field indicates the size in bytes of the payload and the Content-Type field
indicates its format. The multipart/form-data format is the one most commonly used in
traditional HTML forms that use the POST method. In this format, each field inserted in the
requestÕs payload is separated by the code indicated by the boundary keyword. The POST method
should be used only when appropriate, as it uses a slightly larger amount of data than an
equivalent request made with the GET method. Because the GET method sends the parameters
directly in the requestÕs message header, the total data exchange has a lower latency, because an
additional connection stage to transmit the message body will not be necessary.

The Response Header

After the HTTP server receives the request message header, the server returns a response message
back to the client. An HTML file request typically has a response header like this:

HTTP/1.1 200 OK

Accept-Ranges: bytes

Content-Length: 18170

Content-Type: text/html

Date: Mon, 05 Apr 2021 13:44:25 GMT

Etag: "606adcd4-46fa"

Last-Modified: Mon, 05 Apr 2021 09:48:04 GMT

Server: nginx/1.17.10

The first line provides the version of the HTTP protocol used in the response message, which must
correspond to the version used in the request header. Then, still in the first line, the status code of
the response appears, indicating how the server interpreted and generated the response for the
request.

The status code is a three-digit number, where the left-most digit defines the response class. There
are five classes of status codes, numbered from 1 to 5, each indicating a type of action taken by the
server:

1xx (Informational)

The request was received, continuing the process.

2xx (Successful)

The request was successfully received, understood, and accepted.

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 37

3xx (Redirection)

Further action needs to be taken in order to complete the request.

4xx (Client Error)

The request contains bad syntax or cannot be fulfilled.

5xx (Server Error)

The server failed to fulfill an apparently valid request.

The second and third digits are used to indicate additional details. Code 200, for example,
indicates that the request could be answered without any problems. As shown in the example, a
brief text description following the response code (OK) can also be provided. Some specific codes
are of particular interest to ensure that the HTTP client can access the resource in adverse
situations or to help to identify the reason for failure in the event of an unsuccessful request:

301 Moved Permanently

The target resource has been assigned a new permanent URL, provided by the Location
header field in the response.

302 Found

The target resource resides temporarily under a different URL.

401 Unauthorized

The request has not been applied because it lacks valid authentication credentials for the target
resource.

403 Forbidden

The Forbidden reponse indicates that, although the request is valid, the server is configured to
not provide it.

404 Not Found

The origin server did not find a current representation for the target resource or is not willing
to disclose that one exists.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from an inbound
server it accessed while attempting to fulfill the request.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

38 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Although they indicate that it was not possible to fulfill the request, status codes 4xx and 5xx at
least indicate that the HTTP server is running and is capable of receiving requests. The 4xx codes
require an action to be taken on the client, because its URL or credentials are wrong. In contrast,
5xx codes indicate something wrong on the server side. Therefore, in the context of web
applications, these two classes of status codes indicate that the source of the error lies in the
application itself, either client or server, not in the underlying infrastructure.

Static and Dynamic Content

HTTP servers use two basic mechanisms to fulfill the content requested by the client. The first
mechanism provides static content : that is, the path indicated in the request message corresponds
to a file on the serverÕs local file system. The second mechanism provides dynamic content : that is,
the HTTP server forwards the request to another programÑprobably a script!to build the
response from different sources, such as databases and other files.

Although there are different HTTP servers, they all use the same HTTP communication protocol
and adopt more or less the same conventions. An application that does not have a specific need
can be implemented with any traditional server, such as Apache or NGINX. Both are capable of
generating dynamic content and providing static content, but there are subtle differences in the
configuration of each.

The location of static files to be served up, for example, is defined in different ways in Apache and
NGINX. The convention is to keep these files in a specific directory for this purpose, having a
name associated with the host, for example /var/www/learning.lpi.org/ . In Apache, this path
is defined by the configuration directive DocumentRoot /var/www/learning.lpi.org , in a
section that defines a virtual host. In NGINX, the directive used is root
/var/www/learning.lpi.org in a server section of the configuration file.

Whichever server you choose, the files at /var/www/learning.lpi.org/ will be served via
HTTP in almost the same way. Some fields in the response header and their contents may vary
between the two servers, but fields like Content-Type must be present in the response header
and must be consistent across any server.

Caching

HTTP was designed to work on any type of Internet connection, fast or slow. Furthermore, most
HTTP exchanges have to traverse many network nodes due to the distributed architecture of the
Internet. As a result, it is important to adopt some content caching strategy to avoid the redundant
transfer of previously downloaded content. HTTP transfers can work with two basic types of
cache: shared and private .

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 39

A shared cache is used by more than a single client. For example, a large content provider might
use caches on geographically distributed servers, so that clients get the data from their nearest
server. Once a client has made a request and its response was stored in a shared cache, other
clients making that same request in that same area will received the cached response.

A private cache is created by the client itself for its exclusive use. It is the type of caching the web
browser does for images, CSS files, JavaScript, or the HTML document itself, so they donÕt need to
be downloaded again if requested in the near future.

NOTE

Not all HTTP requests must be cached. A request using the POST method, for
example, implies a response associated exclusively with that particular request, so
its response content should not be reused. By default, only responses to requests
made using the GET method are cached. Furthermore, only responses with
conclusive status codes such as 200 (OK), 206 (Partial Content), 301 (Moved
Permanently), and 404 (Not Found) are suitable for caching.

Both the shared and private cache strategy use HTTP headers to control how the downloaded
content should be cached. For the private cache, the client consults the response header and
verifies whether the content in the local cache still corresponds to the current remote content. If it
does, the client waives the transfer of the response payload and uses the local version.

The validity of the cached resource can be assessed in several ways. The server can provide an
expiration date in the response header for the first request, so that the client discards the cached
resource at the end of the term and requests it again to obtain the updated version. However, the
server is not always able to determine the expiration date of a resource, so it is common to use the
ETag response header field to identify the version of the resource, for example Etag:
"606adcd4-46fa" .

To verify that a cached resource needs updating, the client requests only its response header from
the server. If the ETag field matches the one in the locally stored version, the client reuses the
cached content. Otherwise, the updated content of the resource is downloaded from the server.

HTTP Sessions

In a conventional website or web application, the features that handle session control are based
on HTTP headers. The server cannot assume, for example, that all requests coming from the same
IP address are from the same client. The most traditional method that allows the server to
associate different requests to a single client is the use of cookies, an identification tag that is given
to the client by the server and that is provided in the HTTP header.

Cookies allow the server to preserve information about a specific client, even if the person

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

40 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

running the client does not identify himself or herself explicitly. With cookies, it is possible to
implement sessions where logins, shopping carts, preferences, etc., are preserved in between
different requests made to the same server that provided them. Cookies are also used to track user
browsing, so it is important to ask for consent before sending them.

The server sets the cookie in the response header using the Set-Cookie field. The field value is a
name=value pair chosen to represent some attribute associated with a specific client. The server
can, for example, create an identification number for a client that requests a resource for the first
time and pass it on to the client in the response header:

HTTP/1.1 200 OK

Accept-Ranges: bytes

Set-Cookie: client_id=62b5b719-fcbf

If the client allows the use of cookies, new requests to this same server have the cookie field in the
header:

GET /en/ HTTP/1.1

Host: learning.lpi.org

Cookie: client_id=62b5b719-fcbf

With this identification number, the server can retrieve specific definitions for the client and
generate a customized response. It is also possible to use more than one Set-Cookie field to
deliver different cookies to the same customer. In this way, more than one definition can be
preserved on the client side.

Cookies raise both privacy issues and potential security holes, because there is a possibility that
they can be transferred to another client, who will be identified by the server as the original
client. Cookies used to preserve sessions can give access to sensitive information from the original
client. Therefore, itÕs very important for clients to adopt local protection mechanisms to prevent
their cookies from being extracted and reused without authorization.

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 41

Guided Exercises
1. What HTTP method does the following request message use?

POST /cgi-bin/receive.cgi HTTP/1.1

Host: learning.lpi.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0

Accept: */*

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

2. When an HTTP server hosts many websites, how is it able to identify which one a request is
for?

3. What parameter is provided by the query string of the URL
https://www.google.com/search?q=LPI ?

4. Why is the following HTTP request not suitable for caching?

POST /cgi-bin/receive.cgi HTTP/1.1

Host: learning.lpi.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0

Accept: */*

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

42 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Explorational Exercises
1. How could you use the web browser to monitor the requests and responses made by an HTML

page?

2. HTTP servers that provide static content usually map the requested path to a file in the serverÕs
filesystem. What happens when the path in the request points to a directory?

3. The contents of files sent over HTTPS are protected by encryption, so they cannot be read by
computers between the client and the server. Despite this, can these computers in the middle
identify which resource the client has requested from the server?

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 43

Summary
This lesson covers the basics of HTTP, the main protocol used by client applications to request
resources from web servers. The lesson goes through the following concepts:

¥ Request messages, header fields, and methods.

¥ Response status codes.

¥ How HTTP servers generate responses.

¥ HTTP features useful for caching and session management.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

44 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Answers to Guided Exercises
1. What HTTP method does the following request message use?

POST /cgi-bin/receive.cgi HTTP/1.1

Host: learning.lpi.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0

Accept: */*

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

The POST method.

2. When an HTTP server hosts many websites, how is it able to identify which one a request is
for?

The Host field in the request header provides the targeted website.

3. What parameter is provided by the query string of the URL https://www.google.com/
search?q=LPI ?

The parameter named q with a value of LPI .

4. Why is the following HTTP request not suitable for caching?

POST /cgi-bin/receive.cgi HTTP/1.1

Host: learning.lpi.org

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0

Accept: */*

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

Because requests made with the POST method imply a write operation on the server, they
should not be cached.

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 45

https://www.google.com/search?q=LPI
https://www.google.com/search?q=LPI

Answers to Explorational Exercises
1. How could you use the web browser to monitor the requests and responses made by an HTML

page?

All popular browsers offer development tools that, among other things, can show all network
transactions that have been carried out by the current page.

2. HTTP servers that provide static content usually map the requested path to a file in the serverÕs
filesystem. What happens when the path in the request points to a directory?

It depends on how the server is configured. By default, most HTTP servers look for a file named
index.html (or another predefined name) in that same directory and send it as the response.
If the file isnÕt there, the server issues a 404 Not Found response.

3. The contents of files sent over HTTPS are protected by encryption, so they cannot be read by
computers between the client and the server. Despite this, can these computers in the middle
identify which resource the client has requested from the server?

No, because the request and response HTTP headers themselves are also encrypted by TLS.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

46 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Topic 032: HTML Document Markup

Web Development Essentials (030) (Version 1.0) |

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 47

032.1 HTML Document Anatomy

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 032.1

Weight

2

Key knowledge areas

¥ Create a simple HTML document

¥ Understand the role of HTML

¥ Understand the HTML skeleton

¥ Understand the HTML syntax (tags, attributes, comments)

¥ Understand the HTML head

¥ Understand meta tags

¥ Understand character encoding

Partial list of the used files, terms and utilities

¥ <!DOCTYPE html>

¥ <html>

¥ <head>

¥ <body>

¥ <meta> , including the charset (UTF-8), name and content attributes

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

48 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#032.1_HTML_Document_Anatomy_.28weight:_2.29

032.1 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 032 HTML Document Markup

Objective: 032.1 HTML Document Anatomy

Lesson: 1 of 1

Introduction
HTML (HyperText Markup Language) is a markup language that tells web browsers how to
structure and display web pages. The current version is 5.0, which was released in 2012. The
HTML syntax is defined by the World Wide Web Consortium (W3C).

HTML is a fundamental skill in web development, as it defines the structure and a good deal of the
appearance of a website. If you want a career in web development, HTML is definitely a good
starting point.

Anatomy of an HTML Document

A basic HTML page has the following structure:

<!DOCTYPE html>

<html>

Ê <head>

Ê <title> My HTML Page </title>

Ê <!-- This is the Document Header -->

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 49

Ê </head>

Ê <body>

Ê <!-- This is the Document Body -->

Ê </body>

</html>

Now, letÕs analyze it in detail.

HTML Tags

HTML uses elements and tags to describe and format content. Tags consist of angle brackets
around a tag name, for example <title> . The tag name is not case-sensitive, although the World
Wide Web Consortium (W3C) recommends using lowercase letters in current versions of HTML.
These HTML tags are used to build HTML elements. The tag <title> is an example for an opening
tag of an HTML element that defines the title of an HTML document. However, an element has
two further components. A full <title> element looking like this:

<title> My HTML Page </title>

Here, My HTML Page serves as the element content , while </title> serves as the closing tag that
declares that this element is complete.

NOTE
Not all HTML elements need to be closed; in such cases, we speak of empty
elements, self-closing elements, or void elements.

Here are the other HTML elements from the previous example:

<html>

Encloses the entire HTML document. This contains all the tags that make up the page. It also
indicates that the content of this file is in HTML language. Its corresponding closing tag is
</html> .

<head>

A container for all meta information regarding the page. The corresponding closing tag of this
element is </head> .

<body>

A container for the page content and its structural representation. Its corresponding closing tag
is </body> .

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

50 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

The <html> , <head> , <body> and <title> tags are so-called skeleton tags , which provide the
basic structure of an HTML document. In particular, they tell the web browser that it is reading an
HTML page.

NOTE
Of these HTML elements, the only one that is required for an HTML document to be
validated is the <title> tag.

As you can see, each HTML page is a well-structured document and could even be referred to as a
tree, where the <html> element represents the document root and the <head> and <body>
elements are the first branches. The example shows that it is possible to nest elements: For
example, the <title> element is nested inside the <head> element, which is in turn nested inside
the <html> element.

To ensure that your HTML code is readable and maintainable, make sure that all HTML elements
are closed properly and in order. Web browsers may still render your web site as expected, but
incorrect nesting of elements and their tags is an error-prone practice.

Finally, a special mention goes to the doctype declaration at the very top of the example document
structure. <!DOCTYPE> is not an HTML tag, but an instruction for the web browser that specifies
the HTML version used in the document. In the basic HTML document structure shown earlier,
<!DOCTYPE html> was used, specifying that HTML5 is used in this document.

HTML Comments

When creating an HTML page, it is good practice to insert comments into the code to improve its
readability and describe the purpose of larger code blocks. A comment is inserted between the
<!-- and --> tags, as shown in the following example:

<!-- This is a comment. -->

<!--

Ê This is a

Ê multiline

Ê comment.

-->

The example demonstrates that HTML comments can be placed in a single line, but may also span
over multiple lines. In any case, the result is that the text between <!-- and --> is ignored by the
web browser and therefore not displayed in the HTML page. Based on these considerations, you
can deduce that the basic HTML page shown in the previous section does not display any text,
because the lines <!-- This is the Document Header --> and <!-- This is the

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 51

Document Body --> are just two comments.

WARNING Comments cannot be nested.

HTML Attributes

HTML tags may include one or more attributes to specify details of the HTML element. A simple
tag with two attributes has the following form:

<tag attribute-a= "value-a" attribute-b= "value-b" >

Attributes must always be set on the opening tag.

An attribute consists of a name, which indicates the property that should be set, an equal sign, and
the desired value within quotes. Both single quotes and double quotes are acceptable, but it is
recommended to use of single quotes or double quotes consistently throughout a project. It is
important not to mix single and double quotes for a single attribute value, as the web browser will
not recognize mixed quotes as one unit.

NOTE

You can include one type of quotation marks within the other type without any
problems. For example, if you need to use ' in an attribute value, you can wrap
that value within " . However, if you want to use the same type of quotation mark
inside the value as you are using to wrap the value, you need to use " for "
and ' for ' .

The attributes can be categorized into core attributes and specific attributes as explained in the
following sections.

Core Attributes

Core attributes are attributes that can be used on any HTML element. They include:

title

Describes the content of the element. Its value is often displayed as a tooltip that is shown when
the user moves their cursor over the element.

id

Associates a unique identifier with an element. This identifier must be unique within the
document, and the document will not validate when multiple elements share the same id .

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

52 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

style

Assigns graphic properties (CSS styles) to the element.

class

Specifies one or multiple classes for the element in a space-separated list of class names. These
classes can be referenced in CSS stylesheets.

lang

Specifies the language of the element content using ISO-639 standard two-character language
codes.

NOTE

The developer can store custom information about an element by defining a so-
called data- attribute, which is indicated by prefixing the desired name with
data- as in data-additionalinfo . You can assign this attribute a value just like
any other attribute.

Specific Attributes

Other attributes are specific to each HTML element. For example, the src attribute of an HTML
 element specifies the URL of an image. There are many more specific attributes, which will
be covered in the following lessons.

Document Header

The document header defines meta information regarding the page and is described by the
<head> element. By default, the information within the document header is not rendered by the
web browser. While it is possible to use the <head> element to contain HTML elements that could
be displayed on the page, doing so is not recommended.

Title

The document title is specified using the <title> element. The title defined between the tags
appears in the web bowser title bar and is the suggested name for the bookmark when you try to
bookmark the page. It is also displayed in search engine results as the title of the page.

An example of this element is the following:

<title> My test page </title>

The <title> tag is required in all HTML documents and should appear only once in each

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 53

document.

NOTE
Do not confuse the title of the document with the heading of the page, which is set
in the body.

Metadata

The <meta> element is used to specify meta information to further describe the content of an
HTML document. It is a so-called self-closing element, which means that it does not have a closing
tag. Aside from the core attributes that are valid for every HTML element, the <meta> element
also uses the following attributes:

name

Defines what metadata will be described in this element. It can be set to any custom defined
value, but commonly used values are author , description , and keywords .

http-equiv

Provides an HTTP header for the value of the content attribute. A common value is refresh ,
which will be explained later. If this attribute is set, the name attribute should not be set.

content

Provides the value associated with the name or http-equiv attribute.

charset

Specifies the character encoding for the HTML document, for example utf-8 to set it to
Unicode Transformation Format"Ñ"8-bit.

Add an Author, Description, and Keywords

Using the <meta> tag, you can specify additional information about the author of the HTML page
and describe the page content like this:

<meta name="author" content= "Name Surname" >

<meta name="description" content= "A short summary of the page content." >

Try to include a series of keywords related to the content of the page in the description. This
description is often the first thing a user sees when navigating with a search engine.

If you also want to provide additional keywords related to the web page to search engines, you
can add this element:

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

54 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

<meta name="keywords" content= "keyword1, keyword2, keyword3, keyword4, keyword5" >

NOTE

In the past, spammers entered hundreds of keywords and descriptions unrelated to
the actual content of the page so that it also appeared in searches unrelated to the
terms people searched for. Nowadays, <meta> tags are relegated to a position of
secondary importance and are used only to consolidate the topics covered in the
web page, so that it is no longer possible to mislead the new and more
sophisticated search engine algorithms.

Redirect an HTML Page and Define a Time Interval for the Document to Refresh Itself

Using the <meta> tag, you can automatically refresh an HTML page after a certain period (for
example after 30 seconds) in this way:

<meta http-equiv= "refresh" content= "30" >

Alternatively, you can redirect a web page to another web page after the same amount of time
with the following code:

<meta http-equiv= "refresh" content= "30; url=http://www.lpi.org" >

In this example, the user is redirected from the current page to http://www.lpi.org after 30
seconds. The values can be anything you like. For example, if you specify content="0;
url=http://www.lpi.org" , the page is redirected immediately.

Specify the Character Encoding

The charset attribute specifies the character encoding for the HTML document. A common
example is:

<meta charset= "utf-8" >

This element specifies that the documentÕs character encoding is utf-8 , which is a universal
character set that includes practically any character of any human language. Therefore, by using
it, you will avoid problems in displaying some characters that you may have using other character
sets such as ISO-8859-1 (the Latin alphabet).

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 55

Other Useful Examples

Two other useful applications of the <meta> tag are:

¥ Set cookies to keep track of a site visitor.

¥ Take control over the viewport (the visible area of a web page inside a web browser window),
which depends on the screen size of the user device (for example, a mobile phone or a
computer).

However, these two examples are beyond the scope of the exam and their study is left to the
curious reader to explore elsewhere.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

56 ÊÊÊ | ÊÊÊ ÊÊÊ learning.lpi.org ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ Version: 2022-10-14

Guided Exercises
1. For each of the following tags, indicate the corresponding closing tag:

<body>

<head>

<html>

<meta>

<title>

2. What is the difference between a tag and an element? Use this entry as a reference:

<title>HTML Page Title</title>

3. What are the tags between which a comment should be placed?

4. Explain what an attribute is and provide some examples for the <meta> tag.

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 ÊÊÊ | ÊÊÊ Licensed under CC BY-NC-ND 4.0. ÊÊÊ | ÊÊÊ learning.lpi.org ÊÊÊ ÊÊÊ | ÊÊÊ 57

