
Discrete Math for Computer Science Students

Ken Bogart
Dept. of Mathematics
Dartmouth College

Scot Drysdale
Dept. of Computer Science
Dartmouth College

Cliff Stein
Dept. of Industrial Engineering
and Operations Research
Columbia University

ii

c©Kenneth P. Bogart, Scot Drysdale, and Cliff Stein, 2004

Contents

1 Counting 1

1.1 Basic Counting . 1

The Sum Principle . 1

Abstraction . 2

Summing Consecutive Integers . 3

The Product Principle . 3

Two element subsets . 5

Important Concepts, Formulas, and Theorems . 6

Problems . 7

1.2 Counting Lists, Permutations, and Subsets. 9

Using the Sum and Product Principles . 9

Lists and functions . 10

The Bijection Principle . 12

k-element permutations of a set . 13

Counting subsets of a set . 13

Important Concepts, Formulas, and Theorems . 15

Problems . 16

1.3 Binomial Coefficients . 19

Pascal’s Triangle . 19

A proof using the Sum Principle . 20

The Binomial Theorem . 22

Labeling and trinomial coefficients . 23

Important Concepts, Formulas, and Theorems . 24

Problems . 25

1.4 Equivalence Relations and Counting (Optional) 27

The Symmetry Principle . 27

iii

iv CONTENTS

Equivalence Relations . 28

The Quotient Principle . 29

Equivalence class counting . 30

Multisets . 31

The bookcase arrangement problem. 32

The number of k-element multisets of an n-element set. 33

Using the quotient principle to explain a quotient 34

Important Concepts, Formulas, and Theorems . 34

Problems . 35

2 Cryptography and Number Theory 39

2.1 Cryptography and Modular Arithmetic . 39

Introduction to Cryptography . 39

Private Key Cryptography . 40

Public-key Cryptosystems . 42

Arithmetic modulo n . 43

Cryptography using multiplication mod n . 47

Important Concepts, Formulas, and Theorems . 48

Problems . 49

2.2 Inverses and GCDs . 52

Solutions to Equations and Inverses mod n . 52

Inverses mod n . 53

Converting Modular Equations to Normal Equations 55

Greatest Common Divisors (GCD) . 55

Euclid’s Division Theorem . 56

The GCD Algorithm . 58

Extended GCD algorithm . 59

Computing Inverses . 61

Important Concepts, Formulas, and Theorems . 62

Problems . 63

2.3 The RSA Cryptosystem . 66

Exponentiation mod n . 66

The Rules of Exponents . 66

Fermat’s Little Theorem . 68

CONTENTS v

The RSA Cryptosystem . 69

The Chinese Remainder Theorem . 72

Important Concepts, Formulas, and Theorems . 73

Problems . 74

2.4 Details of the RSA Cryptosystem . 76

Practical Aspects of Exponentiation mod n . 76

How long does it take to use the RSA Algorithm? 77

How hard is factoring? . 78

Finding large primes . 78

Important Concepts, Formulas, and Theorems . 81

Problems . 81

3 Reflections on Logic and Proof 83

3.1 Equivalence and Implication . 83

Equivalence of statements . 83

Truth tables . 85

DeMorgan’s Laws . 88

Implication . 89

Important Concepts, Formulas, and Theorems . 92

Problems . 94

3.2 Variables and Quantifiers . 96

Variables and universes . 96

Quantifiers . 97

Standard notation for quantification . 98

Statements about variables . 99

Rewriting statements to encompass larger universes 100

Proving quantified statements true or false . 101

Negation of quantified statements . 101

Implicit quantification . 103

Proof of quantified statements . 104

Important Concepts, Formulas, and Theorems . 105

Problems . 106

3.3 Inference . 108

Direct Inference (Modus Ponens) and Proofs . 108

vi CONTENTS

Rules of inference for direct proofs . 109

Contrapositive rule of inference. 110

Proof by contradiction . 112

Important Concepts, Formulas, and Theorems . 114

Problems . 115

4 Induction, Recursion, and Recurrences 117

4.1 Mathematical Induction . 117

Smallest Counter-Examples . 117

The Principle of Mathematical Induction . 120

Strong Induction . 123

Induction in general . 124

Important Concepts, Formulas, and Theorems . 125

Problems . 126

4.2 Recursion, Recurrences and Induction . 128

Recursion . 128

First order linear recurrences . 129

Iterating a recurrence . 130

Geometric series . 131

First order linear recurrences . 133

Important Concepts, Formulas, and Theorems . 136

Problems . 137

4.3 Growth Rates of Solutions to Recurrences . 139

Divide and Conquer Algorithms . 139

Recursion Trees . 140

Three Different Behaviors . 146

Important Concepts, Formulas, and Theorems . 148

Problems . 148

4.4 The Master Theorem . 150

Master Theorem . 150

Solving More General Kinds of Recurrences . 152

More realistic recurrences (Optional) . 154

Recurrences for general n (Optional) . 155

Appendix: Proofs of Theorems (Optional) . 157

CONTENTS vii

Important Concepts, Formulas, and Theorems . 159

Problems . 161

4.5 More general kinds of recurrences . 163

Recurrence Inequalities . 163

A Wrinkle with Induction . 164

Further Wrinkles in Induction Proofs . 165

Dealing with Functions Other Than nc . 167

Important Concepts, Formulas, and Theorems . 171

Problems . 172

4.6 Recurrences and Selection . 174

The idea of selection . 174

A recursive selection algorithm . 174

Selection without knowing the median in advance 175

An algorithm to find an element in the middle half 177

An analysis of the revised selection algorithm . 179

Uneven Divisions . 180

Important Concepts, Formulas, and Theorems . 182

Problems . 182

5 Probability 185

5.1 Introduction to Probability . 185

Why do we study probability? . 185

Some examples of probability computations . 186

Complementary probabilities . 187

Probability and hashing . 188

The Uniform Probability Distribution . 188

Important Concepts, Formulas, and Theorems . 191

Problems . 192

5.2 Unions and Intersections . 194

The probability of a union of events . 194

Principle of inclusion and exclusion for probability 196

The principle of inclusion and exclusion for counting 200

Important Concepts, Formulas, and Theorems . 201

Problems . 202

viii CONTENTS

5.3 Conditional Probability and Independence . 204

Conditional Probability . 204

Independence . 206

Independent Trials Processes . 208

Tree diagrams . 209

Important Concepts, Formulas, and Theorems . 212

Problems . 213

5.4 Random Variables . 215

What are Random Variables? . 215

Binomial Probabilities . 215

Expected Value . 218

Expected Values of Sums and Numerical Multiples 220

The Number of Trials until the First Success . 222

Important Concepts, Formulas, and Theorems . 224

Problems . 225

5.5 Probability Calculations in Hashing . 227

Expected Number of Items per Location . 227

Expected Number of Empty Locations . 228

Expected Number of Collisions . 228

Expected maximum number of elements in a slot of a hash table (Optional) . . . 230

Important Concepts, Formulas, and Theorems . 234

Problems . 235

5.6 Conditional Expectations, Recurrences and Algorithms 237

When Running Times Depend on more than Size of Inputs 237

Conditional Expected Values . 238

Randomized algorithms . 240

A more exact analysis of RandomSelect . 245

Important Concepts, Formulas, and Theorems . 247

Problems . 248

5.7 Probability Distributions and Variance . 251

Distributions of random variables . 251

Variance . 253

Important Concepts, Formulas, and Theorems . 258

Problems . 259

CONTENTS ix

6 Graphs 263

6.1 Graphs . 263

The degree of a vertex . 265

Connectivity . 267

Cycles . 269

Trees . 269

Other Properties of Trees . 270

Important Concepts, Formulas, and Theorems . 272

Problems . 274

6.2 Spanning Trees and Rooted Trees . 276

Spanning Trees . 276

Breadth First Search . 278

Rooted Trees . 281

Important Concepts, Formulas, and Theorems . 283

Problems . 285

6.3 Eulerian and Hamiltonian Paths and Tours . 288

Eulerian Tours and Trails . 288

Hamiltonian Paths and Cycles . 291

NP-Complete Problems . 295

Important Concepts, Formulas, and Theorems . 297

Problems . 298

6.4 Matching Theory . 300

The idea of a matching . 300

Making matchings bigger . 303

Matching in Bipartite Graphs . 305

Searching for Augmenting Paths in Bipartite Graphs 306

The Augmentation-Cover algorithm . 307

Good Algorithms . 309

Important Concepts, Formulas, and Theorems . 310

Problems . 311

6.5 Coloring and planarity . 313

The idea of coloring . 313

Interval Graphs . 315

Planarity . 317

x CONTENTS

The Faces of a Planar Drawing . 318

The Five Color Theorem . 321

Important Concepts, Formulas, and Theorems . 323

Problems . 324

Chapter 1

Counting

1.1 Basic Counting

The Sum Principle

We begin with an example that illustrates a fundamental principle.

Exercise 1.1-1 The loop below is part of an implementation of selection sort, which sorts
a list of items chosen from an ordered set (numbers, alphabet characters, words, etc.)
into non-decreasing order.

(1) for i = 1 to n − 1
(2) for j = i + 1 to n
(3) if (A[i] > A[j])
(4) exchange A[i] and A[j]

How many times is the comparison A[i] > A[j] made in Line 3?

In Exercise 1.1-1, the segment of code from lines 2 through 4 is executed n − 1 times, once
for each value of i between 1 and n − 1 inclusive. The first time, it makes n − 1 comparisons.
The second time, it makes n − 2 comparisons. The ith time, it makes n − i comparisons. Thus
the total number of comparisons is

(n − 1) + (n − 2) + · · · + 1 . (1.1)

This formula is not as important as the reasoning that lead us to it. In order to put the
reasoning into a broadly applicable format, we will describe what we were doing in the language
of sets. Think about the set S containing all comparisons the algorithm in Exercise 1.1-1 makes.
We divided set S into n−1 pieces (i.e. smaller sets), the set S1 of comparisons made when i = 1,
the set S2 of comparisons made when i = 2, and so on through the set Sn−1 of comparisons made
when i = n− 1. We were able to figure out the number of comparisons in each of these pieces by
observation, and added together the sizes of all the pieces in order to get the size of the set of all
comparisons.

1

2 CHAPTER 1. COUNTING

in order to describe a general version of the process we used, we introduce some set-theoretic
terminology. Two sets are called disjoint when they have no elements in common. Each of the
sets Si we described above is disjoint from each of the others, because the comparisons we make
for one value of i are different from those we make with another value of i. We say the set of
sets {S1, . . . , Sm} (above, m was n − 1) is a family of mutually disjoint sets, meaning that it is
a family (set) of sets, any two of which are disjoint. With this language, we can state a general
principle that explains what we were doing without making any specific reference to the problem
we were solving.

Principle 1.1 (Sum Principle) The size of a union of a family of mutually disjoint finite sets
is the sum of the sizes of the sets.

Thus we were, in effect, using the sum principle to solve Exercise 1.1-1. We can describe the
sum principle using an algebraic notation. Let |S| denote the size of the set S. For example,
|{a, b, c}| = 3 and |{a, b, a}| = 2.1 Using this notation, we can state the sum principle as: if S1,
S2, . . .Sm are disjoint sets, then

|S1 ∪ S2 ∪ · · · ∪ Sm| = |S1| + |S2| + · · · + |Sm| . (1.2)

To write this without the “dots” that indicate left-out material, we write

|
m⋃

i=1

Si| =
m∑

i=1

|Si|.

When we can write a set S as a union of disjoint sets S1, S2, . . . , Sk we say that we have
partitioned S into the sets S1, S2, . . . , Sk, and we say that the sets S1, S2, . . . , Sk form a partition
of S. Thus {{1}, {3, 5}, {2, 4}} is a partition of the set {1, 2, 3, 4, 5} and the set {1, 2, 3, 4, 5} can
be partitioned into the sets {1}, {3, 5}, {2, 4}. It is clumsy to say we are partitioning a set into
sets, so instead we call the sets Si into which we partition a set S the blocks of the partition.
Thus the sets {1}, {3, 5}, {2, 4} are the blocks of a partition of {1, 2, 3, 4, 5}. In this language,
we can restate the sum principle as follows.

Principle 1.2 (Sum Principle) If a finite set S has been partitioned into blocks, then the size
of S is the sum of the sizes of the blocks.

Abstraction

The process of figuring out a general principle that explains why a certain computation makes
sense is an example of the mathematical process of abstraction. We won’t try to give a precise
definition of abstraction but rather point out examples of the process as we proceed. In a course
in set theory, we would further abstract our work and derive the sum principle from the axioms of

1It may look strange to have |{a, b, a}| = 2, but an element either is or is not in a set. It cannot be in a set
multiple times. (This situation leads to the idea of multisets that will be introduced later on in this section.) We
gave this example to emphasize that the notation {a, b, a} means the same thing as {a, b}. Why would someone
even contemplate the notation {a, b, a}. Suppose we wrote S = {x|x is the first letter of Ann, Bob, or Alice}.
Explicitly following this description of S would lead us to first write down {a, b, a} and the realize it equals {a, b}.

1.1. BASIC COUNTING 3

set theory. In a course in discrete mathematics, this level of abstraction is unnecessary, so we will
simply use the sum principle as the basis of computations when it is convenient to do so. If our
goal were only to solve this one exercise, then our abstraction would have been almost a mindless
exercise that complicated what was an “obvious” solution to Exercise 1.1-1. However the sum
principle will prove to be useful in a wide variety of problems. Thus we observe the value of
abstraction—when you can recognize the abstract elements of a problem, then abstraction often
helps you solve subsequent problems as well.

Summing Consecutive Integers

Returning to the problem in Exercise 1.1-1, it would be nice to find a simpler form for the sum
given in Equation 1.1. We may also write this sum as

n−1∑

i=1

n − i.

Now, if we don’t like to deal with summing the values of (n − i), we can observe that the
values we are summing are n − 1, n − 2, . . . , 1, so we may write that

n−1∑

i=1

n − i =
n−1∑

i=1

i.

A clever trick, usually attributed to Gauss, gives us a shorter formula for this sum.

We write
1 + 2 + · · · + n − 2 + n − 1

+ n − 1 + n − 2 + · · · + 2 + 1
n + n + · · · + n + n

The sum below the horizontal line has n− 1 terms each equal to n, and thus it is n(n− 1). It
is the sum of the two sums above the line, and since these sums are equal (being identical except
for being in reverse order), the sum below the line must be twice either sum above, so either of
the sums above must be n(n − 1)/2. In other words, we may write

n−1∑

i=1

n − i =
n−1∑

i=1

i =
n(n − 1)

2
.

This lovely trick gives us little or no real mathematical skill; learning how to think about
things to discover answers ourselves is much more useful. After we analyze Exercise 1.1-2 and
abstract the process we are using there, we will be able to come back to this problem at the end
of this section and see a way that we could have discovered this formula for ourselves without
any tricks.

The Product Principle

Exercise 1.1-2 The loop below is part of a program which computes the product of two
matrices. (You don’t need to know what the product of two matrices is to answer
this question.)

4 CHAPTER 1. COUNTING

(1) for i = 1 to r
(2) for j = 1 to m
(3) S = 0
(4) for k = 1 to n
(5) S = S + A[i, k] ∗ B[k, j]
(6) C[i, j] = S

How many multiplications (expressed in terms of r, m, and n) does this code carry
out in line 5?

Exercise 1.1-3 Consider the following longer piece of pseudocode that sorts a list of num-
bers and then counts “big gaps” in the list (for this problem, a big gap in the list is
a place where a number in the list is more than twice the previous number:

(1) for i = 1 to n − 1
(2) minval = A[i]
(3) minindex = i
(4) for j = i to n
(5) if (A[j] < minval)
(6) minval = A[j]
(7) minindex = j
(8) exchange A[i] and A[minindex]
(9)
(10) for i = 2 to n
(11) if (A[i] > 2 ∗ A[i − 1])
(12) bigjump = bigjump +1

How many comparisons does the above code make in lines 5 and 11 ?

In Exercise 1.1-2, the program segment in lines 4 through 5, which we call the “inner loop,”
takes exactly n steps, and thus makes n multiplications, regardless of what the variables i and j
are. The program segment in lines 2 through 5 repeats the inner loop exactly m times, regardless
of what i is. Thus this program segment makes n multiplications m times, so it makes nm
multiplications.

Why did we add in Exercise 1.1-1, but multiply here? We can answer this question using
the abstract point of view we adopted in discussing Exercise 1.1-1. Our algorithm performs a
certain set of multiplications. For any given i, the set of multiplications performed in lines 2
through 5 can be divided into the set S1 of multiplications performed when j = 1, the set S2 of
multiplications performed when j = 2, and, in general, the set Sj of multiplications performed
for any given j value. Each set Sj consists of those multiplications the inner loop carries out
for a particular value of j, and there are exactly n multiplications in this set. Let Ti be the set
of multiplications that our program segment carries out for a certain i value. The set Ti is the
union of the sets Sj ; restating this as an equation, we get

Ti =
m⋃

j=1

Sj .

1.1. BASIC COUNTING 5

Then, by the sum principle, the size of the set Ti is the sum of the sizes of the sets Sj , and a sum
of m numbers, each equal to n, is mn. Stated as an equation,

|Ti| = |
m⋃

j=1

Sj | =
m∑

j=1

|Sj | =
m∑

j=1

n = mn. (1.3)

Thus we are multiplying because multiplication is repeated addition!

From our solution we can extract a second principle that simply shortcuts the use of the sum
principle.

Principle 1.3 (Product Principle) The size of a union of m disjoint sets, each of size n, is
mn.

We now complete our discussion of Exercise 1.1-2. Lines 2 through 5 are executed once for
each value of i from 1 to r. Each time those lines are executed, they are executed with a different
i value, so the set of multiplications in one execution is disjoint from the set of multiplications
in any other execution. Thus the set of all multiplications our program carries out is a union
of r disjoint sets Ti of mn multiplications each. Then by the product principle, the set of all
multiplications has size rmn, so our program carries out rmn multiplications.

Exercise 1.1-3 demonstrates that thinking about whether the sum or product principle is
appropriate for a problem can help to decompose the problem into easily-solvable pieces. If you
can decompose the problem into smaller pieces and solve the smaller pieces, then you either
add or multiply solutions to solve the larger problem. In this exercise, it is clear that the
number of comparisons in the program fragment is the sum of the number of comparisons in the
first loop in lines 1 through 8 with the number of comparisons in the second loop in lines 10
through 12 (what two disjoint sets are we talking about here?). Further, the first loop makes
n(n + 1)/2 − 1 comparisons2, and that the second loop has n − 1 comparisons, so the fragment
makes n(n + 1)/2 − 1 + n − 1 = n(n + 1)/2 + n − 2 comparisons.

Two element subsets

Often, there are several ways to solve a problem. We originally solved Exercise 1.1-1 by using the
sum principal, but it is also possible to solve it using the product principal. Solving a problem
two ways not only increases our confidence that we have found the correct solution, but it also
allows us to make new connections and can yield valuable insight.

Consider the set of comparisons made by the entire execution of the code in this exercise.
When i = 1, j takes on every value from 2 to n. When i = 2, j takes on every value from 3 to
n. Thus, for each two numbers i and j, we compare A[i] and A[j] exactly once in our loop. (The
order in which we compare them depends on whether i or j is smaller.) Thus the number of
comparisons we make is the same as the number of two element subsets of the set {1, 2, . . . , n}3.
In how many ways can we choose two elements from this set? If we choose a first and second
element, there are n ways to choose a first element, and for each choice of the first element, there
are n− 1 ways to choose a second element. Thus the set of all such choices is the union of n sets

2To see why this is true, ask yourself first where the n(n + 1)/2 comes from, and then why we subtracted one.
3The relationship between the set of comparisons and the set of two-element subsets of {1, 2, . . . , n} is an

example of a bijection, an idea which will be examined more in Section 1.2.

6 CHAPTER 1. COUNTING

of size n− 1, one set for each first element. Thus it might appear that, by the product principle,
there are n(n − 1) ways to choose two elements from our set. However, what we have chosen is
an ordered pair, namely a pair of elements in which one comes first and the other comes second.
For example, we could choose 2 first and 5 second to get the ordered pair (2, 5), or we could
choose 5 first and 2 second to get the ordered pair (5, 2). Since each pair of distinct elements
of {1, 2, . . . , n} can be ordered in two ways, we get twice as many ordered pairs as two element
sets. Thus, since the number of ordered pairs is n(n − 1), the number of two element subsets of
{1, 2, . . . , n} is n(n − 1)/2. Therefore the answer to Exercise 1.1-1 is n(n − 1)/2. This number
comes up so often that it has its own name and notation. We call this number “n choose 2”
and denote it by

(n
2

)
. To summarize,

(n
2

)
stands for the number of two element subsets of an n

element set and equals n(n − 1)/2. Since one answer to Exercise 1.1-1 is 1 + 2 + · · · + n − 1 and
a second answer to Exercise 1.1-1 is

(n
2

)
, this shows that

1 + 2 + · · · + n − 1 =

(
n

2

)
=

n(n − 1)
2

.

Important Concepts, Formulas, and Theorems

1. Set. A set is a collection of objects. In a set order is not important. Thus the set {A, B, C}
is the same as the set {A, C, B}. An element either is or is not in a set; it cannot be in a
set more than once, even if we have a description of a set which names that element more
than once.

2. Disjoint. Two sets are called disjoint when they have no elements in common.

3. Mutually disjoint sets. A set of sets {S1, . . . , Sn} is a family of mutually disjoint sets, if
each two of the sets Si are disjoint.

4. Size of a set. Given a set S, the size of S, denoted |S|, is the number of distinct elements
in S.

5. Sum Principle. The size of a union of a family of mutually disjoint sets is the sum of the
sizes of the sets. In other words, if S1, S2, . . .Sn are disjoint sets, then

|S1 ∪ S2 ∪ · · · ∪ Sn| = |S1| + |S2| + · · · + |Sn|.
To write this without the “dots” that indicate left-out material, we write

|
n⋃

i=1

Si| =
n∑

i=1

|Si|.

6. Partition of a set. A partition of a set S is a set of mutually disjoint subsets (sometimes
called blocks) of S whose union is S.

7. Sum of first n − 1 numbers.
n∑

i=1

n − i =
n−1∑

i=1

i =
n(n − 1)

2
.

8. Product Principle. The size of a union of m disjoint sets, each of size n, is mn.

9. Two element subsets.
(n
2

)
stands for the number of two element subsets of an n element set

and equals n(n − 1)/2.
(n
2

)
is read as “n choose 2.”

1.1. BASIC COUNTING 7

Problems

1. The segment of code below is part of a program that uses insertion sort to sort a list A

for i = 2 to n
j=i
while j ≥ 2 and A[j] < A[j − 1]

exchange A[j] and A[j − 1]
j −−

What is the maximum number of times (considering all lists of n items you could be asked
to sort) the program makes the comparison A[j] < A[j − 1]? Describe as succinctly as you
can those lists that require this number of comparisons.

2. Five schools are going to send their baseball teams to a tournament, in which each team
must play each other team exactly once. How many games are required?

3. Use notation similar to that in Equations 1.2 and 1.3 to rewrite the solution to Exercise
1.1-3 more algebraically.

4. In how many ways can you draw a first card and then a second card from a deck of 52
cards?

5. In how many ways can you draw two cards from a deck of 52 cards.

6. In how many ways may you draw a first, second, and third card from a deck of 52 cards?

7. In how many ways may a ten person club select a president and a secretary-treasurer from
among its members?

8. In how many ways may a ten person club select a two person executive committee from
among its members?

9. In how many ways may a ten person club select a president and a two person executive
advisory board from among its members (assuming that the president is not on the advisory
board)?

10. By using the formula for
(n
2

)
is is straightforward to show that

n

(
n − 1

2

)
=

(
n

2

)
(n − 2).

However this proof just uses blind substitution and simplification. Find a more conceptual
explanation of why this formula is true.

11. If M is an m element set and N is an n-element set, how many ordered pairs are there
whose first member is in M and whose second member is in N?

12. In the local ice cream shop, there are 10 different flavors. How many different two-scoop
cones are there? (Following your mother’s rule that it all goes to the same stomach, a cone
with a vanilla scoop on top of a chocolate scoop is considered the same as a cone with a a
chocolate scoop on top of a vanilla scoop.)

8 CHAPTER 1. COUNTING

13. Now suppose that you decide to disagree with your mother in Exercise 12 and say that the
order of the scoops does matter. How many different possible two-scoop cones are there?

14. Suppose that on day 1 you receive 1 penny, and, for i > 1, on day i you receive twice as
many pennies as you did on day i − 1. How many pennies will you have on day 20? How
many will you have on day n? Did you use the sum or product principal?

15. The “Pile High Deli” offers a “simple sandwich” consisting of your choice of one of five
different kinds of bread with your choice of butter or mayonnaise or no spread, one of three
different kinds of meat, and one of three different kinds of cheese, with the meat and cheese
“piled high” on the bread. In how many ways may you choose a simple sandwich?

16. Do you see any unnecessary steps in the pseudocode of Exercise 1.1-3?

1.2. COUNTING LISTS, PERMUTATIONS, AND SUBSETS. 9

1.2 Counting Lists, Permutations, and Subsets.

Using the Sum and Product Principles

Exercise 1.2-1 A password for a certain computer system is supposed to be between
4 and 8 characters long and composed of lower and/or upper case letters. How
many passwords are possible? What counting principles did you use? Estimate the
percentage of the possible passwords that have exactly four characters.

A good way to attack a counting problem is to ask if we could use either the sum principle
or the product principle to simplify or completely solve it. Here that question might lead us to
think about the fact that a password can have 4, 5, 6, 7 or 8 characters. The set of all passwords
is the union of those with 4, 5, 6, 7, and 8 letters so the sum principle might help us. To write
the problem algebraically, let Pi be the set of i-letter passwords and P be the set of all possible
passwords. Clearly,

P = P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8 .

The Pi are mutually disjoint, and thus we can apply the sum principal to obtain

|P | =
8∑

i=4

|Pi| .

We still need to compute |Pi|. For an i-letter password, there are 52 choices for the first letter, 52
choices for the second and so on. Thus by the product principle, |Pi|, the number of passwords
with i letters is 52i. Therefore the total number of passwords is

524 + 525 + 526 + 527 + 528.

Of these, 524 have four letters, so the percentage with 54 letters is

100 · 524

524 + 525 + 526 + 527 + 528.

Although this is a nasty formula to evaluate by hand, we can get a quite good estimate as follows.
Notice that 528 is 52 times as big as 527, and even more dramatically larger than any other term
in the sum in the denominator. Thus the ratio thus just a bit less than

100 · 524

528,

which is 100/524, or approximately .000014. Thus to five decimal places, only .00001% of the
passwords have four letters. It is therefore much easier guess a password that we know has four
letters than it is to guess one that has between 4 and 8 letters—roughly 7 million times easier!

In our solution to Exercise 1.2-1, we casually referred to the use of the product principle in
computing the number of passwords with i letters. We didn’t write any set as a union of sets of
equal size. We could have, but it would have been clumsy and repetitive. For this reason we will
state a second version of the product principle that we can derive from the version for unions of
sets by using the idea of mathematical induction that we study in Chapter 4.

Version 2 of the product principle states:

10 CHAPTER 1. COUNTING

Principle 1.4 (Product Principle, Version 2) If a set S of lists of length m has the proper-
ties that

1. There are i1 different first elements of lists in S, and

2. For each j > 1 and each choice of the first j − 1 elements of a list in S there are ij choices
of elements in position j of those lists,

then there are i1i2 · · · im =
∏m

k=1 ik lists in S.

Let’s apply this version of the product principle to compute the number of m-letter passwords.
Since an m-letter password is just a list of m letters, and since there are 52 different first elements
of the password and 52 choices for each other position of the password, we have that i1 = 52, i2 =
52, . . . , im = 52. Thus, this version of the product principle tells us immediately that the number
of passwords of length m is i1i2 · · · im = 52m.

In our statement of version 2 of the Product Principle, we have introduced a new notation,
the use of Π to stand for product. This notation is called the product notation, and it is used
just like summation notation. In particular,

∏m
k=1 ik is read as “The product from k = 1 to m of

ik.” Thus
∏m

k=1 ik means the same thing as i1 · i2 · · · im.

Lists and functions

We have left a term undefined in our discussion of version 2 of the product principle, namely
the word “list.” A list of 3 things chosen from a set T consists of a first member t1 of T , a
second member t2 of T , and a third member t3 of T . If we rewrite the list in a different order,
we get a different list. A list of k things chosen from T consists of a first member of T through
a kth member of T . We can use the word “function,” which you probably recall from algebra or
calculus, to be more precise.

Recall that a function from a set S (called the domain of the function) to a set T (called
the range of the function) is a relationship between the elements of S and the elements of T
that relates exactly one element of T to each element of S. We use a letter like f to stand for a
function and use f(x) to stand for the one and only one element of T that the function relates
to the element x of S. You are probably used to thinking of functions in terms of formulas like
f(x) = x2. We need to use formulas like this in algebra and calculus because the functions that
you study in algebra and calculus have infinite sets of numbers as their domains and ranges. In
discrete mathematics, functions often have finite sets as their domains and ranges, and so it is
possible to describe a function by saying exactly what it is. For example

f(1) = Sam, f(2) = Mary, f(3) = Sarah

is a function that describes a list of three people. This suggests a precise definition of a list of k
elements from a set T : A list of k elements from a set T is a function from {1, 2, . . . , k} to T .

Exercise 1.2-2 Write down all the functions from the two-element set {1, 2} to the two-
element set {a, b}.

Exercise 1.2-3 How many functions are there from a two-element set to a three element
set?

1.2. COUNTING LISTS, PERMUTATIONS, AND SUBSETS. 11

Exercise 1.2-4 How many functions are there from a three-element set to a two-element
set?

In Exercise 1.2-2 one thing that is difficult is to choose a notation for writing the functions
down. We will use f1, f2, etc., to stand for the various functions we find. To describe a function
fi from {1, 2} to {a, b} we have to specify fi(1) and fi(2). We can write

f1(1) = a f1(2) = b

f2(1) = b f2(2) = a

f3(1) = a f3(2) = a

f4(1) = b f4(2) = b

We have simply written down the functions as they occurred to us. How do we know we have all
of them? The set of all functions from {1, 2} to {a, b} is the union of the functions fi that have
fi(1) = a and those that have fi(1) = b. The set of functions with fi(1) = a has two elements,
one for each choice of fi(2). Therefore by the product principle the set of all functions from {1, 2}
to {a, b} has size 2 · 2 = 4.

To compute the number of functions from a two element set (say {1, 2}) to a three element
set, we can again think of using fi to stand for a typical function. Then the set of all functions
is the union of three sets, one for each choice of fi(1). Each of these sets has three elements, one
for each choice of fi(2). Thus by the product principle we have 3 · 3 = 9 functions from a two
element set to a three element set.

To compute the number of functions from a three element set (say {1, 2, 3}) to a two element
set, we observe that the set of functions is a union of four sets, one for each choice of fi(1) and
fi(2) (as we saw in our solution to Exercise 1.2-2). But each of these sets has two functions in
it, one for each choice of fi(3). Then by the product principle, we have 4 · 2 = 8 functions from
a three element set to a two element set.

A function f is called one-to-one or an injection if whenever x �= y, f(x) �= f(y). Notice that
the two functions f1 and f2 we gave in our solution of Exercise 1.2-2 are one-to-one, but f3 and
f4 are not.

A function f is called onto or a surjection if every element y in the range is f(x) for some
x in the domain. Notice that the functions f1 and f2 in our solution of Exercise 1.2-2 are onto
functions but f3 and f4 are not.

Exercise 1.2-5 Using two-element sets or three-element sets as domains and ranges, find
an example of a one-to-one function that is not onto.

Exercise 1.2-6 Using two-element sets or three-element sets as domains and ranges, find
an example of an onto function that is not one-to-one.

Notice that the function given by f(1) = c, f(2) = a is an example of a function from {1, 2}
to {a, b, c} that is one-to one but not onto.

Also, notice that the function given by f(1) = a, f(2) = b, f(3) = a is an example of a
function from {1, 2, 3} to {a, b} that is onto but not one to one.

12 CHAPTER 1. COUNTING

The Bijection Principle

Exercise 1.2-7 The loop below is part of a program to determine the number of triangles
formed by n points in the plane.

(1) trianglecount = 0
(2) for i = 1 to n
(3) for j = i + 1 to n
(4) for k = j + 1 to n
(5) if points i, j, and k are not collinear
(6) trianglecount = trianglecount +1

How many times does the above code check three points to see if they are collinear
in line 5?

In Exercise 1.2-7, we have a loop embedded in a loop that is embedded in another loop.
Because the second loop, starting in line 3, begins with j = i + 1 and j increase up to n, and
because the third loop, starting in line 4, begins with k = j + 1 and increases up to n, our code
examines each triple of values i, j, k with i < j < k exactly once. For example, if n is 4, then
the triples (i, j, k) used by the algorithm, in order, are (1, 2, 3), (1, 2, 4), (1, 3, 4), and (2, 3, 4).
Thus one way in which we might have solved Exercise 1.2-7 would be to compute the number
of such triples, which we will call increasing triples. As with the case of two-element subsets
earlier, the number of such triples is the number of three-element subsets of an n-element set.
This is the second time that we have proposed counting the elements of one set (in this case the
set of increasing triples chosen from an n-element set) by saying that it is equal to the number
of elements of some other set (in this case the set of three element subsets of an n-element set).
When are we justified in making such an assertion that two sets have the same size? There is
another fundamental principle that abstracts our concept of what it means for two sets to have
the same size. Intuitively two sets have the same size if we can match up their elements in such
a way that each element of one set corresponds to exactly one element of the other set. This
description carries with it some of the same words that appeared in the definitions of functions,
one-to-one, and onto. Thus it should be no surprise that one-to-one and onto functions are part
of our abstract principle.

Principle 1.5 (Bijection Principle) Two sets have the same size if and only if there is a
one-to-one function from one set onto the other.

Our principle is called the bijection principle because a one-to-one and onto function is called
a bijection. Another name for a bijection is a one-to-one correspondence. A bijection from a set
to itself is called a permutation of that set.

What is the bijection that is behind our assertion that the number of increasing triples equals
the number of three-element subsets? We define the function f to be the one that takes the
increasing triple (i, j, k) to the subset {i, j, k}. Since the three elements of an increasing triple
are different, the subset is a three element set, so we have a function from increasing triples to
three element sets. Two different triples can’t be the same set in two different orders, so different
triples have to be associated with different sets. Thus f is one-to-one. Each set of three integers
can be listed in increasing order, so it is the image under f of an increasing triple. Therefore f
is onto. Thus we have a one-to-one correspondence, or bijection, between the set of increasing
triples and the set of three element sets.

1.2. COUNTING LISTS, PERMUTATIONS, AND SUBSETS. 13

k-element permutations of a set

Since counting increasing triples is equivalent to counting three-element subsets, we can count
increasing triples by counting three-element subsets instead. We use a method similar to the
one we used to compute the number of two-element subsets of a set. Recall that the first step
was to compute the number of ordered pairs of distinct elements we could chose from the set
{1, 2, . . . , n}. So we now ask in how many ways may we choose an ordered triple of distinct
elements from {1, 2, . . . , n}, or more generally, in how many ways may we choose a list of k
distinct elements from {1, 2, . . . , n}. A list of k-distinct elements chosen from a set N is called a
k-element permutation of N .4

How many 3-element permutations of {1, 2, . . . , n} can we make? Recall that a k-element
permutation is a list of k distinct elements. There are n choices for the first number in the list.
For each way of choosing the first element, there are n−1 choices for the second. For each choice
of the first two elements, there are n− 2 ways to choose a third (distinct) number, so by version
2 of the product principle, there are n(n − 1)(n − 2) ways to choose the list of numbers. For
example, if n is 4, the three-element permutations of {1, 2, 3, 4} are

L = {123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243,

312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432}. (1.4)

There are indeed 4 · 3 · 2 = 24 lists in this set. Notice that we have listed the lists in the order
that they would appear in a dictionary (assuming we treated numbers as we treat letters). This
ordering of lists is called the lexicographic ordering.

A general pattern is emerging. To compute the number of k-element permutations of the set
{1, 2, . . . , n}, we recall that they are lists and note that we have n choices for the first element of
the list, and regardless of which choice we make, we have n− 1 choices for the second element of
the list, and more generally, given the first i− 1 elements of a list we have n− (i− 1) = n− i + 1
choices for the ith element of the list. Thus by version 2 of the product principle, we have
n(n− 1) · · · (n− k + 1) (which is the first k terms of n!) ways to choose a k-element permutation
of {1, 2, . . . , n}. There is a very handy notation for this product first suggested by Don Knuth.
We use nk to stand for n(n − 1) · · · (n − k + 1) =

∏k−1
i=0 n − i, and call it the kth falling factorial

power of n. We can summarize our observations in a theorem.

Theorem 1.1 The number k-element permutations of an n-element set is

nk =
k−1∏

i=0

n − i = n(n − 1) · · · (n − k + 1) = n!/(n − k)! .

Counting subsets of a set

We now return to the question of counting the number of three element subsets of a {1, 2, . . . , n}.
We use

(n
3

)
, which we read as “n choose 3” to stand for the number of three element subsets of

4In particular a k-element permutation of {1, 2, . . . k} is a list of k distinct elements of {1, 2, . . . , k}, which,
by our definition of a list is a function from {1, 2, . . . , k} to {1, 2, . . . , k}. This function must be one-to-one since
the elements of the list are distinct. Since there are k distinct elements of the list, every element of {1, 2, . . . , k}
appears in the list, so the function is onto. Therefore it is a bijection. Thus our definition of a permutation of a
set is consistent with our definition of a k-element permutation in the case where the set is {1, 2, . . . , k}.

14 CHAPTER 1. COUNTING

{1, 2, . . . , n}, or more generally of any n-element set. We have just carried out the first step of
computing

(n
3

)
by counting the number of three-element permutations of {1, 2, . . . , n}.

Exercise 1.2-8 Let L be the set of all three-element permutations of {1, 2, 3, 4}, as in
Equation 1.4. How many of the lists (permutations) in L are lists of the 3 element
set {1, 3, 4}? What are these lists?

We see that this set appears in L as 6 different lists: 134, 143, 314, 341, 413, and 431. In
general given three different numbers with which to create a list, there are three ways to choose
the first number in the list, given the first there are two ways to choose the second, and given
the first two there is only one way to choose the third element of the list. Thus by version 2 of
the product principle once again, there are 3 · 2 · 1 = 6 ways to make the list.

Since there are n(n − 1)(n − 2) permutations of an n-element set, and each three-element
subset appears in exactly 6 of these lists, the number of three-element permutations is six times
the number of three element subsets. That is, n(n − 1)(n − 2) =

(n
3

)
· 6. Whenever we see that

one number that counts something is the product of two other numbers that count something,
we should expect that there is an argument using the product principle that explains why. Thus
we should be able to see how to break the set of all 3-element permutations of {1, 2, . . . , n}
into either 6 disjoint sets of size

(n
3

)
or into

(n
3

)
subsets of size six. Since we argued that each

three element subset corresponds to six lists, we have described how to get a set of six lists
from one three-element set. Two different subsets could never give us the same lists, so our sets
of three-element lists are disjoint. In other words, we have divided the set of all three-element
permutations into

(n
3

)
mutually sets of size six. In this way the product principle does explain

why n(n − 1)(n − 2) =
(n
3

)
· 6. By division we get that we have

(
n

3

)
= n(n − 1)(n − 2)/6

three-element subsets of {1, 2, . . . , n}. For n = 4, the number is 4(3)(2)/6 = 4. These sets are
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. It is straightforward to verify that each of these sets
appears 6 times in L, as 6 different lists.

Essentially the same argument gives us the number of k-element subsets of {1, 2, . . . , n}. We
denote this number by

(n
k

)
, and read it as “n choose k.” Here is the argument: the set of all

k-element permutations of {1, 2, . . . , n} can be partitioned into
(n
k

)
disjoint blocks5, each block

consisting of all k-element permutations of a k-element subset of {1, 2, . . . , n}. But the number
of k-element permutations of a k-element set is k!, either by version 2 of the product principle or
by Theorem 1.1. Thus by version 1 of the product principle we get the equation

nk =

(
n

k

)
k!.

Division by k! gives us our next theorem.

Theorem 1.2 For integers n and k with 0 ≤ k ≤ n, the number of k element subsets of an n
element set is

nk

k!
=

n!
k!(n − k)!

5Here we are using the language introduced for partitions of sets in Section 1.1

1.2. COUNTING LISTS, PERMUTATIONS, AND SUBSETS. 15

Proof: The proof is given above, except in the case that k is 0; however the only subset of our
n-element set of size zero is the empty set, so we have exactly one such subset. This is exactly
what the formula gives us as well. (Note that the cases k = 0 and k = n both use the fact that
0! = 1.6) The equality in the theorem comes from the definition of nk.

Another notation for the numbers
(n
k

)
is C(n, k). Thus we have that

C(n, k) =

(
n

k

)
=

n!
k!(n − k)!

. (1.5)

These numbers are called binomial coefficients for reasons that will become clear later.

Important Concepts, Formulas, and Theorems

1. List. A list of k items chosen from a set X is a function from {1, 2, . . . k} to X.

2. Lists versus sets. In a list, the order in which elements appear in the list matters, and
an element may appear more than once. In a set, the order in which we write down the
elements of the set does not matter, and an element can appear at most once.

3. Product Principle, Version 2. If a set S of lists of length m has the properties that

(a) There are i1 different first elements of lists in S, and

(b) For each j > 1 and each choice of the first j − 1 elements of a list in S there are ij
choices of elements in position j of those lists,

then there are i1i2 · · · im lists in S.

4. Product Notaton. We use the Greek letter Π to stand for product just as we use the Greek
letter Σ to stand for sum. This notation is called the product notation, and it is used just
like summation notation. In particular,

∏m
k=1 ik is read as “The product from k = 1 to m

of ik.” Thus
∏m

k=1 ik means the same thing as i1 · i2 · · · im.

5. Function. A function f from a set S to a set T is a relationship between S and T that
relates exactly one element of T to each element of S. We write f(x) for the one and only
one element of T that the function f relates to the element x of S. The same element of T
may be related to different members of S.

6. Onto, Surjection A function f from a set S to a set T is onto if for each element y ∈ T ,
there is at least one x ∈ S such that f(x) = y. An onto function is also called a surjection.

7. One-to-one, Injection. A function f from a set S to a set T is one-to-one if, for each x ∈ S
and y ∈ S with x �= y, f(x) �= f(y). A one-to-one function is also called an injection.

8. Bijection, One-to-one correspondence. A function from a set S to a set T is a bijection if it
is both one-to-one and onto. A bijection is sometimes called a one-to-one correspondence.

9. Permutation. A one-to-one function from a set S to S is called a permutation of S.

6There are many reasons why 0! is defined to be one; making the formula for
(

n
k

)
work out is one of them.

16 CHAPTER 1. COUNTING

10. k-element permutation. A k-element permutation of a set S is a list of k distinct elements
of S.

11. k-element subsets. n choose k. Binomial Coefficients. For integers n and k with 0 ≤ k ≤ n,
the number of k element subsets of an n element set is n!/k!(n − k)!. The number of k-
element subsets of an n-element set is usually denoted by

(n
k

)
or C(n, k), both of which are

read as “n choose k.” These numbers are called binomial coefficients.

12. The number of k-element permutations of an n-element set is

nk = n(n − 1) · · · (n − k + 1) = n!/(n − k)!.

13. When we have a formula to count something and the formula expresses the result as a
product, it is useful to try to understand whether and how we could use the product
principle to prove the formula.

Problems

1. The “Pile High Deli” offers a “simple sandwich” consisting of your choice of one of five
different kinds of bread with your choice of butter or mayonnaise or no spread, one of three
different kinds of meat, and one of three different kinds of cheese, with the meat and cheese
“piled high” on the bread. In how many ways may you choose a simple sandwich?

2. In how many ways can we pass out k distinct pieces of fruit to n children (with no restriction
on how many pieces of fruit a child may get)?

3. Write down all the functions from the three-element set {1, 2, 3} to the set {a, b}. Indicate
which functions, if any, are one-to-one. Indicate which functions, if any, are onto.

4. Write down all the functions form the two element set {1, 2} to the three element set {a, b, c}
Indicate which functions, if any, are one-to-one. Indicate which functions, if any, are onto.

5. There are more functions from the real numbers to the real numbers than most of us can
imagine. However in discrete mathematics we often work with functions from a finite set
S with s elements to a finite set T with t elements. Then there are only a finite number of
functions from S to T . How many functions are there from S to T in this case?

6. Assuming k ≤ n, in how many ways can we pass out k distinct pieces of fruit to n children if
each child may get at most one? What is the number if k > n? Assume for both questions
that we pass out all the fruit.

7. Assume k ≤ n, in how many ways can we pass out k identical pieces of fruit to n children if
each child may get at most one? What is the number if k > n? Assume for both questions
that we pass out all the fruit.

8. What is the number of five digit (base ten) numbers? What is the number of five digit
numbers that have no two consecutive digits equal? What is the number that have at least
one pair of consecutive digits equal?

1.2. COUNTING LISTS, PERMUTATIONS, AND SUBSETS. 17

9. We are making a list of participants in a panel discussion on allowing alcohol on campus.
They will be sitting behind a table in the order in which we list them. There will be four
administrators and four students. In how many ways may we list them if the administrators
must sit together in a group and the students must sit together in a group? In how many
ways may we list them if we must alternate students and administrators?

10. (This problem is for students who are working on the relationship between k-element per-
mutations and k-element subsets.) Write down all three element permutations of the five
element set {1, 2, 3, 4, 5} in lexicographic order. Underline those that correspond to the set
{1, 3, 5}. Draw a rectangle around those that correspond to the set {2, 4, 5}. How many
three-element permutations of {1, 2, 3, 4, 5} correspond to a given 3-element set? How many
three-element subsets does the set {1, 2, 3, 4, 5} have?

11. In how many ways may a class of twenty students choose a group of three students from
among themselves to go to the professor and explain that the three-hour labs are actually
taking ten hours?

12. We are choosing participants for a panel discussion allowing on allowing alcohol on campus.
We have to choose four administrators from a group of ten administrators and four students
from a group of twenty students. In how many ways may we do this?

13. We are making a list of participants in a panel discussion on allowing alcohol on campus.
They will be sitting behind a table in the order in which we list them. There will be
four administrators chosen from a group of ten administrators and four students chosen
from a group of twenty students. In how many ways may we choose and list them if
the administrators must sit together in a group and the students must sit together in a
group? In how many ways may we choose and list them if we must alternate students and
administrators?

14. In the local ice cream shop, you may get a sundae with two scoops of ice cream from 10
flavors (in accordance with your mother’s rules from Problem 12 in Section 1.1, the way the
scoops sit in the dish does not matter), any one of three flavors of topping, and any (or all
or none) of whipped cream, nuts and a cherry. How many different sundaes are possible?

15. In the local ice cream shop, you may get a three-way sundae with three of the ten flavors
of ice cream, any one of three flavors of topping, and any (or all or none) of whipped
cream, nuts and a cherry. How many different sundaes are possible(in accordance with
your mother’s rules from Problem 12 in Section 1.1, the way the scoops sit in the dish does
not matter) ?

16. A tennis club has 2n members. We want to pair up the members by twos for singles
matches. In how many ways may we pair up all the members of the club? Suppose that in
addition to specifying who plays whom, for each pairing we say who serves first. Now in
how many ways may we specify our pairs?

17. A basketball team has 12 players. However, only five players play at any given time during
a game. In how may ways may the coach choose the five players? To be more realistic, the
five players playing a game normally consist of two guards, two forwards, and one center.
If there are five guards, four forwards, and three centers on the team, in how many ways
can the coach choose two guards, two forwards, and one center? What if one of the centers
is equally skilled at playing forward?

18 CHAPTER 1. COUNTING

18. Explain why a function from an n-element set to an n-element set is one-to-one if and only
if it is onto.

19. The function g is called an inverse to the function f if the domain of g is the range of f , if
g(f(x)) = x for every x in the domain of f and if f(g(y)) = y for each y in the range of f .

(a) Explain why a function is a bijection if and only if it has an inverse function.

(b) Explain why a function that has an inverse function has only one inverse function.

1.3. BINOMIAL COEFFICIENTS 19

1.3 Binomial Coefficients

In this section, we will explore various properties of binomial coefficients. Remember that we
defined the quantitu

(m
k

)
to be the number of k-element subsets of an n-element set.

Pascal’s Triangle

Table 1 contains the values of the binomial coefficients
(n
k

)
for n = 0 to 6 and all relevant k

values. The table begins with a 1 for n = 0 and k = 0, because the empty set, the set with
no elements, has exactly one 0-element subset, namely itself. We have not put any value into
the table for a value of k larger than n, because we haven’t directly said what we mean by the
binomial coefficient

(n
k

)
in that case. However, since there are no subsets of an n-element set that

have size larger than n, it is natural to say that
(n
k

)
is zero when k > n. Therefore we define

(n
k

)

to be zero7 when k > n. Thus we could could fill in the empty places in the table with zeros.
The table is easier to read if we don’t fill in the empty spaces, so we just remember that they are
zero.

Table 1.1: A table of binomial coefficients

n\k 0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Exercise 1.3-1 What general properties of binomial coefficients do you see in Table 1.1

Exercise 1.3-2 What is the next row of the table of binomial coefficients?

Several properties of binomial coefficients are apparent in Table 1.1. Each row begins with a 1,
because

(n
0

)
is always 1. This is the case because there is just one subset of an n-element set with

0 elements, namely the empty set. Similarly, each row ends with a 1, because an n-element set S
has just one n-element subset, namely S itself. Each row increases at first, and then decreases.
Further the second half of each row is the reverse of the first half. The array of numbers called
Pascal’s Triangle emphasizes that symmetry by rearranging the rows of the table so that they
line up at their centers. We show this array in Table 2. When we write down Pascal’s triangle,
we leave out the values of n and k.

You may know a method for creating Pascal’s triangle that does not involve computing
binomial coefficients, but rather creates each row from the row above. Each entry in Table 1.2,
except for the ones, is the sum of the entry directly above it to the left and the entry directly

7If you are thinking “But we did define
(

n
k

)
to be zero when k > n by saying that it is the number of k element

subsets of an n-element set, so of course it is zero,” then good for you.

20 CHAPTER 1. COUNTING

Table 1.2: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

above it to the right. We call this the Pascal Relationship, and it gives another way to compute
binomial coefficients without doing the multiplying and dividing in Equation 1.5. If we wish to
compute many binomial coefficients, the Pascal relationship often yields a more efficient way to
do so. Once the coefficients in a row have been computed, the coefficients in the next row can be
computed using only one addition per entry.

We now verify that the two methods for computing Pascal’s triangle always yield the same
result. In order to do so, we need an algebraic statement of the Pascal Relationship. In Table
1.1, each entry is the sum of the one above it and the one above it and to the left. In algebraic
terms, then, the Pascal Relationship says

(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
, (1.6)

whenever n > 0 and 0 < k < n. It is possible to give a purely algebraic (and rather dreary)
proof of this formula by plugging in our earlier formula for binomial coefficients into all three
terms and verifying that we get an equality. A guiding principle of discrete mathematics is that
when we have a formula that relates the numbers of elements of several sets, we should find an
explanation that involves a relationship among the sets.

A proof using the Sum Principle

From Theorem 1.2 and Equation 1.5, we know that the expression
(n
k

)
is the number of k-element

subsets of an n element set. Each of the three terms in Equation 1.6 therefore represents the
number of subsets of a particular size chosen from an appropriately sized set. In particular, the
three terms are the number of k-element subsets of an n-element set, the number of (k−1)-element
subsets of an (n − 1)-element set, and the number of k-element subsets of an (n − 1)-element
set. We should, therefore, be able to explain the relationship among these three quantities using
the sum principle. This explanation will provide a proof, just as valid a proof as an algebraic
derivation. Often, a proof using the sum principle will be less tedious, and will yield more insight
into the problem at hand.

Before giving such a proof in Theorem 1.3 below, we work out a special case. Suppose n = 5,
k = 2. Equation 1.6 says that (

5
2

)
=

(
4
1

)
+

(
4
2

)
. (1.7)

1.3. BINOMIAL COEFFICIENTS 21

Because the numbers are small, it is simple to verify this by using the formula for binomial
coefficients, but let us instead consider subsets of a 5-element set. Equation 1.7 says that the
number of 2 element subsets of a 5 element set is equal to the number of 1 element subsets of
a 4 element set plus the number of 2 element subsets of a 4 element set. But to apply the sum
principle, we would need to say something stronger. To apply the sum principle, we should be
able to partition the set of 2 element subsets of a 5 element set into 2 disjoint sets, one of which
has the same size as the number of 1 element subsets of a 4 element set and one of which has
the same size as the number of 2 element subsets of a 4 element set. Such a partition provides a
proof of Equation 1.7. Consider now the set S = {A, B, C, D, E}. The set of two element subsets
is

S1 = {{A, B}, {AC}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {C, D}, {C, E}, {D, E}}.

We now partition S1 into 2 blocks, S2 and S3. S2 contains all sets in S1 that do contain the
element E, while S3 contains all sets in S1 that do not contain the element E. Thus,

S2 = {{AE}, {BE}, {CE}, {DE}}

and
S3 = {{AB}, {AC}, {AD}, {BC}, {BD}, {CD}}.

Each set in S2 must contain E and thus contains one other element from S. Since there are 4
other elements in S that we can choose along with E, we have |S2| =

(4
1

)
. Each set in S3 contains

2 elements from the set {A, B, C, D}. There are
(4
2

)
ways to choose such a two-element subset of

{A < B < C < D}. But S1 = S2 ∪ S3 and S2 and S3 are disjoint, and so, by the sum principle,
Equation 1.7 must hold.

We now give a proof for general n and k.

Theorem 1.3 If n and k are integers with n > 0 and 0 < k < n, then
(

n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

Proof: The formula says that the number of k-element subsets of an n-element set is the
sum of two numbers. As in our example, we will apply the sum principle. To apply it, we need
to represent the set of k-element subsets of an n-element set as a union of two other disjoint
sets. Suppose our n-element set is S = {x1, x2, . . . xn}. Then we wish to take S1, say, to be the(n
k

)
-element set of all k-element subsets of S and partition it into two disjoint sets of k-element

subsets, S2 and S3, where the sizes of S2 and S3 are
(n−1
k−1

)
and

(n−1
k

)
respectively. We can do this

as follows. Note that
(n−1

k

)
stands for the number of k element subsets of the first n− 1 elements

x1, x2, . . . , xn−1 of S. Thus we can let S3 be the set of k-element subsets of S that don’t contain
xn. Then the only possibility for S2 is the set of k-element subsets of S that do contain xn. How
can we see that the number of elements of this set S2 is

(n−1
k−1

)
? By observing that removing xn

from each of the elements of S2 gives a (k − 1)-element subset of S′ = {x1, x2, . . . xn−1}. Further
each (k − 1)-element subset of S′ arises in this way from one and only one k-element subset of
S containing xn. Thus the number of elements of S2 is the number of (k − 1)-element subsets

22 CHAPTER 1. COUNTING

of S′, which is
(n−1
k−1

)
. Since S2 and S3 are two disjoint sets whose union is S, the sum principle

shows that the number of elements of S is
(n−1
k−1

)
+

(n−1
k

)
.

Notice that in our proof, we used a bijection that we did not explicitly describe. Namely,
there is a bijection f between S3 (the k-element sets of S that contain xn) and the (k−1)-element
subsets of S′. For any subset K in S3, We let f(K) be the set we obtain by removing xn from
K. It is immediate that this is a bijection, and so the bijection principle tells us that the size of
S3 is the size of the set of all subsets of S′.

The Binomial Theorem

Exercise 1.3-3 What is (x + y)3? What is (x + 1)4? What is (2 + y)4? What is (x + y)4?

The number of k-element subsets of an n-element set is called a binomial coefficient because
of the role that these numbers play in the algebraic expansion of a binomial x+y. The Binomial
Theorem states that

Theorem 1.4 (Binomial Theorem) For any integer n ≥ 0

(x + y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · · +

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn, (1.8)

or in summation notation,

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi .

Unfortunately when most people first see this theorem, they do not have the tools to see easily
why it is true. Armed with our new methodology of using subsets to prove algebraic identities,
we can give a proof of this theorem.

Let us begin by considering the example (x + y)3 which by the binomial theorem is

(x + y)3 =

(
3
0

)
x3 +

(
3
1

)
x2y +

(
3
2

)
xy2 +

(
3
3

)
y3 (1.9)

= x3 + 3x2y + 3xy2 + x3 . (1.10)

Suppose that we did not know the binomial theorem but still wanted to compute (x + y)3.
Then we would write out (x + y)(x + y)(x + y) and perform the multiplication. Probably we
would multiply the first two terms, obtaining x2 + 2xy + y2, and then multiply this expression
by x + y. Notice that by applying distributive laws you get

(x + y)(x + y) = (x + y)x + (x + y)y = xx + xy + yx + y. (1.11)

We could use the commutative law to put this into the usual form, but let us hold off for a
moment so we can see a pattern evolve. To compute (x + y)3, we can multiply the expression on
the right hand side of Equation 1.11 by x + y using the distributive laws to get

(xx + xy + yx + yy)(x + y) = (xx + xy + yx + yy)x + (xx + xy + yx + yy)y (1.12)
= xxx + xyx + yxx + yxx + xxy + xyy + yxy + yyy (1.13)

1.3. BINOMIAL COEFFICIENTS 23

Each of these 8 terms that we got from the distributive law may be thought of as a product
of terms, one from the first binomial, one from the second binomial, and one from the third
binomial. Multiplication is commutative, so many of these products are the same. In fact, we
have one xxx or x3 product, three products with two x’s and one y, or x2y, three products with
one x and two y’s, or xy2 and one product which becomes y3. Now look at Equation 1.9, which
summarizes this process. There are

(3
0

)
= 1 way to choose a product with 3 x’s and 0 y’s,

(3
1

)
= 3

way to choose a product with 2 x’s and 1 y, etc. Thus we can understand the binomial theorem
as counting the subsets of our binomial factors from which we choose a y-term to get a product
with k y’s in multiplying a string of n binomials.

Essentially the same explanation gives us a proof of the binomial theorem. Note that when we
multiplied out three factors of (x + y) using the distributive law but not collecting like terms, we
had a sum of eight products. Each factor of (x+y) doubles the number of summands. Thus when
we apply the distributive law as many times as possible (without applying the commutative law
and collecting like terms) to a product of n binomials all equal to (x+y), we get 2n summands.
Each summand is a product of a length n list of x’s and y’s. In each list, the ith entry comes
from the ith binomial factor. A list that becomes xn−kyk when we use the commutative law will
have a y in k of its places and an x in the remaining places. The number of lists that have a y
in k places is thus the number of ways to select k binomial factors to contribute a y to our list.
But the number of ways to select k binomial factors from n binomial factors is simply

(n
k

)
, and

so that is the coefficient of xn−kyk. This proves the binomial theorem.

Applying the Binomial Theorem to the remaining questions in Exercise 1.3-3 gives us

(x + 1)4 = x4 + 4x3 + 6x2 + 4x + 1
(2 + y)4 = 16 + 32y + 24y2 + 8y3 + y4 and
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Labeling and trinomial coefficients

Exercise 1.3-4 Suppose that I have k labels of one kind and n − k labels of another. In
how many different ways may I apply these labels to n objects?

Exercise 1.3-5 Show that if we have k1 labels of one kind, k2 labels of a second kind, and
k3 = n − k1 − k2 labels of a third kind, then there are n!

k1!k2!k3! ways to apply these
labels to n objects.

Exercise 1.3-6 What is the coefficient of xk1yk2zk3 in (x + y + z)n?

Exercise 1.3-4 and Exercise 1.3-5 can be thought of as immediate applications of binomial
coefficients. For Exercise 1.3-4, there are

(n
k

)
ways to choose the k objects that get the first label,

and the other objects get the second label, so the answer is
(n
k

)
. For Exercise 1.3-5, there are

(n
k1

)

ways to choose the k1 objects that get the first kind of label, and then there are
(n−k1

k2

)
ways to

choose the objects that get the second kind of label. After that, the remaining k3 = n − k1 − k2

objects get the third kind of label. The total number of labellings is thus, by the product principle,
the product of the two binomial coefficients, which simplifies as follows.

(
n

k1

)(
n − k1

k2

)
=

n!
k1!(n − k1)!

(n − k1)!
k2!(n − k1 − k2)!

24 CHAPTER 1. COUNTING

=
n!

k1!k2!(n − k1 − k2)!

=
n!

k1!k2!k3!
.

A more elegant approach to Exercise 1.3-4, Exercise 1.3-5, and other related problems appears
in the next section.

Exercise 1.3-6 shows how Exercise 1.3-5 applies to computing powers of trinomials. In ex-
panding (x + y + z)n, we think of writing down n copies of the trinomial x + y + z side by side,
and applying the distributive laws until we have a sum of terms each of which is a product of x’s,
y’s and z’s. How many such terms do we have with k1 x’s, k2 y’s and k3 z’s? Imagine choosing
x from some number k1 of the copies of the trinomial, choosing y from some number k2, and z
from the remaining k3 copies, multiplying all the chosen terms together, and adding up over all
ways of picking the kis and making our choices. Choosing x from a copy of the trinomial “labels”
that copy with x, and the same for y and z, so the number of choices that yield xk1yk2zk3 is
the number of ways to label n objects with k1 labels of one kind, k2 labels of a second kind,
and k3 labels of a third. Notice that this requires that k3 = n − k1 − k2. By analogy with our
notation for a binomial coefficient, we define the trinomial coefficient

(n
k1,k2,k3

)
to be n!

k1!k2!k3! if
k1 + k2 + k3 = n and 0 otherwise. Then

(n
k1,k2,k3

)
is the coefficient of xk1yk2zk3 in (x + y + z)n.

This is sometimes called the trinomial theorem.

Important Concepts, Formulas, and Theorems

1. Pascal Relationship. The Pascal Relationship says that
(

n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
,

whenever n > 0 and 0 < k < n.

2. Pascal’s Triangle. Pascal’s Triangle is the triangular array of numbers we get by putting
ones in row n and column 0 and in row n and column n of a table for every positive integer
n and then filling the remainder of the table by letting the number in row n and column j
be the sum of the numbers in row n − 1 and columns j − 1 and j whenever 0 < j < n.

3. Binomial Theorem. The Binomial Theorem states that for any integer n ≥ 0

(x + y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · · +

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn ,

or in summation notation,

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi .

4. Labeling. The number of ways to apply k labels of one kind and n − k labels of another
kind to n objects is

(n
k

)
.

5. Trinomial coefficient. We define the trinomial coefficient
(n
k1,k2,k3

)
to be n!

k1!k2!k3! if k1 +k2 +
k3 = n and 0 otherwise.

6. Trinomial Theorem. The coefficient of xiyjzk in (x + y + z)n is
(n
i,j,k

)
.

1.3. BINOMIAL COEFFICIENTS 25

Problems

1. Find
(12

3

)
and

(12
9

)
. What can you say in general about

(n
k

)
and

(n
n−k

)
?

2. Find the row of the Pascal triangle that corresponds to n = 8.

3. Find the following

a. (x + 1)5

b. (x + y)5

c. (x + 2)5

d. (x − 1)5

4. Carefully explain the proof of the binomial theorem for (x + y)4. That is, explain what
each of the binomial coefficients in the theorem stands for and what powers of x and y are
associated with them in this case.

5. If I have ten distinct chairs to paint, in how many ways may I paint three of them green,
three of them blue, and four of them red? What does this have to do with labellings?

6. When n1, n2, . . .nk are nonnegative integers that add to n, the number n!
n1!,n2!,...,nk! is

called a multinomial coefficient and is denoted by
(n
n1,n2,...,nk

)
. A polynomial of the form

x1 + x2 + · · · + xk is called a multinomial. Explain the relationship between powers of
a multinomial and multinomial coefficients. This relationship is called the Multinomial
Theorem.

7. Give a bijection that proves your statement about
(n
k

)
and

(n
n−k

)
in Problem 1 of this

section.

8. In a Cartesian coordinate system, how many paths are there from the origin to the point
with integer coordinates (m, n) if the paths are built up of exactly m + n horizontal and
vertical line segments each of length one?

9. What is the formula we get for the binomial theorem if, instead of analyzing the number
of ways to choose k distinct y’s, we analyze the number of ways to choose k distinct x’s?

10. Explain the difference between choosing four disjoint three element sets from a twelve
element set and labelling a twelve element set with three labels of type 1, three labels of
type two, three labels of type 3, and three labels of type 4. What is the number of ways of
choosing three disjoint four element subsets from a twelve element set? What is the number
of ways of choosing four disjoint three element subsets from a twelve element set?

11. A 20 member club must have a President, Vice President, Secretary and Treasurer as well
as a three person nominations committee. If the officers must be different people, and if
no officer may be on the nominating committee, in how many ways could the officers and
nominating committee be chosen? Answer the same question if officers may be on the
nominating committee.

12. Prove Equation 1.6 by plugging in the formula for
(n
k

)
.

26 CHAPTER 1. COUNTING

13. Give two proofs that (
n

k

)
=

(
n

n − k

)
.

14. Give at least two proofs that
(

n

k

)(
k

j

)
=

(
n

j

)(
n − j

k − j

)
.

15. Give at least two proofs that
(

n

k

)(
n − k

j

)
=

(
n

j

)(
n − j

k

)
.

16. You need not compute all of rows 7, 8, and 9 of Pascal’s triangle to use it to compute
(9
6

)
.

Figure out which entries of Pascal’s triangle not given in Table 2 you actually need, and
compute them to get

(9
6

)
.

17. Explain why
n∑

i=0

(−1)i

(
n

i

)
= 0

18. Apply calculus and the binomial theorem to (1 + x)n to show that
(

n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · · = n2n−1.

19. True or False:
(n
k

)
=

(n−2
k−2

)
+

(n−2
k−1

)
+

(n−2
k

)
. If true, give a proof. If false, give a value of n

and k that show the statement is false, find an analogous true statement, and prove it.

1.4. EQUIVALENCE RELATIONS AND COUNTING (OPTIONAL) 27

1.4 Equivalence Relations and Counting (Optional)

The Symmetry Principle

Consider again the example from Section 1.2 in which we wanted to count the number of 3
element subsets of a four element set. To do so, we first formed all possible lists of k = 3 distinct
elements chosen from an n = 4 element set. (See Equation 1.4.) The number of lists of k distinct
elements is nk = n!/(n − k)!. We then observed that two lists are equivalent as sets, if one can
be obtained by rearranging (or “permuting”) the other. This process divides the lists up into
classes, called equivalence classes, each of size k!. Returning to our example in Section 1.2, we
noted that one such equivalence class was

{134, 143, 314, 341, 413, 431}.

The other three are
{234, 243, 324, 342, 423, 432},
{132, 123, 312, 321, 213, 231},

and
{124, 142, 214, 241, 412, 421}.

The product principle told us that if q is the number of such equivalence class, if each equiva-
lence class has k! elements, and the entire set of lists has n!/(n− k)! element, then we must have
that

qk! = n!/(n − k)! .

Dividing, we solve for q and get an expression for the number of k element subsets of an n element
set. In fact, this is how we proved Theorem 1.2.

A principle that helps in learning and understanding mathematics is that if we have a math-
ematical result that shows a certain symmetry, it often helps our understanding to find a proof
that reflects this symmetry. We call this the Symmetry Principle.

Principle 1.6 If a formula has a symmetry (e.g. interchanging two variables doesn’t change the
result), then a proof that explains this symmetry is likely to give us additional insight into the
formula.

The proof above does not account for the symmetry of the k! term and the (n − k)! term in the
expression n!

k!(n−k)! . This symmetry arises because choosing a k element subset is equivalent to
choosing the (n − k)-element subset of elements we don’t want. In Exercise 1.4-4, we saw that
the binomial coefficient

(n
k

)
also counts the number of ways to label n objects, say with the labels

“in” and “out,” so that we have k “ins” and therefore n − k “outs.” For each labelling, the k
objects that get the label “in” are in our subset. This explains the symmetry in our formula, but
it doesn’t prove the formula. Here is a new proof that the number of labellings is n!/k!(n − k)!
that explains the symmetry.

Suppose we have m ways to assign k blue and n − k red labels to n elements. From each
labeling, we can create a number of lists, using the convention of listing the k blue elements first
and the remaining n− k red elements last. For example, suppose we are considering the number
of ways to label 3 elements blue (and 2 red) from a five element set {A, B, C, D, E}. Consider

28 CHAPTER 1. COUNTING

the particular labelling in which A, B, and D are labelled blue and C and E are labelled red.
Which lists correspond to this labelling? They are

ABDCE ABDEC ADBCE ADBEC BADCE BADEC
BDACE BDAEC DABCE DABEC DBACE DBAEC

that is, all lists in which A, B, and D precede C and E. Since there are 3! ways to arrange A,
B, and D, and 2! ways to arrange C and E, by the product principal, there are 3!2! = 12 lists in
which A, B, and D precede C and E. For each of the q ways to construct a labelling, we could
find a similar set of 12 lists that are associated with that labelling. Since every possible list of 5
elements will appear exactly once via this process, and since there are 5! = 120 five-element lists
overall, we must have by the product principle that

q · 12 = 120, (1.14)

or that q = 10. This agrees with our previous calculations of
(5
3

)
= 10 for the number of ways to

label 5 items so that 3 are blue and 2 are red.

Generalizing, we let q be the number of ways to label n objects with k blue labels and n − k
red labels. To create the lists associated with a labelling, we list the blue elements first and
then the red elements. We can mix the k blue elements among themselves, and we can mix the
n − k red elements among themselves, giving us k!(n − k)! lists consisting of first the elements
with a blue label followed by the elements with a red label. Since we can choose to label any
k elements blue, each of our lists of n distinct elements arises from some labelling in this way.
Each such list arises from only one labelling, because two different labellings will have a different
first k elements in any list that corresponds to the labelling. Each such list arises only once from
a given labelling, because two different lists that correspond to the same labelling differ by a
permutation of the first k places or the last n − k places or both. Therefore, by the product
principle, qk!(n − k)! is the number of lists we can form with n distinct objects, and this must
equal n!. This gives us

qk!(n − k)! = n!,

and division gives us our original formula for q. Recall that our proof of the formula we had in
Exercise 1.4-5 did not explain why the product of three factorials appeared in the denominator,
it simply proved the formula was correct. With this idea in hand, we could now explain why the
product in the denominator of the formula in Exercise 1.4-5 for the number of labellings with
three labels is what it is, and could generalize this formula to four or more labels.

Equivalence Relations

The process above divided the set of all n! lists of n distinct elements into classes (another word
for sets) of lists. In each class, all the lists are mutually equivalent, with respect to labeling with
two labels. More precisely, two lists of the n objects are equivalent for defining labellings if we
get one from the other by mixing the first k elements among themselves and mixing the last
n−k elements among themselves. Relating objects we want to count to sets of lists (so that each
object corresponds to an set of equivalent lists) is a technique we can use to solve a wide variety
of counting problems. (This is another example of abstraction.)

1.4. EQUIVALENCE RELATIONS AND COUNTING (OPTIONAL) 29

A relationship that divides a set up into mutually exclusive classes is called an equivalence
relation.8 Thus, if

S = S1 ∪ S2 ∪ . . . ∪ Sm

and Si ∩Sj = ∅ for all i and j with i �= j, then the relationship that says any two elements x ∈ S
and y ∈ S are equivalent if and only if they lie in the same set Si is an equivalence relation. The
sets Si are called equivalence classes, and, as we noted in Section 1.1 the family S1, S2, . . . , Sm is
called a partition of S. One partition of the set S = {a, b, c, d, e, f, g} is {a, c}, {d, g}, {b, e, f}.
This partition corresponds to the following (boring) equivalence relation: a and c are equivalent,
d and g are equivalent, and b, e, and f are equivalent. A slightly less boring equivalence relation
is that two letters are equivalent if typographically, their top and bottom are at the same height.
This give the partition {a, c, e}, {b, d}, {f}, {g}.

Exercise 1.4-1 On the set of integers between 0 and 12 inclusive, define two integers to be
related if they have the same remainder on division by 3. Which numbers are related
to 0? to 1? to 2? to 3? to 4?. Is this relationship an equivalence relation?

In Exercise 1.4-1, the set of numbers related to 0 is the set {0, 3, 6, 9, 12}, the set to 1 is
{1, 4, 7, 10}, the set related to 2 is {2, 5, 8, 11}, the set related to 3 is {0, 3, 6, 9, 12}, the set
related to 4 is {1, 4, 7, 10}. A little more precisely, a number is related to one of 0, 3, 6, 9, or 12,
if and only if it is in the set {0, 3, 6, 9, 12}, a number is related to 1, 4, 7, or 10 if and only if it
is in the set {1, 4, 7, 10} and a number is related to 2, 5, 8, or 11 if and only if it is in the set
{2, 5, 8, 11}. Therefore the relationship is an equivalence relation.

The Quotient Principle

In Exercise 1.4-1 the equivalence classes had two different sizes. In the examples of counting
labellings and subsets that we have seen so far, all the equivalence classes had the same size.
This was very important. The principle we have been using to count subsets and labellings is
given in the following theorem. We will call this principle the Quotient Principle.

Theorem 1.5 (Quotient Principle) If an equivalence relation on a p-element set S has q
classes each of size r, then q = p/r.

Proof: By the product principle, p = qr, and so q = p/r.

Another statement of the quotient principle that uses the idea of a partition is

Principle 1.7 (Quotient Principle.) If we can partition a set of size p into q blocks of size r,
then q = p/r.

Returning to our example of 3 blue and 2 red labels, s = 5! = 120, t = 12 and so by Theorem
1.5,

m =
s

t
=

120
12

= 10 .

8The usual mathematical approach to equivalence relations, which we shall discuss in the exercises, is different
from the one given here. Typically, one sees an equivalence relation defined as a reflexive (everything is related to
itself), symmetric (if x is related to y, then y is related to x), and transitive (if x is related to y and y is related
to z, then x is related to z) relationship on a set X. Examples of such relationships are equality (on any set),
similarity (on a set of triangles), and having the same birthday as (on a set of people). The two approaches are
equivalent, and we haven’t found a need for the details of the other approach in what we are doing in this course.

30 CHAPTER 1. COUNTING

Equivalence class counting

We now give several examples of the use of Theorem 1.5.

Exercise 1.4-2 When four people sit down at a round table to play cards, two lists of
their four names are equivalent as seating charts if each person has the same person
to the right in both lists9. (The person to the right of the person in position 4 of
the list is the person in position 1). We will use Theorem 1.5 to count the number of
possible ways to seat the players. We will take our set S to be the set of all 4-element
permutations of the four people, i.e., the set of all lists of the four people.

(a) How many lists are equivalent to a given one?

(b) What are the lists equivalent to ABCD?

(c) Is the relationship of equivalence an equivalence relation?

(d) Use the Quotient Principle to compute the number of equivalence classes, and
hence, the number of possible ways to seat the players.

Exercise 1.4-3 We wish to count the number of ways to attach n distinct beads to the
corners of a regular n-gon (or string them on a necklace). We say that two lists of
the n beads are equivalent if each bead is adjacent to exactly the same beads in both
lists. (The first bead in the list is considered to be adjacent to the last.)

• How does this exercise differ from the previous exercise?

• How many lists are in an equivalence class?

• How many equivalence classes are there?

In Exercise 1.4-2, suppose we have named the places at the table north, east, south, and west.
Given a list we get an equivalent one in two steps. First we observe that we have four choices of
people to sit in the north position. Then there is one person who can sit to this person’s right, one
who can be next on the right, and one who can be the following on on the right, all determined
by the original list. Thus there are exactly four lists equivalent to a given one, including that
given one. The lists equivalent to ABCD are ABCD, BCDA, CDAB, and DABC. This shows
that two lists are equivalent if and only if we can get one from the other by moving everyone the
same number of places to the right around the table (or we can get one from the other moving
everyone the same number of places to the left around the table). From this we can see we have
an equivalence relation, because each list is in one of these sets of four equivalent lists, and if
two lists are equivalent, they are right or left shifts of each other, and we’ve just observed that
all right and left shifts of a given list are in the same class. This means our relationship divides
the set of all lists of the four names into equivalence classes each of size four. There are a total
of 4! = 24 lists of four distinct names, and so by Theorem 1.5 we have 4!/4 = 3! = 6 seating
arrangements.

Exercise 1.4-3 is similar in many ways to Exercise 1.4-2, but there is one significant difference.
We can visualize the problem as one of dividing lists of n distinct beads up into equivalence classes,

9Think of the four places at the table as being called north, east, south, and west, or numbered 1-4. Then
we get a list by starting with the person in the north position (position 1), then the person in the east position
(position 2) and so on clockwise

1.4. EQUIVALENCE RELATIONS AND COUNTING (OPTIONAL) 31

but now two lists are equivalent if each bead is adjacent to exactly the same beads in both of
them. Suppose we number the vertices of our polygon as 1 through n clockwise. Given a list, we
can count the equivalent lists as follows. We have n choices for which bead to put in position 1.
Then either of the two beads adjacent to it10 in the given list can go in position 2. But now, only
one bead can go in position 3, because the other bead adjacent to position 2 is already in position
1. We can continue in this way to fill in the rest of the list. For example, with n = 4, the lists
ABCD, ADCB, BCDA, BADC, CDAB, CBAD, DABC, and DCBA are all equivalent. Notice
the first, third , fifth and seventh lists are obtained by shifting the beads around the polygon, as
are the second, fourth, sixth and eighth (though in the opposite direction). Also note that the
eighth list is the reversal of the first, the third is the reversal of the second, and so on. Rotating a
necklace in space corresponds to shifting the letters in the list. Flipping a necklace over in space
corresponds to reversing the order of a list. There will always be 2n lists we can get by shifting
and reversing shifts of a list. The lists equivalent to a given one consist of everything we can get
from the given list by rotations and reversals. Thus the relationship of every bead being adjacent
to the same beads divides the set of lists of beads into disjoint sets. These sets, which have size
2n, are the equivalence classes of our equivalence relation. Since there are n! lists, Theorem 1.5
says there are

n!
2n

=
(n − 1)!

2
bead arrangements.

Multisets

Sometimes when we think about choosing elements from a set, we want to be able to choose an
element more than once. For example the set of letters of the word “roof” is {f, o, r}. However
it is often more useful to think of the of the multiset of letters, which in this case is {{f, o, o, r}}.
We use the double brackets to distinguish a multiset from a set. We can specify a multiset chosen
from a set S by saying how many times each of its elements occurs. If S is the set of English
letters, the “multiplicity” function for roof is given by m(f) = 1, m(o) = 2, m(r) = 1, and
m(letter) = 0 for every other letter. In a multiset, order is not important, that is the multiset
{{r, o, f, o}} is equivalent to the multiset {{f, o, o, r}}. We know that this is the case, because
they each have the same multiplicity function. We would like to say that the size of {{f, o, o, r}}
is 4, so we define the size of a multiset to be the sum of the multiplicities of its elements.

Exercise 1.4-4 Explain how placing k identical books onto the n shelves of a bookcase
can be thought of as giving us a k-element multiset of the shelves of the bookcase.
Explain how distributing k identical apples to n children can be thought of as giving
us a k-element multiset of the children.

In Exercise 1.4-4 we can think of the multiplicity of a bookshelf as the number of books it
gets and the multiplicity of a child as the number of apples the child gets. In fact, this idea of
distribution of identical objects to distinct recipients gives a great mental model for a multiset
chosen from a set S. Namely, to determine a k-element multiset chosen from S form S, we
“distribute” k identical objects to the elements of S and the number of objects an element x gets
is the multiplicity of x.

10Remember, the first and last bead are considered adjacent, so they have two beads adjacent to them.

32 CHAPTER 1. COUNTING

Notice that it makes no sense to ask for the number of multisets we may choose from a set
with n elements, because {{A}}, {{A, A}}, {{A, A, A}}, and so on are infinitely many multisets
chosen from the set {A}. However it does make sense to ask for the number of k-element multisets
we can choose from an n-element set. What strategy could we employ to figure out this number?
To count k-element subsets, we first counted k-element permutations, and then divided by the
number of different permutations of the same set. Here we need an analog of permutations that
allows repeats. A natural idea is to consider lists with repeats. After all, one way to describe
a multiset is to list it, and there could be many different orders for listing a multiset. However
the two element multiset {{A, A}} can be listed in just one way, while the two element multiset
{{A, B}} can be listed in two ways. When we counted k-element subsets of an n-element set
by using the quotient principle, it was essential that each k-element subset corresponded to the
same number (namely k!) of permutations (lists), because we were using the reasoning behind
the quotient principle to do our counting here. So if we hope to use similar reasoning, we can’t
apply it to lists with repeats because different k-element multisets can correspond to different
numbers of lists.

Suppose, however, we could count the number of ways to arrange k distinct books on the
n shelves of a bookcase. We can still think of the multiplicity of a shelf as being the number
of books on it. However, many different arrangements of distinct books will give us the same
multiplicity function. In fact, any way of mixing the books up among themselves that does not
change the number of books on each shelf will give us the same multiplicities. But the number of
ways to mix the books up among themselves is the number of permutations of the books, namely
k!. Thus it looks like we have an equivalence relation on the arrangements of distinct books on
a bookshelf such that

1. Each equivalence class has k! elements, and

2. There is a bijection between the equivalence classes and k-element multisets of the n shelves.

Thus if we can compute the number of ways to arrange k distinct books on the n shelves of a
bookcase, we should be able to apply the quotient principle to compute the number of k-element
multisets of an n-element set.

The bookcase arrangement problem.

Exercise 1.4-5 We have k books to arrange on the n shelves of a bookcase. The order in
which the books appear on a shelf matters, and each shelf can hold all the books. We
will assume that as the books are placed on the shelves they are moved as far to the
left as they will go so that all that matters is the order in which the books appear
and not the actual places where the books sit. When book i is placed on a shelf, it
can go between two books already there or to the left or right of all the books on that
shelf.

(a) Since the books are distinct, we may think of a first, second, third, etc. book.
In how many ways may we place the first book on the shelves?

(b) Once the first book has been placed, in how many ways may the second book
be placed?

(c) Once the first two books have been placed, in how many ways may the third
book be placed?

1.4. EQUIVALENCE RELATIONS AND COUNTING (OPTIONAL) 33

(d) Once i − 1 books have been placed, book i can be placed on any of the shelves
to the left of any of the books already there, but there are some additional ways
in which it may be placed. In how many ways in total may book i be placed?

(e) In how many ways may k distinct books be place on n shelves in accordance
with the constraints above?

Exercise 1.4-6 How many k-element multisets can we choose from an n-element set?

In Exercise 1.4-5 there are n places where the first book can go, namely on the left side of
any shelf. Then the next book can go in any of the n places on the far left side of any shelf,
or it can go to the right of book one. Thus there are n + 1 places where book 2 can go. At
first, placing book three appears to be more complicated, because we could create two different
patterns by placing the first two books. However book 3 could go to the far left of any shelf or to
the immediate right of any of the books already there. (Notice that if book 2 and book 1 are on
shelf 7 in that order, putting book 3 to the immediate right of book 2 means putting it between
book 2 and book 1.) Thus in any case, there are n+2 ways to place book 3. Similarly, once i− 1
books have been placed, there are n + i − 1 places where we can place book i. It can go at the
far left of any of the n shelves or to the immediate right of any of the i − 1 books that we have
already placed. Thus the number of ways to place k distinct books is

n(n + 1)(n + 2) · · · (n + k − 1) =
k∏

i=1

(n + i − 1) =
k−1∏

j=0

(n + j) =
(n + k − 1)!

(n − 1)!
. (1.15)

The specific product that arose in Equation 1.15 is called a rising factorial power. It has
a notation (also introduced by Don Knuth) analogous to that for the falling factorial notation.
Namely, we write

nk = n(n + 1) · · · (n + k − 1) =
k∏

i=1

(n + i − 1).

This is the product of k successive numbers beginning with n.

The number of k-element multisets of an n-element set.

We can apply the formula of Exercise 1.4-5 to solve Exercise 1.4-6. We define two bookcase
arrangements of k books on n shelves to be equivalent if we get one from the other by permuting
the books among themselves. Thus if two arrangements put the same number of books on each
shelf they are put into the same class by this relationship. On the other hand, if two arrangements
put a different number of books on at least one shelf, they are not equivalent, and therefore they
are put into different classes by this relationship. Thus the classes into which this relationship
divides the the arrangements are disjoint and partition the set of all arrangements. Each class
has k! arrangements in it. The set of all arrangements has nk arrangements in it. This leads to
the following theorem.

Theorem 1.6 The number of k-element multisets chosen from an n-element set is

nk

k!
=

(
n + k − 1

k

)
.

34 CHAPTER 1. COUNTING

Proof: The relationship on bookcase arrangements that two arrangements are equivalent if
and only if we get one from the other by permuting the books is an equivalence relation. The set
of all arrangements has nk elements, and the number of elements in an equivalence class is k!.
By the quotient principle, the number of equivalence classes is nk

k! . There is a bijection between
equivalence classes of bookcase arrangements with k books and multisets with k elements. The
second equality follows from the definition of binomial coefficients.

The number of k-element multisets chosen from an n-elements is sometimes called the number
of combinations with repetitions of n elements taken k at a time.

The right-hand side of the formula is a binomial coefficient, so it is natural to ask whether there
is a way to interpret choosing a k-element multiset from an n-element set as choosing a k-element
subset of some different n + k − 1-element set. This illustrates an important principle. When we
have a quantity that turns our to be equal to a binomial coefficient, it helps our understanding
to interpret it as counting the number of ways to choose a subset of an appropriate size from a
set of an appropriate size. We explore this idea for multisets in Problem 8 in this section.

Using the quotient principle to explain a quotient

Since the last expression in Equation 1.15 is quotient of two factorials it is natural to ask whether
it is counting equivalence classes of an equivalence relation. If so, the set on which the relation
is defined has size (n + k − 1)!. Thus it might be all lists or permutations of n + k − 1 distinct
objects. The size of an equivalence class is (n− 1)! and so what makes two lists equivalent might
be permuting n − 1 of the objects among themselves. Said differently, the quotient principle
suggests that we look for an explanation of the formula involving lists of n + k − 1 objects, of
which n − 1 are identical, so that the remaining k elements are distinct. Can we find such an
interpretation?

Exercise 1.4-7 In how many ways may we arrange k distinct books and n − 1 identical
blocks of wood in a straight line?

Exercise 1.4-8 How does Exercise 1.4-7 relate to arranging books on the shelves of a
bookcase?

In Exercise 1.4-7, if we tape numbers to the wood so that so that the pieces of wood are
distinguishable, there are (n + k− 1)! arrangements of the books and wood. But since the pieces
of wood are actually indistinguishable, (n − 1)! of these arrangements are equivalent. Thus by
the quotient principle there are (n + k − 1)!/(n− 1)! arrangements. Such an arrangement allows
us to put the books on the shelves as follows: put all the books before the first piece of wood
on shelf 1, all the books between the first and second on shelf 2, and so on until you put all the
books after the last piece of wood on shelf n.

Important Concepts, Formulas, and Theorems

1. Symmetry Principle. If we have a mathematical result that shows a certain symmetry, it
often helps our understanding to find a proof that reflects this symmetry.

2. Partition. Given a set S of items, a partition of S consists of m sets S1, S2, . . . , Sm, some-
times called blocks so that S1∪S2∪· · ·∪Sm = S and for each i and j with i �= j, Si∩Sj = ∅.

1.4. EQUIVALENCE RELATIONS AND COUNTING (OPTIONAL) 35

3. Equivalence relation. Equivalence class. A relationship that partitions a set up into mutu-
ally exclusive classes is called an equivalence relation. Thus if S = S1∪S2∪ . . .∪Sm is a
partition of S, the relationship that says any two elements x ∈ S and y ∈ S are equivalent
if and only if they lie in the same set Si is an equivalence relation. The sets Si are called
equivalence classes

4. Quotient principle. The quotient principle says that if we can partition a set of p objects
up into q classes of size r, then q = p/r. Equivalently, if an equivalence relation on a set of
size p has q equivalence classes of size r, then q = p/r. The quotient principle is frequently
used for counting the number of equivalence classes of an equivalence relation. When we
have a quantity that is a quotient of two others, it is often helpful to our understanding to
find a way to use the quotient principle to explain why we have this quotient.

5. Multiset. A multiset is similar to a set except that each item can appear multiple times. We
can specify a multiset chosen from a set S by saying how many times each of its elements
occurs.

6. Choosing k-element multisets. The number of k-element multisets that can be chosen from
an n-element set is

(n + k − 1)!
k!(n − 1)!

=

(
n + k − 1

k

)
.

This is sometimes called the formula for “combinations with repetitions.”

7. Interpreting binomial coefficients. When we have a quantity that turns out to be a binomial
coefficient (or some other formula we recognize) it is often helpful to our understanding to
try to interpret the quantity as the result of choosing a subset of a set (or doing whatever
the formula that we recognize counts.)

Problems

1. In how many ways may n people be seated around a round table? (Remember, two seating
arrangements around a round table are equivalent if everyone is in the same position relative
to everyone else in both arrangements.)

2. In how many ways may we embroider n circles of different colors in a row (lengthwise,
equally spaced, and centered halfway between the top and bottom edges) on a scarf (as
follows)?

� � � � � �

3. Use binomial coefficients to determine in how many ways three identical red apples and
two identical golden apples may be lined up in a line. Use equivalence class counting (in
particular, the quotient principle) to determine the same number.

36 CHAPTER 1. COUNTING

4. Use multisets to determine the number of ways to pass out k identical apples to n children.

5. In how many ways may n men and n women be seated around a table alternating gender?
(Use equivalence class counting!!)

6. In how many ways may we pass out k identical apples to n children if each child must get
at least one apple?

7. In how many ways may we place k distinct books on n shelves of a bookcase (all books
pushed to the left as far as possible) if there must be at least one book on each shelf?

8. The formula for the number of multisets is (n + k − 1)! divided by a product of two other
factorials. We seek an explanation using the quotient principle of why this counts multisets.
The formula for the number of multisets is also a binomial coefficient, so it should have an
interpretation involving choosing k items from n + k − 1 items. The parts of the problem
that follow lead us to these explanations.

(a) In how many ways may we place k red checkers and n − 1 black checkers in a row?

(b) How can we relate the number of ways of placing k red checkers and n − 1 black
checkers in a row to the number of k-element multisets of an n-element set, say the
set {1, 2, . . . , n} to be specific?

(c) How can we relate the choice of k items out of n+ k− 1 items to the placement of red
and black checkers as in the previous parts of this problem?

9. How many solutions to the equation x1 + x2 + · · ·xn = k are there with each xi ≥ 0?

10. How many solutions to the equation x1 + x2 + · · ·xn = k are there with each xi > 0?

11. In how many ways may n red checkers and n + 1 black checkers be arranged in a circle?
(This number is a famous number called a Catalan number.)

12. A standard notation for the number of partitions of an n element set into k classes is
S(n, k). S(0, 0) is 1, because technically the empty family of subsets of the empty set is a
partition of the empty set, and S(n, 0) is 0 for n > 0, because there are no partitions of a
nonempty set into no parts. S(1, 1) is 1.

(a) Explain why S(n, n) is 1 for all n > 0. Explain why S(n, 1) is 1 for all n > 0.

(b) Explain why, for 1 < k < n, S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

(c) Make a table like our first table of binomial coefficients that shows the values of S(n, k)
for values of n and k ranging from 1 to 6.

13. You are given a square, which can be rotated 90 degrees at a time (i.e. the square has
four orientations). You are also given two red checkers and two black checkers, and you
will place each checker on one corner of the square. How many lists of four letters, two of
which are R and two of which are B, are there? Once you choose a starting place on the
square, each list represents placing checkers on the square in clockwise order. Consider two
lists to be equivalent if they represent the same arrangement of checkers at the corners of
the square, that is, if one arrangement can be rotated to create the other one. Write down
the equivalence classes of this equivalence relation. Why can’t we apply Theorem 1.5 to
compute the number of equivalence classes?

1.4. EQUIVALENCE RELATIONS AND COUNTING (OPTIONAL) 37

14. The terms “reflexive”, “symmetric” and “transitive” were defined in Footnote 2. Which of
these properties is satisfied by the relationship of “greater than?” Which of these properties
is satisfied by the relationship of “is a brother of?” Which of these properties is satisfied
by “is a sibling of?” (You are not considered to be your own brother or your own sibling).
How about the relationship “is either a sibling of or is?”

a Explain why an equivalence relation (as we have defined it) is a reflexive, symmetric,
and transitive relationship.

b Suppose we have a reflexive, symmetric, and transitive relationship defined on a set
S. For each x is S, let Sx = {y|y is related to x}. Show that two such sets Sx and
Sy are either disjoint or identical. Explain why this means that our relationship is
an equivalence relation (as defined in this section of the notes, not as defined in the
footnote).

c Parts b and c of this problem prove that a relationship is an equivalence relation if
and only if it is symmetric, reflexive, and transitive. Explain why. (A short answer is
most appropriate here.)

15. Consider the following C++ function to compute
(n
k

)
.

int pascal(int n, int k)
{
if (n < k)
{

cout << "error: n<k" << endl;
exit(1);

}

if ((k==0) || (n==k))
return 1;

return pascal(n-1,k-1) + pascal(n-1,k);
}

Enter this code and compile and run it (you will need to create a simple main program that
calls it). Run it on larger and larger values of n and k, and observe the running time of the
program. It should be surprisingly slow. (Try computing, for example,

(30
15

)
.) Why is it so

slow? Can you write a different function to compute
(n
k

)
that is significantly faster? Why

is your new version faster? (Note: an exact analysis of this might be difficult at this point
in the course; it will be easier later. However, you should be able to figure out roughly why
this version is so much slower.)

16. Answer each of the following questions with either nk, nk,
(n
k

)
, or

(n+k−1
k

)
.

(a) In how many ways can k different candy bars be distributed to n people (with any
person allowed to receive more than one bar)?

(b) In how many ways can k different candy bars be distributed to n people (with nobody
receiving more than one bar)?

38 CHAPTER 1. COUNTING

(c) In how many ways can k identical candy bars distributed to n people (with any person
allowed to receive more than one bar)?

(d) In how many ways can k identical candy bars distributed to n people (with nobody
receiving more than one bar)?

(e) How many one-to-one functions f are there from {1, 2, . . . , k} to {1, 2, . . . , n} ?

(f) How many functions f are there from {1, 2, . . . , k} to {1, 2, . . . , n} ?

(g) In how many ways can one choose a k-element subset from an n-element set?

(h) How many k-element multisets can be formed from an n-element set?

(i) In how many ways can the top k ranking officials in the US government be chosen
from a group of n people?

(j) In how many ways can k pieces of candy (not necessarily of different types) be chosen
from among n different types?

(k) In how many ways can k children each choose one piece of candy (all of different types)
from among n different types of candy?

Chapter 2

Cryptography and Number Theory

2.1 Cryptography and Modular Arithmetic

Introduction to Cryptography

For thousands of years people have searched for ways to send messages secretly. There is a story
that, in ancient times, a king needed to send a secret message to his general in battle. The king
took a servant, shaved his head, and wrote the message on his head. He waited for the servant’s
hair to grow back and then sent the servant to the general. The general then shaved the servant’s
head and read the message. If the enemy had captured the servant, they presumably would not
have known to shave his head, and the message would have been safe.

Cryptography is the study of methods to send and receive secret messages. In general, we
have a sender who is trying to send a message to a receiver. There is also an adversary, who
wants to steal the message. We are successful if the sender is able to communicate a message to
the receiver without the adversary learning what that message was.

Cryptography has remained important over the centuries, used mainly for military and diplo-
matic communications. Recently, with the advent of the internet and electronic commerce,
cryptography has become vital for the functioning of the global economy, and is something that
is used by millions of people on a daily basis. Sensitive information such as bank records, credit
card reports, passwords, or private communication, is (and should be) encrypted—modified in
such a way that, hopefully, it is only understandable to people who should be allowed to have
access to it, and undecipherable to others.

Undecipherability by an adversary is, of course, a difficult goal. No code is completely undeci-
pherable. If there is a printed “codebook,” then the adversary can always steal the codebook, and
no amount of mathematical sophistication can prevent this possibility. More likely, an adversary
may have extremely large amounts of computing power and human resources to devote to trying
to crack a code. Thus our notion of security is tied to computing power—a code is only as safe
as the amount of computing power needed to break it. If we design codes that seem to need
exceptionally large amounts of computing power to break, then we can be relatively confident in
their security.

39

40 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Private Key Cryptography

Traditional cryptography is known as private key cryptography. The sender and receiver agree
in advance on a secret code, and then send messages using that code. For example, one of the
oldest codes is known as a Caesar cipher. In this code, the letters of the alphabet are shifted by
some fixed amount. Typically, we call the original message the plaintext and the encoded text
the ciphertext. An example of a Caesar cipher would be the following code:

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ciphertext E F G H I J K L M N O P Q R S T U V W X Y Z A B C D .

Thus if we wanted to send the plaintext message

ONE IF BY LAND AND TWO IF BY SEA ,

we would send the ciphertext

SRI MJ FC PERH ERH XAS MJ FC WIE .

A Caeser cipher is especially easy to implement on a computer using a scheme known as
arithmetic mod 26. The symbolism

m mod n

means the remainder we get when we divide m by n. A bit more precisely we can give the
following definition.

Definition 2.1 For integers m and n, m mod n is the smallest nonnegative integer r such that

m = nq + r (2.1)

for some integer q.

We will refer to the fact that m mod n is always well defined as Euclid’s division theorem. The
proof appears in the next section.1

Theorem 2.1 (Euclid’s division theorem) For every integer m and positive integer n, there
exist unique integers q and r such that m = nq + r and 0 ≤ r < n.

Exercise 2.1-1 Use The definition of m mod n to compute 10 mod 7 and −10 mod 7.
What are q and r in each case? Does (−m) mod n = −(m mod n)?

1In an unfortunate historical evolution of terminology, the fact that for every nonnegative integer m and positive
integer n, there exist unique nonnegative integers q and r such that m = nq + r and r < n is called “Euclid’s
algorithm.” In modern language we would call this “Euclid’s Theorem” instead. While it seems obvious that there is
such a smallest nonnegative integer r and that there is exactly one such pair q, r with r < n, a technically complete
study would derive these facts from the basic axioms of number theory, just as “obvious” facts of geometry are
derived from the basic axioms of geometry. The reasons why mathematicians take the time to derive such obvious
facts from basic axioms is so that everyone can understand exactly what we are assuming as the foundations of
our subject; as the “rules of the game” in effect.

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 41

Exercise 2.1-2 Using 0 for A, 1 for B, and so on, let the numbers from 0 to 25 stand for
the letters of the alphabet. In this way, convert a message to a sequence of strings of
numbers. For example SEA becomes 18 4 0. What does (the numerical representation
of) this word become if we shift every letter two places to the right? What if we shift
every letter 13 places to the right? How can you use the idea of m mod n to implement
a Caeser cipher?

Exercise 2.1-3 Have someone use a Caeser cipher to encode a message of a few words in
your favorite natural language, without telling you how far they are shifting the letters
of the alphabet. How can you figure out what the message is? Is this something a
computer could do quickly?

In Exercise 2.1-1, 10 = 7(1)+3 and so 10 mod 7 is 3, while −10 = 7(−2)+4 and so −10 mod 7
is 4. These two calculations show that (−m) mod n = −(m mod n) is not necessarily true. Note
that −3 mod 7 is 4 also. Furthermore, −10 + 3 mod 7 = 0, suggesting that −10 is essentially the
same as −3 when we are considering integers mod 7.

In Exercise 2.1-2, to shift each letter two places to the right, we replace each number n in our
message by (n+2) mod 26, so that SEA becomes 20 8 2. To shift 13 places to the right, we replace
each number n in our message with (n + 13) mod 26 so that SEA becomes 5 17 13. Similarly to
implement a shift of s places, we replace each number n in our message by (n+ s) mod 26. Since
most computer languages give us simple ways to keep track of strings of numbers and a “mod
function,” it is easy to implement a Caeser cipher on a computer.

Exercise 2.1-3 considers the complexity of encoding, decoding and cracking a Ceasar cipher.
Even by hand, it is easy for the sender to encode the message, and for the receiver to decode the
message. The disadvantage of this scheme is that it is also easy for the adversary to just try the
26 different possible Caesar ciphers and decode the message. (It is very likely that only one will
decode into plain English.) Of course, there is no reason to use such a simple code; we can use
any arbitrary permutation of the alphabet as the ciphertext, e.g.

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
ciphertext H D I E T J K L M X N Y O P F Q R U V W G Z A S B C

If we encode a short message with a code like this, it would be hard for the adversary to decode it.
However, with a message of any reasonable length (greater than about 50 letters), an adversary
with a knowledge of the statistics of the English language can easily crack the code. (These codes
appear in many newspapers and puzzle books under the name cryptograms. Many people are
able to solve these puzzles, which is compelling evidence of the lack of security in such a code.)

We do not have to use simple mappings of letters to letters. For example, our coding algorithm
can be to

• take three consecutive letters,

• reverse their order,

• interpret each as a base 26 integer (with A=0; B=1, etc.),

• multiply that number by 37,

42 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

• add 95 and then

• convert that number to base 8.

We continue this processing with each block of three consecutive letters. We append the blocks,
using either an 8 or a 9 to separate the blocks. When we are done, we reverse the number, and
replace each digit 5 by two 5’s. Here is an example of this method:

plaintext: ONEIFBYLANDTWOIFBYSEA

block and reverse: ENO BFI ALY TDN IOW YBF AES
base 26 integer: 3056 814 310 12935 5794 16255 122
*37 +95 base 8: 335017 73005 26455 1646742 642711 2226672 11001
appended : 33501787300592645591646742964271182226672811001
reverse, 5rep : 10011827662228117246924764619555546295500378710533

As Problem 20 shows, a receiver who knows the code can decode this message. Furthermore,
a casual reader of the message, without knowledge of the encryption algorithm, would have no
hope of decoding the message. So it seems that with a complicated enough code, we can have
secure cryptography. Unfortunately, there are at least two flaws with this method. The first is
that if the adversary learns, somehow, what the code is, then she can easily decode it. Second, if
this coding scheme is repeated often enough, and if the adversary has enough time, money and
computing power, this code could be broken. In the field of cryptography, some entities have all
these resources (such as a government, or a large corporation). The infamous German Enigma
code is an example of a much more complicated coding scheme, yet it was broken and this helped
the Allies win World War II. (The reader might be interested in looking up more details on this;
it helped a lot in breaking the code to have a stolen Enigma machine, though even with the
stolen machine, it was not easy to break the code.) In general, any scheme that uses a codebook,
a secretly agreed upon (possibly complicated) code, suffers from these drawbacks.

Public-key Cryptosystems

A public-key cryptosystem overcomes the problems associated with using a codebook. In a public-
key cryptosystem, the sender and receiver (often called Alice and Bob respectively) don’t have
to agree in advance on a secret code. In fact, they each publish part of their code in a public
directory. Further, an adversary with access to the encoded message and the public directory
still cannot decode the message.

More precisely, Alice and Bob will each have two keys, a public key and a secret key. We will
denote Alice’s public and secret keys as KPA and KSA and Bob’s as KPB and KSB. They each
keep their secret keys to themselves, but can publish their public keys and make them available
to anyone, including the adversary. While the key published is likely to be a symbol string of
some sort, the key is used in some standardized way (we shall see examples soon) to create a
function from the set D of possible messages onto itself. (In complicated cases, the key might be
the actual function). We denote the functions associated with KSA, KPA, KSB and KPB by

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 43

SA, PA, SB, and PB, respectively. We require that the public and secret keys are chosen so that
the corresponding functions are inverses of each other, i.e for any message M ∈ D we have that

M = SA(PA(M)) = PA(SA(M)), and (2.2)
M = SB(PB(M)) = PB(SB(M)). (2.3)

We also assume that, for Alice, SA and PA are easily computable. However, it is essential that
for everyone except Alice, SA is hard to compute, even if you know PA. At first glance, this may
seem to be an impossible task, Alice creates a function PA, that is public and easy to compute
for everyone, yet this function has an inverse, SA, that is hard to compute for everyone except
Alice. It is not at all clear how to design such a function. In fact, when the idea for public
key cryptography was proposed (by Diffie and Hellman2), no one knew of any such functions.
The first complete public-key cryptosystem is the now-famous RSA cryptosystem, widely used
in many contexts. To understand how such a cryptosystem is possible requires some knowledge
of number theory and computational complexity. We will develop the necessary number theory
in the next few sections.

Before doing so, let us just assume that we have such a function and see how we can make
use of it. If Alice wants to send Bob a message M , she takes the following two steps:

1. Alice obtains Bob’s public key PB.

2. Alice applies Bob’s public key to M to create ciphertext C = PB(M).

Alice then sends C to Bob. Bob can decode the message by using his secret key to compute
SB(C) which is identical to SB(PB(M)), which by (2.3) is identical to M , the original message.
The beauty of the scheme is that even if the adversary has C and knows PB, she cannot decode
the message without SB, since SB is a secret that only Bob has. Even though the adversary
knows that SB is the inverse of PB, the adversary cannot easily compute this inverse.

Since it is difficult, at this point, to describe an example of a public key cryptosystem that is
hard to decode, we will give an example of one that is easy to decode. Imagine that our messages
are numbers in the range 1 to 999. Then we can imagine that Bob’s public key yields the function
PB given by PB(M) = rev(1000 − M), where rev() is a function that reverses the digits of a
number. So to encrypt the message 167, Alice would compute 1000−167 = 833 and then reverse
the digits and send Bob C = 338. In this case SB(C) = 1000 − rev(C), and Bob can easily
decode. This code is not secure, since if you know PB, you can figure out SB. The challenge is to
design a function PB so that even if you know PB and C = PB(M), it is exceptionally difficult
to figure out what M is.

Arithmetic modulo n

The RSA encryption scheme is built upon the idea of arithmetic mod n, so we introduce this
arithmetic now. Our goal is to understand how the basic arithmetic operations, addition, sub-
traction, multiplication, division, and exponentiation behave when all arithmetic is done mod
n. As we shall see, some of the operations, such as addition, subtraction and multiplication,
are straightforward to understand. Others, such as division and exponentiation, behave very
differently than they do for normal arithmetic.

2Whitfield Diffie and Martin Hellman. “New directions in cryptography” IEEE Transactions on Information
Theory , IT-22(6) pp 644-654, 1976.

44 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Exercise 2.1-4 Compute 21 mod 9, 38 mod 9, (21 · 38) mod 9, (21 mod 9) · (38 mod 9),
(21 + 38) mod 9, (21 mod 9) + (38 mod 9).

Exercise 2.1-5 True or false: i mod n = (i + 2n) mod n; i mod n = (i − 3n) mod n

In Exercise 2.1-4, the point to notice is that

(21 · 38) mod 9 = (21 mod 9)(38 mod 9)

and
(21 + 38) mod 9 = (21 mod 9) + (38 mod 9).

These equations are very suggestive, though the general equations that they first suggest aren’t
true! As we shall soon see, some closely related equations are true.

Exercise 2.1-5 is true in both cases, as adding multiples of n to i does not change the value
of i mod n. In general, we have

Lemma 2.2 i mod n = (i + kn) mod n for any integer k.

Proof: By Theorem 2.1, for unique integers q and r, with 0 ≤ r < n, we have

i = nq + r. (2.4)

Adding kn to both sides of Equation 2.4, we obtain

i + kn = n(q + k) + r. (2.5)

Applying the definition of i mod n to Equation 2.4, we have that r = i mod n and applying the
same definition to Equation 2.5 we have that r = (i + kn) mod n. The lemma follows.

Now we can go back to the equations of Exercise 2.1-4; the correct versions are stated below.
Informally, we are showing if we have a computation involving addition and multiplication, and
we plan to take the end result mod n, then we are free to take any of the intermediate results
mod n also.

Lemma 2.3

(i + j) mod n = [i + (j mod n)] mod n

= [(i mod n) + j] mod n

= [(i mod n) + (j mod n)] mod n

(i · j) mod n = [i · (j mod n)] mod n

= [(i mod n) · j] mod n

= [(i mod n) · (j mod n)] mod n

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 45

Proof: We prove the first and last terms in the sequence of equations for plus are equal; the
other equalities for plus follow by similar computations. The proofs of the equalities for products
are similar.

By Theorem 2.1, we have that for unique integers q1 and q2,

i = (i mod n) + q1n and j = (j mod n) + q2n.

Then adding these two equations together mod n, and using Lemma 2.2, we obtain

(i + j) mod n = [(i mod n) + q1n + (j mod n) + q2n)] mod n

= [(i mod n) + (j mod n) + n(q1 + q2)] mod n

= [(i mod n) + (j mod n)] mod n.

We now introduce a convenient notation for performing modular arithmetic. We will use the
notation Zn to represent the integers 0, 1, . . . , n−1 together with a redefinition of addition, which
we denote by +n, and a redefinition of multiplication, which we denote ·n. The redefinitions are:

i +n j = (i + j) mod n (2.6)
i ·n j = (i · j) mod n (2.7)

We will use the expression “x ∈ Zn” to mean that x is a variable that can take on any of
the integral values between 0 and n − 1. In addition, x ∈ Zn is a signal that if we do algebraic
operations with x, we are will use +n and ·n rather than the usual addition and multiplication.
In ordinary algebra it is traditional to use letters near the beginning of the alphabet to stand
for constants; that is, numbers that are fixed throughout our problem and would be known in
advance in any one instance of that problem. This allows us to describe the solution to many
different variations of a problem all at once. Thus we might say “For all integers a and b, there
is one and only one integer x that is a solution to the equation a + x = b, namely x = b − a.”
We adopt the same system for Zn. When we say “Let a be a member of Zn,” we mean the same
thing as “Let a be an integer between 0 and n − 1,” but we are also signaling that in equations
involving a, we will use +n and ·n.

We call these new operations addition mod n and multiplication mod n. We must now
verify that all the “usual” rules of arithmetic that normally apply to addition and multiplication
still apply with +n and ·n. In particular, we wish to verify the commutative, associative and
distributive laws.

Theorem 2.4 Addition and multiplication mod n satisfy the commutative and associative laws,
and multiplication distributes over addition.

Proof: Commutativity follows immediately from the definition and the commutativity of
ordinary addition and multiplication. We prove the associative law for addition in the following
equations; the other laws follow similarly.

a +n (b +n c) = (a + (b +n c)) mod n (Equation 2.6)
= (a + ((b + c) mod n)) mod n (Equation 2.6)

46 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

= (a + (b + c)) mod n (Lemma 2.3)
= ((a + b) + c) mod n (Associative law for ordinary sums)
= ((a + b) mod n + c) mod n (Lemma 2.3)
= ((a +n b) + c) mod n (Equation 2.6)
= (a +n b) +n c (Equation 2.6).

Notice that 0 +n i = i, 1 ·n i = i, (these equations are called the additive identity properties
and the multiplicative identity properties) and 0 ·n i = 0, so we can use 0 and 1 in algebraic
expressions in Zn (which we may also refer to as agebraic expressions mod n) as we use them in
ordinary algebraic expressions. We use a −n b to stand for a +n (−b).

We conclude this section by observing that repeated applications of Lemma 2.3 and Theorem
2.4 are useful when computing sums or products mod n in which the numbers are large. For
example, suppose you had m integers x1, . . . , xm and you wanted to compute (

∑m
j=1 xi) mod n.

One natural way to do so would be to compute the sum, and take the result modulo n. However,
it is possible that, on the computer that you are using, even though (

∑m
j=1 xi) mod n is a number

that can be stored in an integer, and each xi can be stored in an integer,
∑m

j=1 xi might be too
large to be stored in an integer. (Recall that integers are typically stored as 4 or 8 bytes, and
thus have a maximum value of roughly 2 × 109 or 9 × 1018.) Lemma 2.3 tells us that if we are
computing a result mod n, we may do all our calculations in Zn using +n and ·n, and thus never
computing an integer that has significantly more digits than any of the numbers we are working
with.

Cryptography using addition mod n

One natural way to use addition of a number a mod n in encryption is first to convert the
message to a sequence of digits—say concatenating all the ASCII codes for all the symbols
in the message—and then simply add a to the message mod n. Thus P (M) = M +n a and
S(C) = C +n (−a) = C−n a. If n happens to be larger than the message in numerical value, then
it is simple for someone who knows a to decode the encrypted message. However an adversary
who sees the encrypted message has no special knowledge and so unless a was ill chosen (for
example having all or most of the digits be zero would be a silly choice) the adversary who knows
what system you are using, even including the value of n, but does not know a, is essentially
reduced to trying all possible a values. (In effect adding a appears to the adversary much like
changing digits at random.) Because you use a only once, there is virtually no way for the
adversary to collect any data that will aid in guessing a. Thus, if only you and your intended
recipient know a, this kind of encryption is quite secure: guessing a is just as hard as guessing
the message.

It is possible that once n has been chosen, you will find you have a message which translates
to a larger number than n. Normally you would then break the message into segments, each with
no more digits than n, and send the segments individually. It might seem that as long as you
were not sending a large number of segments, it would still be quite difficult for your adversary
to guess a by observing the encrypted information. However if your adversary knew n but not
a and knew you were adding a mod n, he or she could take two messages and subtract them
in Zn, thus getting the difference of two unencrypted messages. (In Problem 13 we ask you to
explain why, even if your adversary didn’t know n, but just believed you were adding some secret

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 47

number a mod some other secret number n, she or he could use three encoded messages to find
three differences in the integers, instead of Zn, one of which was the difference of two messages.)
This difference could contain valuable information for your adversary.3 And if your adversary
could trick you into sending just one message z that he or she knows, intercepting the message
and subtracting z would give your adversary a. Thus adding a mod n is not an encoding method
you would want to use more than once.

Cryptography using multiplication mod n

We will now explore whether multiplication is a good method for encryption. In particular, we
could encrypt by multiplying a message (mod n) by a prechosen value a. We would then expect
to decrypt by “dividing” by a. What exactly does division mod a mean? Informally, we think of
division as the “inverse” of multiplication, that is, if we take a number x, multiply by a and then
divide by a, we should get back x. Clearly, with normal arithmetic, this is the case. However,
with modular arithmetic, division is trickier.

Exercise 2.1-6 One possibility for encryption is to take a message x and compute a ·n x,
for some value a, that the sender and receiver both know. You could then decrypt by
doing division by a in Zn if you knew how to divide in Zn. How well does this work?
In particular, consider the following three cases. First, consider n = 12 and a = 4
and x = 3. Second, consider n = 12 and a = 3 and x = 6. Third, consider n = 12
and a = 5 and x = 7. In each case, ask if your recipient, knowing a, could figure out
what the message x is.

When we encoded a message by adding a in Zn, we could decode the message simply by
subtracting a in Zn. However, this method had significant disadvantages, even if our adversary
did not know n. Suppose that instead of encoding by adding a mod n, we encoded by multiplying
by a mod n. (This doesn’t give us a great secret key cryptosystem, but it illustrates some key
points.) By analogy, if we encode by multiplying by a in Zn, we would expect to decode by
dividing by a in Zn. However, Exercise 2.1-6 shows that division in Zn doesn’t always make very
much sense. Suppose your value of n was 12 and the value of a was 4. You send the message 3
as 4 ·12 3 = 0. Thus you send the encoded message 0. Now your recipient sees 0, and says the
message might have been 0; after all, 4 ·12 0 = 0. On the other hand, 4 ·12 3 = 0, 4 ·12 6 = 0, and
4 ·12 9 = 0 as well. Thus your recipient has four different choices for the original message, which
is almost as bad as having to guess the original message itself!

It might appear that special problems arose because the encoded message was 0, so the next
question in Exercise 2.1-6 gives us an encoded message that is not 0. Suppose that a = 3 and
n = 12. Now we encode the message 6 by computing 3 ·12 6 = 6. Straightforward calculation
shows that 3 ·12 2 = 6, 3 ·12 6 = 6, and 3 ·12 10 = 6. Thus, the message 6 can be decoded in three
possible ways, as 2, 6, or 10.

The final question in Exercise 2.1-6 provides some hope. Let a = 5 and n = 12. The message
is 7 is encoded as 5 ·12 7 = 11. Simple checking of 5 ·12 1, 5 ·12 2, 5 ·12 3, and so on shows that 7 is

3If each segement of a message were equally likely to be any number between 0 and n, and if any second (or
third, etc.) segment were equally likely to follow any first segement, then knowing the difference between two
segments would yield no information about the two segments. However, because language is structured and most
information is structured, these two conditions are highly unlikely to hold, in which case your adversary could
apply structural knowledge to deduce information about your two messages from their difference.

48 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

the unique solution in Z12 to the equation 5 ·12 x = 11. Thus in this case we can correctly decode
the message.

One key point that this example shows is that our system of encrypting messages must be
one-to-one. That is, each unencrypted message must correspond to a different encrypted message.

As we shall see in the next section, the kinds of problems we had in Exercise 2.1-6 happen
only when a and n have a common divisor that is greater than 1. Thus, when a and n have no
common factors greater than one, all our receiver needs to know is how to divide by a in Zn, and
she can decrypt our message. If you don’t now know how to divide by a in Zn, then you can
begin to understand the idea of public key cryptography. The message is there for anyone who
knows how to divide by a to find, but if nobody but our receiver can divide by a, we can tell
everyone what a and n are and our messages will still be secret. That is the second point our
system illustrates. If we have some knowledge that nobody else has, such as how to divide by a
mod n, then we have a possible public key cryptosystem. As we shall soon see, dividing by a is
not particularly difficult, so a better trick is needed for public key cryptography to work.

Important Concepts, Formulas, and Theorems

1. Cryptography is the study of methods to send and receive secret messages.

(a) The sender wants to send a message to a receiver.

(b) The adversary wants to steal the message.

(c) In private key cryptography, the sender and receiver agree in advance on a secret code,
and then send messages using that code.

(d) In public key cryptography, the encoding method can be published. Each person has
a public key used to encrypt messages and a secret key used to encrypt an encrypted
message.

(e) The original message is called the plaintext.

(f) The encoded text is called the ciphertext.

(g) A Caesar cipher is one in which each letter of the alphabet is shifted by a fixed amount.

2. Euclid’s Division Theorem. For every integer m and positive integer n, there exist unique
integers q and r such that m = nq + r and 0 ≤ r < n. By definition, r is equal to m mod n.

3. Adding multiples of n does not change values mod n. That is, i mod n = (i + kn) mod n
for any integer k.

4. Mods (by n) can be taken anywhere in calculation, so long as we take the final result mod
n.

(i + j) mod n = [i + (j mod n)] mod n

= [(i mod n) + j] mod n

= [(i mod n) + (j mod n)] mod n

(i · j) mod n = [i · (j mod n)] mod n

= [(i mod n) · j] mod n

= [(i mod n) · (j mod n)] mod n

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 49

5. Commutative, associative and distributive laws. Addition and multiplication mod n satisfy
the commutative and associative laws, and multiplication distributes over addition.

6. Zn. We use the notation Zn to represent the integers 0, 1, . . . , n − 1 together with a redef-
inition of addition, which we denote by +n, and a redefinition of multiplication, which we
denote ·n. The redefinitions are:

i +n j = (i + j) mod n

i ·n j = (i · j) mod n

We use the expression “x ∈ Zn” to mean that x is a variable that can take on any of the
integral values between 0 and n − 1, and that in algebraic expressions involving x we will
use +n and ·n. We use the expression a ∈ Zn to mean that a is a constant between 0 and
n − 1, and in algebraic expressions involving a we will use +n and ·n.

Problems

1. What is 14 mod 9? What is −1 mod 9? What is −11 mod 9?

2. Encrypt the message HERE IS A MESSAGE using a Caeser cipher in which each letter is
shifted three places to the right.

3. Encrypt the message HERE IS A MESSAGE using a Caeser cipher in which each letter is
shifted three places to the left.

4. How many places has each letter been shifted in the Caesar cipher used to encode the
message XNQQD RJXXFLJ?

5. What is 16 +23 18? What is 16 ·23 18?

6. A short message has been encoded by converting it to an integer by replacing each “a” by
1, each “b” by 2, and so on, and concatenating the integers. The result had six or fewer
digits. An unknown number a was added to the message mod 913,647, giving 618,232.
Without the knowledge of a, what can you say about the message? With the knowledge of
a, what could you say about the message?

7. What would it mean to say there is an integer x equal to 1
4 mod 9? If it is meaningful to

say there is such an integer, what is it? Is there an integer equal to 1
3 mod 9? If so, what

is it?

8. By multiplying a number x times 487 in Z30031 we obtain 13008. If you know how to find
the number x, do so. If not, explain why the problem seems difficult to do by hand.

9. Write down the addition table for +7 addition. Why is the table symmetric? Why does
every number appear in every row?

10. It is straightforward to solve, for x, any equation of the form

x +n a = b

50 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

in Zn, and to see that the result will be a unique value of x. On the other hand, we saw
that 0, 3, 6, and 9 are all solutions to the equation

4 ·12 x = 0.

a) Are there any integral values of a and b, with 1 ≤ a, b < 12, for which the equation
a ·12 x = b does not have any solutions in Z12? If there are, give one set of values for
a and b. If there are not, explain how you know this.

b) Are there any integers a, with 1 < a < 12 such that for every integral value of b,
1 ≤ b < 12, the equation a ·12 x = b has a solution? If so, give one and explain why it
works. If not, explain how you know this.

11. Does every equation of the form a ·n x = b, with a, b ∈ Zn have a solution in Z5? in Z7? in
Z9? in Z11?

12. Recall that if a prime number divides a product of two integers, then it divides one of the
factors.

a) Use this to show that as b runs though the integers from 0 to p− 1, with p prime, the
products a ·p b are all different (for each fixed choice of a between 1 and p − 1).

b) Explain why every integer greater than 0 and less than p has a unique multiplicative
inverse in Zp, if p is prime.

13. Explain why, if you were encoding messages x1, x2, and x3 to obtain y1, y2 and y3 by adding
a mod n, your adversary would know that at least one of the differences y1 − y2, y1 − y3 or
y2−y3 taken in the integers, not in Zn, would be the difference of two unencoded messages.
(Note: we are not saying that your adversary would know which of the three was such a
difference.)

14. Modular arithmetic is used in generating pseudo-random numbers. One basic algorithm
(still widely used) is linear congruential random number generation. The following piece of
code generates a sequence of numbers that may appear random to the unaware user.

(1) set seed to a random value
(2) x = seed
(3) Repeat
(4) x = (ax + b) mod n
(5) print x
(6) Until x = seed

Execute the loop by hand for a = 3, b = 7, n = 11 and seed = 0. How “random” are these
random numbers?

15. Write down the ·7 multiplication table for Z7.

16. Prove the equalities for multiplication in Lemma 2.3.

17. State and prove the associative law for ·n multiplication.

2.1. CRYPTOGRAPHY AND MODULAR ARITHMETIC 51

18. State and prove the distributive law for ·n multiplication over +n addition.

19. Write pseudocode to take m integers x1, x2, . . . , xm, and an integer n, and return Πm
i xi mod

n. Be careful about overflow; in this context, being careful about overflow means that at
no point should you ever compute a value that is greater than n2.

20. Write pseudocode to decode a message that has been encoded using the algorithm

• take three consecutive letters,

• reverse their order,

• interpret each as a base 26 integer (with A=0; B=1, etc.),

• multiply that number by 37,

• add 95 and then

• convert that number to base 8.

Continue this processing with each block of three consecutive letters. Append the blocks,
using either an 8 or a 9 to separate the blocks. Finally, reverse the number, and replace
each digit 5 by two 5’s.

52 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

2.2 Inverses and GCDs

Solutions to Equations and Inverses mod n

In the last section we explored multiplication in Zn. We saw in the special case with n = 12 and
a = 4 that if we used multiplication by a in Zn to encrypt a message, then our receiver would
need to be able to solve, for x, the equation 4 ·n x = b in order to decode a received message b.
We saw that if the encrypted message was 0, then there were four possible values for x. More
generally, Exercise 2.1-6 and some of the problems in the last section show that for certain values
of n, a, and b, equations of the form a ·n x = b have a unique solution, while for other values of
n, a, and b, the equation could have no solutions, or more than one solution.

To decide whether an equation of the form a ·n x = b has a unique solution in Zn, it helps
know whether a has a multiplicative inverse in Zn, that is, whether there is another number a′

such that a′ ·n a = 1. For example, in Z9, the inverse of 2 is 5 because 2 ·9 5 = 1. On the other
hand, 3 does not have an inverse in Z9, because the equation 3 ·9 x = 1 does not have a solution.
(This can be verified by checking the 9 possible values for x.) If a does have an inverse a′, then
we can find a solution to the equation

a ·n x = b .

To do so, we multiply both sides of the equation by a′, obtaining

a′ ·n (a ·n x) = a′ ·n b.

By the associative law, this gives us

(a′ ·n a) ·n x = a′ ·n b.

But a′ ·n a = 1 by definition so we have that

x = a′ ·n b .

Since this computation is valid for any x that satisfies the equation, we conclude that the only x
that satisfies the equation is a′ ·n b. We summarize this discussion in the following lemma.

Lemma 2.5 Suppose a has a multiplicative inverse a′ in Zn. Then for any b ∈ Zn, the equation

a ·n x = b

has the unique solution
x = a′ ·n b .

Note that this lemma holds for any value of b ∈ Zn.

This lemma tells us that whether or not a number has an inverse mod n is important for the
solution of modular equations. We therefore wish to understand exactly when a member of Zn

has an inverse.

2.2. INVERSES AND GCDS 53

Inverses mod n

We will consider some of the examples related to Problem 11 of the last section.

Exercise 2.2-1 Determine whether every element a of Zn has an inverse for n= 5, 6, 7, 8,
and 9.

Exercise 2.2-2 If an element of Zn has a multiplicative inverse, can it have two different
multiplicative inverses?

For Z5, we can determine by multiplying each pair of nonzero members of Z5 that the following
table gives multiplicative inverses for each element a of Z5. For example, the products 2 ·5 1 = 2,
2 ·5 2 = 4, 2 ·5 3 = 1, and 2 ·5 4 = 3 tell us that 3 is the unique multiplicative inverse for 2 in Z5.
This is the reason we put 3 below 2 in the table. One can make the same kinds of computations
with 3 or 4 instead of 2 on the left side of the products to get the rest of the table.

a 1 2 3 4
a′ 1 3 2 4

For Z7, we have similarly the table

a 1 2 3 4 5 6
a′ 1 4 5 2 3 6

.

For Z9, we have already said that 3 ·9 x = 1 does not have a solution, so by Lemma 2.5, 3
does not have an inverse. (Notice how we are using the Lemma. The Lemma says that if 3 had
an inverse, then the equation 3 ·9 x = 1 would have a solution, and this would contradict the fact
that 3 ·9 x = 1 does not have a solution. Thus assuming that 3 had an inverse would lead us to
a contradiction. Therefore 3 has no multiplicative inverse.)

This computation is a special case of the following corollary4 to Lemma 2.5.

Corollary 2.6 Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

Proof: Suppose that a ·n x = b has no solution. Suppose further that a does have a multi-
plicative inverse a′ in Zn. Then by Lemma 2.5, x = a′b is a solution to the equation a ·n x = b.
This contradicts the hypothesis given in the corollary that the equation does not have a solution.
Thus some supposition we made above must be incorrect. One of the assumptions, namely that
a ·n x = b has no solution was the hypothesis given to us in the statement of the corollary. The
only other supposition we made was that a has an inverse a′ in Zn. Thus this supposition must
be incorrect as it led to the contradiction. Therefore, it must be case that a does not have a
multiplicative inverse in Zn.

Our proof of the corollary is a classical example of the use of contradiction in a proof. The
principle of proof by contradiction is the following.

4In the next section we shall see that this corollary is actually equivalent to Lemma to Lemma 2.5.

54 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Principle 2.1 (Proof by contradiction) If by assuming a statement we want to prove is false,
we are lead to a contradiction, then the statement we are trying to prove must be true.

We can actually give more information than Exercise 1 asks for. You can check that the table
below shows an X for the elements of Z9 that do not have inverses and gives an inverse for each
element that has one

a 1 2 3 4 5 6 7 8
a′ 1 5 X 7 2 X 4 8

.

In Z6, 1 has an inverse, namely 1, but the equations

2 ·6 1 = 2, 2 ·6 2 = 4, 2 ·6 3 = 0, 2 ·6 4 = 2, 2 ·6 5 = 4

tell us that 2 does not have an inverse. Less directly, but with less work, we see that the equation
2 ·6 x = 3 has no solution because 2x will always be even, so 2x mod 6 will always be even. Then
Corollary 2.6 tells us that 2 has no inverse. Once again, we give a table that shows exactly which
elements of Z6 have inverses.

a 1 2 3 4 5
a′ 1 X X X 5

A similar set of equations shows that 2 does not have an inverse in Z8. The following table
shows which elements of Z8 have inverses.

a 1 2 3 4 5 6 7
a′ 1 X 3 X 5 X 7

.

We see that every nonzero element in Z5 and Z7 does have a multiplicative inverse, but in Z6,
Z8, and Z9, some elements do not have a multiplicative inverse. Notice that 5 and 7 are prime,
while 6, 8, and 9 are not. Further notice that the elements in Zn that do not have a multiplicative
inverse are exactly those that share a common factor with n.

We showed that 2 has exactly one inverse in Z5 by checking each multiple of 2 in Z5 and
showing that exactly one multiple of 2 equals 1. In fact, for any element that has an inverse
in Z5, Z6, Z7, Z8, and Z9, you can check in the same way that it has exactly one inverse. We
explain why in a theorem.

Theorem 2.7 If an element of Zn has a multiplicative inverse, then it has exactly one inverse.

Proof: Suppose that an element a of Zn has an inverse a′. Suppose that a∗ is also an inverse
of a. Then a′ is a solution to a ·n x = 1 and a∗ is a solution to a ·n x = 1. But by Lemma 2.5, the
equation a ·n x = 1 has a unique solution. Therefore a′ = a∗.

Just as we use a−1 to denote the inverse of a in the real numbers, we use a−1 to denote the
unique inverse of a in Zn when a has an inverse. Now we can say precisely what we mean by
division in Zn. We will define what we mean by dividing a member of Zn by a only in the case
that a has an inverse a−1 mod n. In this case dividing b by a mod n is defined to be same as
multiplying b by a−1 mod n. We were led to our discussion of inverses because of their role in
solving equations. We observed that in our examples, an element of Zn that has an inverse mod
n has no factors greater than 1 in common with n. This is a statement about a and n as integers
with ordinary multiplication rather than multiplication mod n. Thus to prove that a has an
inverse mod n if and only if a and n have no common factors other than 1 and -1, we have to
convert the equation a ·n x = 1 into an equation involving ordinary multiplication.

2.2. INVERSES AND GCDS 55

Converting Modular Equations to Normal Equations

We can re-express the equation
a ·n x = 1

as
ax mod n = 1.

But the definition of ax mod n is that it is the remainder r we get when we write ax = qn+r,
with 0 ≤ r < n. This means that ax mod n = 1 if and only if there is an integer q with
ax = qn + 1, or

ax − qn = 1. (2.8)

Thus we have shown

Lemma 2.8 The equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

Proof: We simply take y = −q.

We make the change from −q to y for two reasons. First, if you read a number theory book,
you are more likely to see the equation with y in this context. Second, to solve this equation,
we must find both x and y, and so using a letter near the end of the alphabet in place of −q
emphasizes that this is a variable for which we need to solve.

It appears that we have made our work harder, not easier, as we have converted the problem
of solving (in Zn) the equation a ·n x = 1, an equation with just one variable x (that could only
have n−1 different values), to a problem of solving Equation 2.8, which has two variables, x and
y. Further, in this second equation, x and y can take on any integer values, even negative values.

However, this equation will prove to be exactly what we need to prove that a has an inverse
mod n if and only if a and n have no common factors larger than one.

Greatest Common Divisors (GCD)

Exercise 2.2-3 Suppose that a and n are integers such that ax+ny = 1, for some integers
x and y. What does that tell us about being able to find a (multiplicative) inverse
for a (mod n)? In this situation, if a has an inverse in Zn, what is it?

Exercise 2.2-4 If ax+ny = 1 for integers x and y, can a and n have any common divisors
other than 1 and -1?

In Exercise 2.2-3, since by Lemma 2.8, the equation a ·n x = 1 has a solution in Zn if and
only if there exist integers x and y such that ax + ny = 1, we can can conclude that

Theorem 2.9 A number a has a multiplicative inverse in Zn if and only if there are integers x
and y such that ax + ny = 1.

56 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

We answer the rest of Exercise 2.2-3 with a corollary.

Corollary 2.10 If a ∈ Zn and x and y are integers such that ax+ny = 1, then the multiplicative
inverse of a in Zn is x mod n.

Proof: Since n ·n y = 0 in Zn, we have a ·n x = 1 in Zn and therefore x is the inverse of a in
Zn.

Now let’s consider Exercise 2.2-4. If a and n have a common divisor k, then there must exist
integers s and q such that

a = sk

and
n = qk .

Substituting these into ax + ny = 1, we obtain

1 = ax + ny

= skx + qky

= k(sx + qy).

But then k is a divisor of 1. Since the only integer divisors of 1 are ±1, we must have k = ±1.
Therefore a and n can have no common divisors other than 1 and -1.

In general, the greatest common divisor of two numbers j and k is the largest number d
that is a factor of both j and k.5 We denote the greatest common divisor of j and k by gcd(j, k).

We can now restate Exercise 2.2-4 as follows:

Lemma 2.11 Given a and n, if there exist integers x and y such that ax + ny = 1 then
gcd(a, n) = 1.

If we combine Theorem 2.9 and Lemma 2.11, we see that that if a has a multiplicative inverse
mod n, then gcd(a, n) = 1. It is natural to ask whether the statement that “if gcd a, n = 1, then
a has a multiplicative inverse” is true as well.6 If so, this would give us a way to test whether a
has a multiplicative inverse mod n by computing the greatest common divisor of a and n. For
this purpose we would need an algorithm to find gcd(a, n). It turns out that there is such an
algorithm, and a byproduct of the algorithm is a proof of our conjectured converse statement!
When two integers j and k have gcd(j, k) = 1, we say that j and k are relatively prime.

Euclid’s Division Theorem

One of the important tools in understanding greatest common divisors is Euclid’s Division The-
orem, a result which has already been important to us in defining what we mean by m mod n.
While it appears obvious, as do some other theorems in number theory, it follows from simpler
principles of number theory, and the proof helps us understand how the greatest common divisor

5There is one common factor of j and k for sure, namely 1. No common factor can be larger than the smaller
of j and k in absolute value, and so there must be a largest common factor.

6Notice that this statement is not equivalent to the statement in the lemma. This statement is what is called
the “converse” of the lemma; we will explain the idea of converse statements more in Chapter 3.

2.2. INVERSES AND GCDS 57

algorithm works. Thus we restate it and present a proof here. Our proof uses the method of
proof by contradiction, which you first saw in Corollary 2.6. Notice that we are assuming m
is nonnegative which we didn’t assume in our earlier statement of Euclid’s Division Theorem,
Theorem 2.1. In Problem 16 we will explore how we can remove this additional assumption.

Theorem 2.12 (Euclid’s Division Theorem, restricted version) For every nonnegative in-
teger m and positive integer n, there exist unique integers q and r such that m = nq + r and
0 ≤ r < n. By definition, r is equal to m mod n.

Proof: To prove this theorem, assume instead, for purposes of contradiction, that it is false.
Among all pairs (m, n) that make it false, choose the smallest m that makes it false. We cannot
have m < n because then the statement would be true with q = 0 and r = m, and we cannot
have m = n because then the statement is true with q = 1 and r = 0. This means m − n is
a positive number smaller than m. We assumed that m was the smallest value that made the
theorem false, and so the theorem must be true for the pair (m − n, n). Therefore, there must
exist a q′ and r′ such that

m − n = q′n + r′, with 0 ≤ r′ < n.

Thus m = (q′+1)n+r′. Now, by setting q = q′+1 and r = r′, we can satisfy the theorem for the
pair (m, n), contradicting the assumption that the statement is false. Thus the only possibility
is that the statement is true.

The proof technique used here is a special case of proof by contradiction. We call the technique
proof by smallest counterexample. In this method, we assume, as in all proofs by contradiction,
that the theorem is false. This implies that there must be a counterexample which does not
satisfy the conditions of the theorem. In this case that counterexample would consist of numbers
m and n such that no integers q and r exist which satisfy m = qn + r. Further, if there are
counterexamples, then there must be one having the smallest m. We assume we have chosen
a counter example with such a smallest m. the we reason that if such an m exists, then every
example wit a smaller m satisfies the conclusion of the theorem. If we can then use a smaller
true example to show that our supposedly false example is true as well, we have created a
contradiction. The only thing this can contradict is our assumption that the theorem was false.
Therefore this assumption has to be invalid, and the theorem has to be true. As we will see in
Chapter 4.1, this method is closely related to a proof method called proof by induction and to
recursive algorithms. In essence, the proof of Theorem 2.1 describes a recursive program to find
q and r in the theorem above so that 0 ≤ r < n.

Exercise 2.2-5 Suppose that k = jq + r as in Euclid’s Division Theorem. Is there a
relationship between gcd(j, k) and gcd(r, j)?

In this exercise, if r = 0, then gcd(r, j) is j, because any number is a divisor of zero. But this
is the GCD of k and j as well since in this case k = jq. The answer to the remainder of Exercise
2.2-5 appears in the following lemma.

Lemma 2.13 If j, k, q, and r are positive integers such that k = jq + r then

gcd(j, k) = gcd(r, j). (2.9)

58 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Proof: In order to prove that both sides of Equation 2.9 are equal, we will show that they have
exactly the same set of factors. That is, we will first show that if d is a factor of the left-hand
side, then it is a factor of the right-hand side. Second, we will show that if d is a factor of the
right-hand side, then it is a factor of the left-hand side.

If d is a factor of gcd(j, k) then it is a factor of both j and k. There must be integers i1 and
i2 so that k = i1d and j = i2d. Thus d is also a factor of

r = k − jq

= i1d − i2dq

= (i1 − i2q)d .

Since d is a factor of j (by supposition) and r (by the equation above), it must be a factor of
gcd(r, j).

Similarly, if d is a factor of gcd(r, j), it is a factor of j and r, and we can write j = i3d and
r = i4d. Therefore,

k = jq + r

= i3dq + i4d

= (i3q + i4)d ,

and d is a factor of k and therefore of gcd(j, k).

Since gcd(j, k) has the same factors as gcd(r, j) they must be equal.

While we did not need to assume r < j in order to prove the lemma, Theorem 2.1 tells us
we may assume r < j. The assumption in the lemma that j, q and r are positive implies that
j < k. Thus this lemma reduces our problem of finding gcd(j, k) to the simpler (in a recursive
sense) problem of finding gcd(r, j).

The GCD Algorithm

Exercise 2.2-6 Using Lemma 2.13, write a recursive algorithm to find gcd(j, k), given that
j ≤ k. Use it (by hand) to find the GCD of 24 and 14 and the GCD of 252 and 189.

Our algorithm for Exercise 2.2-6 is based on Lemma 2.13 and the observation that if k = jq,
for any q, then j = gcd(j, k). We first write k = jq + r in the usual way. If r = 0, then we
return j as the greatest common divisor. Otherwise, we apply our algorithm to find the greatest
common divisor of j and r. Finally, we return the result as the greatest common divisor of j
and k.

To find
gcd(14, 24)

we write
24 = 14(1) + 10.

In this case k = 24, j = 14, q = 1 and r = 10. Thus we can apply Lemma 2.13 and conclude that

gcd(14, 24) = gcd(10, 14).

2.2. INVERSES AND GCDS 59

We therefore continue our computation of gcd(10, 14), by writing 14 = 10 · 1 + 4, and have that

gcd(10, 14) = gcd(4, 10).

Now,
10 = 4 · 2 + 2,

and so
gcd(4, 10) = gcd(2, 4).

Now
4 = 2 · 2 + 0,

so that now k = 4, j = 2, q = 2, and r = 0. In this case our algorithm tells us that our current
value of j is the GCD of the original j and k. This step is the base case of our recursive algorithm.
Thus we have that

gcd(14, 24) = gcd(2, 4) = 2.

While the numbers are larger, it turns out to be even easier to find the GCD of 252 and 189.
We write

252 = 189 · 1 + 63,

so that gcd(189, 252) = gcd(63, 189), and

189 = 63 · 3 + 0.

This tells us that gcd(189, 252) = gcd(189, 63) = 63.

Extended GCD algorithm

By analyzing our process in a bit more detail, we will be able to return not only the greatest
common divisor, but also numbers x and y such that gcd(j, k) = jx + ky. This will solve the
problem we have been working on, because it will prove that if gcd(a, n) = 1, then there are
integers x and y such that ax + ny = 1. Further it will tell us how to find x, and therefore the
multiplicative inverse of a.

In the case that k = jq and we want to return j as our greatest common divisor, we also want
to return 1 for the value of x and 0 for the value of y. Suppose we are now in the case that that
k = jq + r with 0 < r < j (that is, the case that k �= jq). Then we recursively compute gcd(r, j)
and in the process get an x′ and a y′ such that gcd(r, j) = rx′ + jy′. Since r = k − jq, we get by
substitution that

gcd(r, j) = (k − jq)x′ + jy′ = kx′ + j(y′ − qx′).

Thus when we return gcd(r, j) as gcd(j, k), we want to return the value of x′ as y and and the
value of y′ − qx′ as x.

We will refer to the process we just described as “Euclid’s extended GCD algorithm.”

Exercise 2.2-7 Apply Euclid’s extended GCD algorithm to find numbers x and y such
that the GCD of 14 and 24 is 14x + 24y.

60 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

For our discussion of Exercise 2.2-7 we give pseudocode for the extended GCD algorithm.
While we expressed the algorithm more concisely earlier by using recursion, we will give an
iterative version that is longer but can make the computational process clearer. Instead of using
the variables q, j, k, r, x and y, we will use six arrays, where q[i] is the value of q computed on the
ith iteration, and so forth. We will use the index zero for the input values, that is j[0] and k[0]
will be the numbers whose gcd we wish to compute. Eventually x[0] and y[0] will become the x
and y we want.

(In Line 0 we are using the notation
x� to stand for the floor of x, the largest integer less
than or equal to x.)

gcd(j, k)
// assume that j < k
(1) i = 0; k[i] = k; j[i] = j
(2) Repeat
(3) q[i] =
k[i]/j[i]�
(4) r[i] = k[i] − q[i]j[i]
(5) k[i + 1] = j[i]; j[i + 1] = r[i]
(6) i = i + 1
(7) Until (r[i − 1] = 0)
// we have found the value of the gcd, now we compute the x and y
(8) i = i − 1
(9) gcd = j[i]
(10) y[i] = 0;x[i] = 1
(11) i = i − 1
(12) While (i ≥ 0)
(13) y[i] = x[i + 1]
(14) x[i] = y[i + 1] − q[i]x[i + 1]
(15) i = i − 1
(16) Return gcd
(17) Return x
(18) Return y

We show the details of how this algorithm applies to gcd(24, 14) in Table 2.1. In a row, the
q[i] and r[i] values are computed from the j[i] and k[i] values. Then the j[i] and r[i] are passed
down to the next row as k[i + 1] and j[i + 1] respectively. This process continues until we finally
reach a case where k[i] = q[i]j[i] and we can answer j[i] for the gcd. We can then begin computing
x[i] and y[i]. In the row with i = 3, we have that x[i] = 0 and y[i] = 1. Then, as i decreases, we
compute x[i] and y[i] for a row by setting y[i] to x[i + 1] and x[i] to y[i + 1] − q[i]x[i + 1]. We
note that in every row, we have the property that j[i]x[i] + k[i]y[i] = gcd(j, k).

We summarize Euclid’s extended GCD algorithm in the following theorem:

Theorem 2.14 Given two integers j and k, Euclid’s extended GCD algorithm computes gcd(j, k)
and two integers x and y such that gcd(j, k) = jx + ky .

We now use Eculid’s extended GCD algorithm to extend Lemma 2.11.

2.2. INVERSES AND GCDS 61

i j[i] k[i] q[i] r[i] x[i] y[i]
0 14 24 1 10
1 10 14 1 4
2 4 10 2 2
3 2 4 2 0 1 0
2 4 10 2 2 −2 1
1 10 14 1 4 3 −2
0 14 24 1 10 −5 3
gcd = 2
x = −5
y = 3

Table 2.1: The computation of gcd(14, 24) by algorithm gcd(j, k).

Theorem 2.15 Two positive integers j and k have greatest common divisor 1 (and thus are
relatively prime) if and only if there are integers x and y such that jx + ky=1.

Proof: The statement that if there are integers x and y such that jx+ky = 1, then gcd(j, k) =
1 is proved in Lemma 2.11. In other words, gcd(j, k) = 1 if there are integers x and y such that
jx + ky = 1.

On the other hand, we just showed, by Euclid’s extended GCD algorithm, that given positive
integers j and k, there are integers x and y such that gcd(j, k) = jx+ky. Therefore, gcd(j, k) = 1
only if there are integers x and y such that jx + ky = 1.

Combining Lemma 2.8 and Theorem 2.15, we obtain:

Corollary 2.16 For any positive integer n, an element a of Zn has a multiplicative inverse if
and only if gcd(a, n) = 1.

Using the fact that if n is prime, gcd(a, n) = 1 for all non-zero a ∈ Zn, we obtain

Corollary 2.17 For any prime p, every non-zero element a of Zp has an inverse.

Computing Inverses

Not only does Euclid’s extended GCD algorithm tell us if an inverse exists, but, just as we saw
in Exercise 2.2-3 it computes it for us. Combining Exercise 2.2-3 with Theorem 2.15, we get

Corollary 2.18 If an element a of Zn has an inverse, we can compute it by running Euclid’s
extended GCD algorithm to determine integers x and y so that ax + ny = 1. Then the inverse of
a in Zn is x mod n.

For completeness, we now give pseudocode which determines whether an element a in Zn has an
inverse and computes the inverse if it exists:

62 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

inverse(a, n)
(1) Run procedure gcd(a, n) to obtain gcd(a, n), x and y
(2) if gcd(a, n) = 1
(3) return x
(4) else
(5) print ‘‘no inverse exists’’

The correctness of the algorithm follows immediately from the fact that gcd(a, n) = ax + ny,
so if gcd(a, n) = 1, ax mod n must be equal to 1.

Important Concepts, Formulas, and Theorems

1. Multiplicative inverse. a′ is a multiplicative inverse of a in Zn if a ·n a′ = 1. If a has a
multiplicative inverse, then it has a unique multiplicative inverse which we denote by a−1.

2. An important way to solve modular equations. Suppose a has a multiplicative inverse mod
n, and this inverse is a−1. Then for any b ∈ Zn, the unique solution to the equation

a ·n x = b

is
x = a−1 ·n b .

3. Converting modular to regular equations. The equation

a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1 .

4. When do inverses exist in Zn? A number a has a multiplicative inverse in Zn if and only
if there are integers x and y such that ax + ny = 1.

5. Greatest common divisor (GCD). The greatest common divisor of two numbers j and k is
the largest number d that is a factor of both j and k.

6. Relatively prime. When two numbers, j and k have gcd(j, k) = 1, we say that j and k are
relatively prime.

7. Connecting inverses to GCD. Given a and n, if there exist integers x and y such that
ax + ny = 1 then gcd(a, n) = 1.

8. GCD recursion lemma. If j, k, q, and r are positive integers such that k = jq + r then
gcd(j, k) = gcd(r, j).

9. Euclid’s GCD algorithm. Given two numbers j and k, this algorithm returns gcd(j, k).

10. Euclid’s extended GCD algorithm. Given two numbers j and k, this algorithm returns
gcd(j, k), and two integers x and y such that gcd(j, k) = jx + ky.

2.2. INVERSES AND GCDS 63

11. Relating GCD of 1 to Euclid’s extended GCD algorithm. Two positive integers j and k have
greatest common divisor 1 if and only if there are integers x and y such that jx + ky=1.
One of the integers x and y could be negative.

12. Restatement for Zn. gcd(a, n) = 1 if and only if there are integers x and y such that
ax + ny = 1.

13. Condition for multiplicative inverse in Zn For any positive integer n, an element a of Zn

has an inverse if and only if gcd(a, n) = 1.

14. Multiplicative inverses in Zp, p prime For any prime p, every non-zero element a of Zp has
a multiplicative inverse.

15. A way to solve some modular equations a ·n x = b. Use Euclid’s extended GCD algorithm
to compute a−1 (if it exists), and multiply both sides of the equation by a−1. (If a has no
inverse, the equation might or might not have a solution.)

Problems

1. If a · 133−m · 277 = 1, does this guarantee that a has an inverse mod m? If so, what is it?
If not, why not?

2. If a · 133 − 2m · 277 = 1, does this guarantee that a has an inverse mod m? If so, what is
it? If not, why not?

3. Determine whether every nonzero element of Zn has a multiplicative inverse for n = 10 and
n = 11.

4. How many elements a are there such that a ·31 22 = 1? How many elements a are there
such that a ·10 2 = 1?

5. Given an element b in Zn, what can you say in general about the possible number of
elements a such that a ·n b = 1 in Zn?

6. If a · 133−m · 277 = 1, what can you say about all possible common divisors of a and m?

7. Compute the GCD of 210 and 126 by using Euclid’s GCD algorithm.

8. If k = jq + r as in Euclid’s Division Theorem, is there a relationship between gcd(q, k) and
gcd(r, q). If so, what is it?

9. Bob and Alice want to choose a key they can use for cryptography, but all they have to
communicate is a bugged phone line. Bob proposes that they each choose a secret number,
a for Alice and b for Bob. They also choose, over the phone, a prime number p with more
digits than any key they want to use, and one more number q. Bob will send Alice bq mod
p, and Alice will send Bob aq mod p. Their key (which they will keep secret) will then be
abq mod p. (Here we don’t worry about the details of how they use their key, only with
how they choose it.) As Bob explains, their wire tapper will know p, q, aq mod p, and bq
mod p, but will not know a or b, so their key should be safe.

Is this scheme safe, that is can the wiretapper compute abq mod p? If so, how does she do
it?

64 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

Alice says “You know, the scheme sounds good, but wouldn’t it be more complicated for
the wire tapper if I send you qa mod p, you send me qb (mod p) and we use qab mod p as
our key?” In this case can you think of a way for the wire tapper to compute qab mod p?
If so, how can you do it? If not, what is the stumbling block? (It is fine for the stumbling
block to be that you don’t know how to compute something; you don’t need to prove that
you can’t compute it.)

10. Write pseudocode for a recursive version of the extended GCD algorithm.

11. Run Euclid’s extended GCD algorithm to compute gcd(576, 486). Show all the steps.

12. Use Euclid’s extended GCD algorithm to compute the multiplicative inverse of 16 modulo
103.

13. Solve the equation 16 ·103 x = 21 in Z103.

14. Which elements of Z35 do not have multiplicative inverses in Z35?

15. If k = jq + r as in Euclid’s Division Theorem, is there a relationship between gcd(j, k) and
gcd(r, k). If so, what is it?

16. Notice that if m is negative, then −m is positive, so that by Theorem 2.12 −m = qn + r,
where 0 ≤ r < n. This gives us m = −qn− r. If r = 0, then we have written m = q′n + r′,
where 0 ≤ r′ ≤ n and q′ = −q. However if r > 0, we cannot take r′ = −r and have
0 ≤ r′ < n. Notice, though, that since since we have already finished the case r = 0 we may
assume that 0 ≤ n − r < n. This suggests that if we were to take r′ to be n − r, we might
be able to find a q′ so that m = q′n + r′ with 0 ≤ r′ ≤ n, which would let us conclude that
Euclid’s Division Theorem is valid for negative values m as well as nonnegative values m.
Find a q′ that works and explain how you have extended Euclid’s Division Theorem from
the version in Theorem 2.12 to the version in Theorem 2.1.

17. The Fibonacci numbers Fi are defined as follows:

Fi =

{
1 if i is 1 or 2
Fi−1 + Fi−2 otherwise.

What happens when you run Euclid’s extended GCD algorithm on Fi and Fi−1? (We are
asking about the execution of the algorithm, not just the answer.)

18. Write (and run on several different inputs) a program to implement Euclid’s extended GCD
algorithm. Be sure to return x and y in addition to the GCD. About how many times does
your program have to make a recursive call to itself? What does that say about how long we
should expect it to run as we increase the size of the j and k whose GCD we are computing?

19. The least common multiple of two positive integers x and y is the smallest positive integer
z such that z is an integer multiple of both x and y. Give a formula for the least common
multiple that involves the GCD.

20. Write pseudocode that given integers a, b and n in Zn, either computes an x such that
a ·n x = b or concludes that no such x exists.

21. Give an example of an equation of the form a ·n x = b that has a solution even though a
and n are not relatively prime, or show that no such equation exists.

2.2. INVERSES AND GCDS 65

22. Either find an equation of the form a ·n x = b in Zn that has a unique solution even though
a and n are not relatively prime, or prove that no such equation exists. In other words,
you are either to prove the statement that if a ·n x = b has a unique solution in Zn, then a
and n are relatively prime or to find a counter example.

66 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

2.3 The RSA Cryptosystem

Exponentiation mod n

In the previous sections, we have considered encryption using modular addition and multiplica-
tion, and have seen the shortcomings of both. In this section, we will consider using exponentia-
tion for encryption, and will show that it provides a much greater level of security.

The idea behind RSA encryption is exponentiation in Zn. By Lemma 2.3, if a ∈ Zn,

aj mod n = a ·n a ·n · · · ·n a︸ ︷︷ ︸
j factors

. (2.10)

In other words aj mod n is the product in Zn of j factors, each equal to a.

The Rules of Exponents

Lemma 2.3 and the rules of exponents for the integers tell us that

Lemma 2.19 For any a ∈ Zn, and any nonnegative integers i and j,

(ai mod n) ·n (aj mod n) = ai+j mod n (2.11)

and
(ai mod n)j mod n = aij mod n. (2.12)

Exercise 2.3-1 Compute the powers of 2 mod 7. What do you observe? Now compute
the powers of 3 mod 7. What do you observe?

Exercise 2.3-2 Compute the sixth powers of the nonzero elements of Z7. What do you
observe?

Exercise 2.3-3 Compute the numbers 1 ·7 2, 2 ·7 2, 3 ·7 2, 4 ·7 2, 5 ·7 2, and 6 ·7 2. What
do you observe? Now compute the numbers 1 ·7 3, 2 ·7 3, 3 ·7 3, 4 ·7 3, 5 ·7 3, and
6 ·7 3. What do you observe?

Exercise 2.3-4 Suppose we choose an arbitrary nonzero number a between 1 and 6. Are
the numbers 1 ·7 a, 2 ·7 a, 3 ·7 a, 4 ·7 a, 5 ·7 a, and 6 ·7 a all different? Why or why
not?

In Exercise 2.3-1, we have that

20 mod 7 = 1
21 mod 7 = 2
22 mod 7 = 4
23 mod 7 = 1
24 mod 7 = 2
25 mod 7 = 4
26 mod 7 = 1
27 mod 7 = 2
28 mod 7 = 4.

2.3. THE RSA CRYPTOSYSTEM 67

Continuing, we see that the powers of 2 will cycle through the list of three values 1, 2, 4 again
and again. Performing the same computation for 3, we have

30 mod 7 = 1
31 mod 7 = 3
32 mod 7 = 2
33 mod 7 = 6
34 mod 7 = 4
35 mod 7 = 5
36 mod 7 = 1
37 mod 7 = 3
38 mod 7 = 2.

In this case, we will cycle through the list of six values 1, 3, 2, 6, 4, 5 again and again.

Now observe that in Z7, 26 = 1 and 36 = 1. This suggests an answer to Exercise 2.3-2. Is it
the case that a6 mod 7 = 1 for all a ∈ Z7? We can compute that 16 mod 7 = 1, and

46 mod 7 = (2 ·7 2)6 mod 7
= (26 ·7 26) mod 7
= (1 ·7 1) mod 7
= 1.

What about 56? Notice that 35 = 5 in Z7 by the computations we made above. Using Equation
2.12 twice, this gives us

56 mod 7 = (35)6 mod 7
= 35·6 mod 7
= 36·5 mod 7
= (36)5 = 15 = 1

in Z7. Finally, since −1 mod 7 = 6, Lemma 2.3 tells us that 66 mod 7 = (−1)6 mod 7 = 1. Thus
the sixth power of each element of Z7 is 1.

In Exercise 2.3-3 we see that

1 ·7 2 = 1 · 2 mod 7 = 2
2 ·7 2 = 2 · 2 mod 7 = 4
3 ·7 2 = 3 · 2 mod 7 = 6
4 ·7 2 = 4 · 2 mod 7 = 1
5 ·7 2 = 5 · 2 mod 7 = 3
6 ·7 2 = 6 · 2 mod 7 = 5.

Thus these numbers are a permutation of the set {1, 2, 3, 4, 5, 6}. Similarly,

1 ·7 3 = 1 · 3 mod 7 = 3
2 ·7 3 = 2 · 3 mod 7 = 6

68 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

3 ·7 3 = 3 · 3 mod 7 = 2
4 ·7 3 = 4 · 3 mod 7 = 5
5 ·7 3 = 5 · 3 mod 7 = 1
6 ·7 3 = 6 · 3 mod 7 = 4.

Again we get a permutation of {1, 2, 3, 4, 5, 6}.
In Exercise 2.3-4 we are asked whether this is always the case. Notice that since 7 is a prime,

by Corollary 2.17, each nonzero number between 1 and 6 has a mod 7 multiplicative inverse a−1.
Thus if i and j were integers in Z7 with i ·7 a = j ·7 a, we multiply mod 7 on the right by a−1 to
get

(i ·7 a) ·7 a−1 = (j ·7 a) ·7 a−1.

After using the associative law we get

i ·7 (a ·7 a−1) = j ·7 (a ·7 a−1). (2.13)

Since a ·7 a−1 = 1, Equation 2.13 simply becomes i = j. Thus, we have shown that the only way
for i ·7 a to equal j ·7 a is for i to equal j. Therefore, all the values i ·7 a for i = 1, 2, 3, 4, 5, 6 must
be different. Since we have six different values, all between 1 and 6, we have that the values ia
for i = 1, 2, 3, 4, 5, 6 are a permutation of {1, 2, 3, 4, 5, 6}.

As you can see, the only fact we used in our analysis of Exercise 2.3-4 is that if p is a prime,
then any number between 1 and p−1 has a multiplicative inverse in Zp. In other words, we have
really proved the following lemma.

Lemma 2.20 Let p be a prime number. For any fixed nonzero number a in Zp, the numbers
(1 · a) mod p, (2 · a) mod p, . . . , ((p− 1) · a) mod p, are a permutation of the set {1, 2, · · · , p− 1}.

With this lemma in hand, we can prove a famous theorem that explains the phenomenon we
saw in Exercise 2.3-2.

Fermat’s Little Theorem

Theorem 2.21 (Fermat’s Little Theorem). Let p be a prime number. Then ap−1 mod p = 1 in
Zp for each nonzero a in Zp.

Proof: Since p is a prime, Lemma 2.20 tells us that the numbers 1 ·p a, 2 ·p a, . . . , (p− 1) ·p a,
are a permutation of the set {1, 2, · · · , p − 1}. But then

1 ·p 2 ·p · · · ·p (p − 1) = (1 ·p a) ·p (2 ·p a) ·p · · · ·p ((p − 1) ·p a).

Using the commutative and associative laws for multiplication in Zp and Equation 2.10, we get

1 ·p 2 ·p · · · ·p (p − 1) = 1 ·p 2 ·p · · · ·p (p − 1) ·p (ap−1 mod p).

Now we multiply both sides of the equation by the multiplicative inverses in Zp of 2, 3, . . . , p− 1
and the left hand side of our equation becomes 1 and the right hand side becomes ap−1 mod p.
But this is exactly the conclusion of our theorem.

2.3. THE RSA CRYPTOSYSTEM 69

Corollary 2.22 (Fermat’s Little Theorem, version 2) For every positive integer a, and prime p,
if a is not a multiple of p,

ap−1 mod p = 1.

Proof: This is a direct application of Lemma 2.3, because if we replace a by a mod p, then
Theorem 2.21 applies.

The RSA Cryptosystem

Fermat’s Little Theorem is at the heart of the RSA cryptosystem, a system that allows Bob to
tell the world a way that they can encode a message to send to him so that he and only he can
read it. In other words, even though he tells everyone how to encode the message, nobody except
Bob has a significant chance of figuring out what the message is from looking at the encoded
message. What Bob is giving out is called a “one-way function.” This is a function f that has
an inverse f−1, but even though y = f(x) is reasonably easy to compute, nobody but Bob (who
has some extra information that he keeps secret) can compute f−1(y). Thus when Alice wants to
send a message x to Bob, she computes f(x) and sends it to Bob, who uses his secret information
to compute f−1(f(x)) = x.

In the RSA cryptosystem Bob chooses two prime numbers p and q (which in practice each
have at least a hundred digits) and computes the number n = pq. He also chooses a number e �= 1
which need not have a large number of digits but is relatively prime to (p − 1)(q − 1), so that it
has an inverse d in Z(p−1)(q−1), and he computes d = e−1 mod (p − 1)(q − 1). Bob publishes e
and n. The number e is called his public key. The number d is called his private key.

To summarize what we just said, here is a pseudocode outline of what Bob does:

Bob’s RSA key choice algorithm
(1) Choose 2 large prime numbers p and q
(2) n = pq
(3) Choose e �= 1 so that e is relatively prime to (p − 1)(q − 1)
(4) Compute d = e−1 mod (p − 1)(q − 1).
(5) Publish e and n.
(6) Keep d secret.

People who want to send a message x to Bob compute y = xe mod n and send that to him
instead. (We assume x has fewer digits than n so that it is in Zn. If not, the sender has to
break the message into blocks of size less than the number of digits of n and send each block
individually.)

To decode the message, Bob will compute z = yd mod n.

We summarize this process in pseudocode below:

Alice-send-message-to-Bob(x)
Alice does:
(1) Read the public directory for Bob’s keys e and n.
(2) Compute y = xe mod n

70 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

(3) Send y to Bob
Bob does:
(4) Receive y from Alice
(5) Compute z = yd mod n, using secret key d
(6) Read z

Each step in these algorithms can be computed using methods from this chapter. In Section
2.4, we will deal with computational issues in more detail.

In order to show that the RSA cryptosystem works, that is, that it allows us to encode
and then correctly decode messages, we must show that z = x. In other words, we must show
that, when Bob decodes, he gets back the original message. In order to show that the RSA
cryptosystem is secure, we must argue that an eavesdropper, who knows n, e, and y, but does
not know p, q or d, can not easily compute x.

Exercise 2.3-5 To show that the RSA cryptosystem works, we will first show a simpler
fact. Why is

yd mod p = x mod p?

Does this tell us what x is?

Plugging in the value of y, we have

yd mod p = xed mod p. (2.14)

But, in Line 4 we chose e and d so that e ·m d = 1, where m = (p − 1)(q − 1). In other words,

ed mod (p − 1)(q − 1) = 1.

Therefore, for some integer k,
ed = k(p − 1)(q − 1) + 1.

Plugging this into Equation (2.14), we obtain

xed mod p = xk(p−1)(q−1)+1 mod p

= x(k(q−1))(p−1)x mod p. (2.15)

But for any number a which is not a multiple of p, ap−1 mod p = 1 by Fermat’s Little Theorem
(Theorem 2.22). We could simplify equation 2.15 by applying Fermat’s Little Theorem to xk(q−1),
as you will see below. However we can only do this when xk(q−1) is not a multiple of p. This
gives us two cases, the case in which xk(q−1) is not a multiple of p (we’ll call this case 1) and the
case in which xk(q−1) is a multiple of p (we’ll call this case 2). In case 1, we apply Equation 2.12
and Fermat’s Little Theorem with a equal to xk(q−1), and we have that

x(k(q−1))(p−1) mod p =
(
xk(q−1)

)(p−1)
mod p (2.16)

= 1.

Combining equations 2.14, 2.15 and 2.17, we have that

yd mod p = xk(q−1)(p−1)x mod p = 1 · x mod p = x mod p,

2.3. THE RSA CRYPTOSYSTEM 71

and hence yd mod p = x mod p.

We still have to deal with case 2, the case in which xk(q−1) is a multiple of p. In this case
x is a multiple of p as well since x is an integer and p is prime. Thus x mod p = 0. Combining
Equations 2.14 and 2.15 with Lemma 2.3, we get

yd mod p = (xk(q−1)(p−1) mod p)(x mod p) = 0 = x mod p.

Hence in this case as well, we have yd mod p = x mod p.

While this will turn out to be useful information, it does not tell us what x is, however,
because x may or may not equal x mod p.

The same reasoning shows us that yd mod q = x mod q. What remains is to show what these
two facts tell us about yd mod pq = y mod n, which is what Bob computes.

Notice that by Lemma 2.3 we have proved that

(yd − x) mod p = 0 (2.17)

and
(yd − x) mod q = 0. (2.18)

Exercise 2.3-6 Write down an equation using only integers and addition, subtraction and
multiplication in the integers, but perhaps more letters, that is equivalent to Equation
2.17, which says that (yd − x) mod p = 0. (Do not use mods.)

Exercise 2.3-7 Write down an equation using only integers and addition, subtraction and
multiplication in the integers, but perhaps more letters, that is equivalent to Equation
2.18, which says that (yd − x) mod q = 0. (Do not use mods.)

Exercise 2.3-8 If a number is a multiple of a prime p and a different prime q, then what
else is it a multiple of? What does this tell us about yd and x?

The statement that yd−x mod p = 0 is equivalent to the statement that yd−x = ip for some
integer i. The statement that yd−x mod q = 0 is equivalent to the statement that yd−x = jq for
some integer j. If something is a multiple of the prime p and the prime q, then it is a multiple of pq.
Thus (yd−x) mod pq = 0. Lemma 2.3 tells us that (yd−x) mod pq = (yd mod pq−x) mod pq = 0.
But x and yd mod pq are both integers between 0 and pq − 1, so their difference is between
−(pq − 1) and pq − 1. The only integer between these two values that is 0 mod pq is zero itself.
Thus (yd mod pq) − x = 0. In other words,

x = yd mod pq

= yd mod n ,

which means that Bob will in fact get the correct answer.

Theorem 2.23 (Rivest, Shamir, and Adleman) The RSA procedure for encoding and decoding
messages works correctly.

Proof: Proved above.

One might ask, given that Bob published e and n, and messages are encrypted by computing
xe mod n, why can’t any adversary who learns xe mod n just compute eth roots mod n and
break the code? At present, nobody knows a quick scheme for computing eth roots mod n, for
an arbitrary n. Someone who does not know p and q cannot duplicate Bob’s work and discover
x. Thus, as far as we know, modular exponentiation is an example of a one-way function.

72 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

The Chinese Remainder Theorem

The method we used to do the last step of the proof of Theorem 2.23 also proves a theorem
known as the “Chinese Remainder Theorem.”

Exercise 2.3-9 For each number in x ∈ Z15, write down x mod 3 and x mod 5. Is x
uniquely determined by these values? Can you explain why?

x x mod 3 x mod 5
0 0 0
1 1 1
2 2 2
3 0 3
4 1 4
5 2 0
6 0 1
7 1 2
8 2 3
9 0 4
10 1 0
11 2 1
12 0 2
13 1 3
14 2 4

Table 2.2: The values of x mod 3 and x mod 5 for each x between zero and 14.

As we see from Table 2.2, each of the 3 · 5 = 15 pairs (i, j) of integers i, j with 0 ≤ i ≤ 2 and
0 ≤ j ≤ 4 occurs exactly once as x ranges through the fifteen integers from 0 to 14. Thus the
function f given by f(x) = (x mod 3, x mod 5) is a one-to-one function from a fifteen element
set to a fifteen element set, so each x is uniquely determined by its pair of remainders.

The Chinese Remainder Theorem tells us that this observation always holds.

Theorem 2.24 (Chinese Remainder Theorem) If m and n are relatively prime integers and
a ∈ Zm and b ∈ Zn, then the equations

x mod m = a (2.19)
x mod n = b (2.20)

have one and only one solution for an integer x between 0 and mn − 1.

Proof: If we show that as x ranges over the integers from 0 to mn − 1, then the ordered
pairs (x mod m, x mod n) are all different, then we will have shown that the function given by
f(x) = (x mod m, x mod n) is a one to one function from an mn element set to an mn element

2.3. THE RSA CRYPTOSYSTEM 73

set, so it is onto as well.7 In other words, we will have shown that each pair of equations 2.19
and 2.20 has one and only one solution.

In order to show that f is one-to-one, we must show that if x and y are different numbers
between 0 and mn − 1, then f(x) and f(y) are different. To do so, assume instead that we have
an x and y with f(x) = f(y). Then x mod m = y mod m and x mod n = y mod n, so that
(x−y) mod m = 0 and (x−y) mod n = 0. That is, x−y is a multiple of both m and n. Then as
we show in Problem 11 in the problems at the end of this section, x− y is a multiple of mn; that
is, x− y = dmn for some integer d. Since we assumed x and y were different, this means x and y
cannot both be between 0 and mn − 1 because their difference is mn or more. This contradicts
our hypothesis that x and y were different numbers between 0 and mn − 1, so our assumption
must be incorrect; that is f must be one-to-one. This completes the proof of the theorem.

Important Concepts, Formulas, and Theorems

1. Exponentiation in Zn. For a ∈ Zn, and a positive integer j:

aj mod n = a ·n a ·n · · · ·n a︸ ︷︷ ︸
j factors

.

2. Rules of exponents. For any a ∈ Zn, and any nonnegative integers i and j,

(ai mod n) ·n (aj mod n) = ai+j mod n

and
(ai mod n)j mod n = aij mod n.

3. Multiplication by a fixed nonzero a in Zp is a permutation. Let p be a prime number. For any
fixed nonzero number a in Zp, the numbers (1·a) mod p, (2·a) mod p, . . . , ((p−1)·a) mod p,
are a permutation of the set {1, 2, · · · , p − 1}.

4. Fermat’s Little Theorem. Let p be a prime number. Then ap−1 mod p = 1 for each nonzero
a in Zp.

5. Fermat’s Little Theorem, version 2. For every positive integer a and prime p, if a is not a
multiple of p, then

ap−1 mod p = 1.

6. RSA cryptosystem. (The first implementation of a public-key cryptosystem) In the RSA
cryptosystem Bob chooses two prime numbers p and q (which in practice each have at least
a hundred digits) and computes the number n = pq. He also chooses a number e �= 1 which
need not have a large number of digits but is relatively prime to (p − 1)(q − 1), so that it
has an inverse d, and he computes d = e−1 mod (p − 1)(q − 1). Bob publishes e and n. To
send a message x to Bob, Alice sends y = xe mod n. Bob decodes by computing yd mod n.

7If the function weren’t onto, then because the number of pairs is the same as the number of possible x-values,
two x values would have to map to the same pair, so the function wouldn’t be one-to-one after all.

74 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

7. Chinese Remainder Theorem. If m and n are relatively prime integers and a ∈ Zm and
b ∈ Zn, then the equations

x mod m = a

x mod n = b

have one and only one solution for an integer x between 0 and mn − 1.

Problems

1. Compute the powers of 4 in Z7. Compute the powers of 4 in Z10. What is the most striking
similarity? What is the most striking difference?

2. Compute the numbers 1 ·11 5, 2 ·11 5, 3 ·11 5, . . . , 10 ·11 5. Do you get a permutation of the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}? Would you get a permutation of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
if you used another nonzero member of of Z11 in place of 5?

3. Compute the fourth power mod 5 of each element of Z5. What do you observe? What
general principle explains this observation?

4. The numbers 29 and 43 are primes. What is (29− 1)(43− 1)? What is 199 · 1111 in Z1176?
What is (231111)199 in Z29? In Z43? In Z1247?

5. The numbers 29 and 43 are primes. What is (29− 1)(43− 1)? What is 199 · 1111 in Z1176?
What is (1051111)199 in Z29? In Z43? In Z1247? How does this answer the second question
in Exercise 2.3-5?

6. How many solutions with x between 0 and 34 are there to the system of equations

x mod 5 = 4
x mod 7 = 5?

What are these solutions?

7. Compute each of the following. Show or explain your work, and do not use a calculator or
computer.

(a) 1596 in Z97

(b) 6772 in Z73

(c) 6773 in Z73

8. Show that in Zp, with p prime, if ai mod p = 1, then an mod p = an mod i mod p.

9. Show that there are p2 − p elements with multiplicative inverses in Zp2 when p is prime. If
x has a multiplicative inverse in Z2

p , what is xp2−p mod p2? Is the same statement true for
an element without an inverse? (Working out an example might help here.) Can you find
something (interesting) that is true about xp2−p when x does not have an inverse?

10. How many elements have multiplicative inverses in Zpq when p and q are primes?

2.3. THE RSA CRYPTOSYSTEM 75

11. In the paragraph preceding the proof of Theorem 2.23 we said that if a number is a multiple
of the prime p and the prime q, then it is a multiple of pq. We will see how that is proved
here.

(a) What equation in the integers does Euclid’s extended GCD algorithm solve for us
when m and n are relatively prime?

(b) Suppose that m and n are relatively prime and that k is a multiple of each one of
them; that is, k = bm and k = cn for integers b and c. If you multiply both sides
of the equation in part (a) by k, you get an equation expressing k as a sum of two
products. By making appropriate substitutions in these terms, you can show that k
is a multiple of mn. Do so. Does this justify the assertion we made in the paragraph
preceding the proof of Theorem 2.23?

12. The relation of “congruence modulo n” is the relation ≡ defined by x ≡ y mod n if and
only if x mod n = y mod n.

(a) Show that congruence modulo n is an equivalence relation by showing that it defines
a partition of the integers into equivalence classes.

(b) Show that congruence modulo n is an equivalence relation by showing that it is reflex-
ive, symmetric, and transitive.

(c) Express the Chinese Remainder theorem in the notation of congruence modulo n.

13. Write and implement code to do RSA encryption and decryption. Use it to send a message
to someone else in the class. (You may use smaller numbers than are usually used in
implementing the RSA algorithm for the sake of efficiency. In other words, you may choose
your numbers so that your computer can multiply them without overflow.)

14. For some non-zero a ∈ Zp, where p is prime, consider the set

S = {a0 mod p, a1 mod p, a2 mod p, . . . , ap−2 mod p, ap−1 mod p},

and let s = |S|. Show that s is always a factor of p − 1.

15. Show that if xn−1 mod n = 1 for all integers x that are not multiples of n, then n is prime.
(The slightly weaker statement that xn−1 mod n = 1 for all x relatively prime to n, does
not imply that n is prime. There is a famous family of numbers called Carmichael numbers
that are counterexamples.8)

8See, for example, Cormen, Leiserson, Rivest, and Stein, cited earlier.

76 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

2.4 Details of the RSA Cryptosystem

In this section, we deal with some issues related to implementing the RSA cryptosystem: expo-
nentiating large numbers, finding primes, and factoring.

Practical Aspects of Exponentiation mod n

Suppose you are going to raise a 100 digit number a to the 10120th power modulo a 200 digit
integer n. Note that the exponent is a 121 digit number.

Exercise 2.4-1 Propose an algorithm to compute a10120
mod n, where a is a 100 digit

number and n is a 200 digit number.

Exercise 2.4-2 What can we say about how long this algorithm would take on a computer
that can do one infinite precision arithmetic operation in constant time?

Exercise 2.4-3 What can we say about how long this would take on a computer that can
multiply integers in time proportional to the product of the number of digits in the
two numbers, i.e. multiplying an x-digit number by a y-digit number takes roughly
xy time?

Notice that if we form the sequence a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 we are modeling
the process of forming a11 by successively multiplying by a. If, on the other hand, we form
the sequence a, a2, a4, a8, a16, a32, a64, a128, a256, a512, a1024, we are modeling the process of
successive squaring, and in the same number of multiplications we are able to get a raised to a
four digit number. Each time we square we double the exponent, so every ten steps or so we will
add three to the number of digits of the exponent. Thus in a bit under 400 multiplications, we
will get a10120

. This suggests that our algorithm should be to square a some number of times
until the result is almost a10120

, and then multiply by some smaller powers of a until we get
exactly what we want. More precisely, we square a and continue squaring the result until we get
the largest a2k1 such that 2k1 is less than 10120, then multiply a2k1 by the largest a2k2 such that
2k1 + 2k2 is less than 10120 and so on until we have

10120 = 2k1 + 2k2 + · · · + 2kr

for some integer r. (Can you connect this with the binary representation of 10120?) Then we get

a10120
= a2k1

a2k2 · · · a2kr
.

Notice that all these powers of a have been computed in the process of discovering k1. Thus it
makes sense to save them as you compute them.

To be more concrete, let’s see how to compute a43. We may write 43 = 32 + 8 + 2 + 1, and
thus

a43 = a25
a23

a21
a20

. (2.21)

So, we first compute a20
, a21

, a22
, a23

, a24
, a25

, using 5 multiplications. Then we can com-
pute a43, via equation 2.21, using 3 additional multiplications. This saves a large number of
multiplications.

2.4. DETAILS OF THE RSA CRYPTOSYSTEM 77

On a machine that could do infinite precision arithmetic in constant time, we would need
about log2(10120) steps to compute all the powers a2i

, and perhaps equally many steps to do the
multiplications of the appropriate powers. At the end we could take the result mod n. Thus
the length of time it would take to do these computations would be more or less 2 log2(10120) =
240 log2 10 times the time needed to do one operation. (Since log2 10 is about 3.33, it will take
at most 800 times the amount of time for one operation to compute a10120

.)

You may not be used to thinking about how large the numbers get when you are doing
computation. Computers hold fairly large numbers (4-byte integers in the range roughly −231

to 231 are typical), and this suffices for most purposes. Because of the way computer hardware
works, as long as numbers fit into one 4-byte integer, the time to do simple arithmetic operations
doesn’t depend on the value of the numbers involved. (A standard way to say this is to say
that the time to do a simple arithmetic operation is constant.) However, when we talk about
numbers that are much larger than 231, we have to take special care to implement our arithmetic
operations correctly, and also we have to be aware that operations are slower.

Since 210 = 1024, we have that 231 is twice as big as 230 = (210)3 = (1024)3 and so is
somewhat more than two billion, or 2 · 109. In particular, it is less than 1010. Since 10120 is a
one followed by 120 zeros, raising a positive integer other than one to the 10120th power takes
us completely out of the realm of the numbers that we are used to making exact computations
with. For example, 10(10120) has 119 more zeros following the 1 in the exponent than does 1010.

It is accurate to assume that when multiplying large numbers, the time it takes is roughly
proportional to the product of the number of digits in each. If we computed our 100 digit number
to the 10120th power, we would be computing a number with more than 10120 digits. We clearly
do not want to be doing computation on such numbers, as our computer cannot even store such
a number!

Fortunately, since the number we are computing will ultimately be taken modulo some 200
digit number, we can make all our computations modulo that number. (See Lemma 2.3.) By
doing so, we ensure that the two numbers we are multiplying together have at most 200 digits,
and so the time needed for the problem proposed in Exercise 2.4-1 would be a proportionality
constant times 40,000 times log2(10120) times the time needed for a basic operation plus the time
needed to figure out which powers of a are multiplied together, which would be quite small in
comparison.

This algorithm, on 200 digit numbers, could be on the order of a million times slower than
on simple integers.9 This is a noticeable effect and if you use or write an encryption program,
you can see this effect when you run it. However, we can still typically do this calculation in less
than a second, a small price to pay for secure communication.

How long does it take to use the RSA Algorithm?

Encoding and decoding messages according to the RSA algorithm requires many calculations.
How long will all this arithmetic take? Let’s assume for now that Bob has already chosen p,
q, e, and d, and so he knows n as well. When Alice wants to send Bob the message x, she

9If we assume that we can multiply four digit integers exactly but not five digit numbers exactly, then effi-
ciently multiplying two 200 digit numbers is like multiplying 50 integers times 50 integers, or 2500 products, and
log2(10

120) ≈ log2((2
10)40 = log2(2

400) = 400, so we would have something like million steps, each equivalent to
multiplying two integers, in executing our algorithm.

78 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

sends xe mod n. By our analyses in Exercise 2.4-2 and Exercise 2.4-3 we see that this amount
of time is more or less proportional to log2 e, which is itself proportional to the number of digits
of e, though the first constant of proportionality depends on the method our computer uses to
multiply numbers. Since e has no more than 200 digits, this should not be too time consuming
for Alice if she has a reasonable computer. (On the other hand, if she wants to send a message
consisting of many segments of 200 digits each, she might want to use the RSA system to send a
key for another simpler (secret key) system, and then use that simpler system for the message.)

It takes Bob a similar amount of time to decode, as he has to take the message to the dth
power, mod n.

We commented already that nobody knows a fast way to find x from xe mod n. In fact,
nobody knows that there isn’t a fast way either, which means that it is possible that the RSA
cryptosystem could be broken some time in the future. We also don’t know whether extracting
eth roots mod n is in the class of #P-complete problems, an important family of problems with
the property that a reasonably fast solution of any one of them will lead to a reasonably fast
solution of any of them. We do know that extracting eth roots is no harder than these problems,
but it may be easier.

However, here someone is not restricted to extracting roots to discover x. Someone who
knows n and knows that Bob is using the RSA system, could presumably factor n, discover p
and q, use the extended GCD algorithm to compute d and then decode all of Bob’s messages.
However, nobody knows how to factor integers quickly either. Again, we don’t know if factoring
is #P-complete, but we do know that it is no harder than the #P-complete problems. Thus
here is a second possible way around the RSA system. However, enough people have worked on
the factoring problem that most compputer scientists are confident that it is in fact difficult, in
which case the RSA system is safe, as long as we use keys that are long enough.

How hard is factoring?

Exercise 2.4-4 Factor 225,413. (The idea is to try to do this without resorting to com-
puters, but if you give up by hand and calculator, using a computer is fine.)

With current technology, keys with roughly 100 digits are not that hard to crack. In other
words, people can factor numbers that are roughly 100 digits long, using methods that are a little
more sophisticated than the obvious approach of trying all possible divisors. However, when the
numbers get long, say over 120 digits, they become very hard to factor. The record, as of the year
2000, for factoring is a roughly 155-digit number. To factor this number, thousands of computers
around the world were used, and it took several months. So given the current technology, RSA
with a 200 digit key seems to be very secure.

Finding large primes

There is one more issue to consider in implementing the RSA system for Bob. We said that Bob
chooses two primes of about a hundred digits each. But how does he choose them? It follows
from some celebrated work on the density of prime numbers that if we were to choose a number
m at random, and check about loge(m) numbers around m for primality, we would expect that
one of these numbers was prime. Thus if we have a reasonably quick way to check whether a

2.4. DETAILS OF THE RSA CRYPTOSYSTEM 79

number is prime, we shouldn’t have to guess too many numbers, even with a hundred or so digits,
before we find one we can show is prime.

However, we have just mentioned that nobody knows a quick way to find any or all factors
of a number. The standard way of proving a number is prime is by showing that it and 1 are
its only factors. For the same reasons that factoring is hard, the simple approach to primality
testing, test all possible divisors, is much too slow. If we did not have a faster way to check
whether a number is prime, the RSA system would be useless.

In August of 2002, Agrawal, Kayal and Saxena announced an algorithm for testing whether
an integer n is prime which they can show takes no more than the twelveth power of the number
of digits of n to determine whether n is prime, and in practice seems to take significantly less
time. While the algorithm requires more than the background we are able to provide in this
book, its description and the proof that it works in the specified time uses only results that one
might find in an undergraduate abstract algebra course and an undergraduate number theory
course! The central theme of the algorithm is the use of a variation of Fermat’s Little Theorem.

In 1976 Miller10 was able to use Fermat’s Little Theorem to show that if a conjecture called
the “Extended Reiman Hypothesis” was true, then an algorithm he developed would determine
whether a number n was prime in a time bounded above by a polynomial in the number of digits
of n. In 1980 Rabin11 modified Miller’s method to get one that would determine in polynomial
time whether a number was prime without the extra hypothesis, but with a probability of error
that could be made as small a positive number as one might desire, but not zero. We describe the
general idea behind all of these advances in the context of what people now call the Miller-Rabin
primality test. As of the writing of this book, variations on this kind of algorithm are used to
provide primes for cryptography.

We know, by Fermat’s Little Theorem, that in Zp with p prime, xp−1 mod p = 1 for every x
between 1 and p − 1. What about xm−1, in Zm, when m is not prime?

Exercise 2.4-5 Suppose x is a member of Zm that has no multiplicative inverse. Is it
possible that xn−1 mod n = 1?

We answer the question of the exercise in our next lemma.

Lemma 2.25 Let m be a non-prime, and let x be a number in Zm which has no multiplicative
inverse. Then xm−1 mod m �= 1.

Proof: Assume, for the purpose of contradiction, that

xm−1 mod m = 1.

Then
x · xm−2 mod m = 1.

But then xm−2 mod m is the inverse of x in Zm, which contradicts the fact that x has no
multiplicative inverse. Thus it must be the case that xm−1 mod m �= 1.

10G.L. Miller. “Riemann’s Hypothesis and tests for primality,” J. Computer and Systems Science 13, 1976, pp
300-317.

11M. O. Rabin. “Probabilistic algorithm for testing primality.” Journal of Number Theory, 12, 1980. pp 128-138.

80 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

This distinction between primes and non-primes gives the idea for an algorithm. Suppose we
have some number m, and are not sure whether it is prime or not. We can run the following
algorithm:

(1) PrimeTest(m)
(2) choose a random number x, 2 ≤ x ≤ m − 1.
(3) compute y = xm−1 mod m
(4) if (y = 1)
(5) output ‘‘ m might be prime’’
(6) else
(7) output ‘‘m is definitely not prime’’

Note the asymmetry here. If y �= 1, then m is definitely not prime, and we are done. On
the other hand, if y = 1, then the m might be prime, and we probably want to do some other
calculations. In fact, we can repeat the algorithm Primetest(m) for t times, with a different
random number x each time. If on any of the t runs, the algorithm outputs “m is definitely not
prime”, then the number m is definitely not prime, as we have an x for which xm−1 �= 1. On
the other hand, if on all t runs, the algorithm Primetest(m) outputs “m might be prime”, then,
with reasonable certainty, we can say that the number m is prime. This is actually an example
of a randomized algorithm; we will be studying these in greater detail later in the course. For
now, let’s informally see how likely it is that we make a mistake.

We can see that the chance of making a mistake depends on, for a particular non-prime m,
exactly how many numbers a have the property that am−1 = 1. If the answer is that very few
do, then our algorithm is very likely to give the correct answer. On the other hand, if the answer
is most of them, then we are more likely to give an incorrect answer.

In Exercise 12 at the end of the section, you will show that the number of elements in Zm

without inverses is at least
√

m. In fact, even many numbers that do have inverses will also fail
the test xm−1 = 1. For example, in Z12 only 1 passes the test while in Z15 only 1 and 14 pass the
test. (Z12 really is not typical; can you explain why? See Problem 13 at the end of this section
for a hint.)

In fact, the Miller-Rabin algorithm modifies the test slightly (in a way that we won’t describe
here12) so that for any non-prime m, at least half of the possible values we could choose for x
will fail the modified test and hence will show that m is composite. As we will see when we
learn about probability, this implies that if we repeat the test t times, and assert that an x which
passes these t tests is prime, the probability of being wrong is actually 2−t. So, if we repeat
the test 10 times, we have only about a 1 in a thousand chance of making a mistake, and if we
repeat it 100 times, we have only about a 1 in 2100 (a little less than one in a nonillion) chance
of making a mistake!

Numbers we have chosen by this algorithm are sometimes called pseudoprimes. They are
called this because they are very likely to be prime. In practice, pseudoprimes are used instead
of primes in implementations of the RSA cryptosystem. The worst that can happen when a
pseudoprime is not prime is that a message may be garbled; in this case we know that our
pseudoprime is not really prime, and choose new pseudoprimes and ask our sender to send the

12See, for example, Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, McGraw Hill/MIT Press,
2002

2.4. DETAILS OF THE RSA CRYPTOSYSTEM 81

message again. (Note that we do not change p and q with each use of the system; unless we were
to receive a garbled message, we would have no reason to change them.)

A number theory theorem called the Prime Number Theorem tells us that if we check about
loge n numbers near n we can expect one of them to be prime. A d digit number is at least 10d−1

and less than 10d, so its natural logarithm is between (d− 1) loge 10 and d loge 10. If we want to
find a d digit prime, we can take any d digit number and test about d loge 10 numbers near it for
primality, and it is reasonable for us to expect that one of them will turn out to be prime. The
number loge 10 is 2.3 to two decimal places. Thus it does not take a really large amount of time
to find two prime numbers with a hundred (or so) digits each.

Important Concepts, Formulas, and Theorems

1. Exponentiation. To perform exponentiation mod n efficiently, we use repeated squaring,
and take mods after each arithmetic operation.

2. Security of RSA. The security of RSA rests on the fact that no one has developed an
efficient algorithm for factoring, or for finding x, given xe mod n.

3. Fermat’s Little Theorem does not hold for composites. Let m b e a non-prime, and let x be
a number in Zn which has no multiplicative inverse. Then xm−1 mod m �= 1.

4. Testing numbers for primality. The randomized Miller-Rabin algorithm will tell you almost
surely if a given number is prime.

5. Finding prime numbers. By applying the randomized Miller-Rabin to d ln 10 (which is
about 2.3d) numbers with d digits, you can expect to find at least one that is prime.

Problems

1. What is 31024 in Z7? (This is a straightforward problem to do by hand.)

2. Suppose we have computed a2, a4, a8, a16 and a32. What is the most efficient way for us
to compute a53?

3. A gigabyte is one billion bytes; a terabyte is one trillion bytes. A byte is eight bits, each
a zero or a 1. Since 210 = 1024, which is about 1000, we can store about three digits
(any number between 0 and 999) in ten bits. About how many decimal digits could we
store in a five gigabytes of memory? About how many decimal digits could we store in five
terabytes of memory? How does this compare to the number 10120? To do this problem it
is reasonable to continue to assume that 1024 is about 1000.

4. Find all numbers a different from 1 and −1 (which is the same as 8) such that a8 mod 9 = 1.

5. Use a spreadsheet, programmable calculator or computer to find all numbers a different from
1 and −1 mod 33 = 32 with a32 mod 33 = 1. (This problem is relatively straightforward to
do with a spreadsheet that can compute mods and will let you “fill in” rows and columns
with formulas. However you do have to know how to use the spreadsheet in this way to
make it strightforward!)

82 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

6. How many digits does the 10120th power of 10100 have?

7. If a is a 100 digit number, is the number of digits of a10120
closer to 10120 or 10240? Is it a

lot closer? Does the answer depend on what a actually is rather than the number of digits
it has?

8. Explain what our outline of the solution to Exercise 2.4-1 has to do with the binary repre-
sentation of 10120.

9. Give careful pseudocode to compute ax mod n. Make your algorithm as efficient as possible.
You may use right shift n in your algorithm.

10. Suppose we want to compute ae1e2···em mod n. Discuss whether it makes sense to reduce
the exponents mod n as we compute their product. In particular, what rule of exponents
would allow us to do this, and do you think this rule of exponents makes sense?

11. Number theorists use ϕ(n) to stand for the number of elements of Zn that have inverses.
Suppose we want to compute ae1e2···em mod n. Would it make sense for us to reduce our
exponents mod ϕ(n) as we compute their product? Why?

12. Show that if m is not prime, then at least
√

m elements of Zm do not have multiplicative
inverses.

13. Show that in Zp+1, where p is prime, only one element passes the primality test xm−1 = 1
(mod m). (In this case, m = p + 1.)

14. Suppose for RSA, p = 11, q = 19, and e = 7. What is the value of d? Show how to encrypt
the message 100, and then show how to decrypt the resulting message.

15. Suppose for applying RSA, p = 11, q = 23, and e = 13. What is the value of d? Show how
to encrypt the message 100 and then how to decrypt the resulting message.

16. A digital signature is a way to securely sign a document. That is, it is a way to put your
“signature” on a document so that anyone reading it knows that it is you who have signed
it, but no one else can “forge” your signature. The document itself may be public; it is
your signature that we are trying to protect. Digital signatures are, in a way, the opposite
of encryption, as if Bob wants to sign a message, he first applies his signature to it (think
of this as encryption) and then the rest of the world can easily read it (think of this as
decryption). Explain, in detail, how to achieve digital signatures, using ideas similar to
those used for RSA. In particular, anyone who has the document and has your signature
of the document (and knows your public key) should be able to determine that you signed
it.

Chapter 3

Reflections on Logic and Proof

In this chapter, we cover some basic principles of logic and describe some methods for constructing
proofs. This chapter is not meant to be a complete enumeration of all possible proof techniques.
The philosophy of this book is that most people learn more about proofs by reading, watching,
and attempting proofs than by an extended study of the logical rules behind proofs. On the
other hand, now that we have some examples of proofs, it will help you read and do proofs if we
reflect on their structure and discuss what constitutes a proof. To do so so we first develop a
language that will allow us to talk about proofs, and then we use this language to describe the
logical structure of a proof.

3.1 Equivalence and Implication

Equivalence of statements

Exercise 3.1-1 A group of students are working on a project that involves writing a merge
sort program. Joe and Mary have each written an algorithm for a function that takes
two lists, List1 and List2, of lengths p and q and merges them into a third list,
List3. Part of Mary’s algorithm is the following:

(1) if ((i + j ≤ p + q) && (i ≤ p) && ((j ≥ q)||(List1[i] ≤ List2[j])))
(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

The corresponding part of Joe’s algorithm is

(1) if (((i + j ≤ p + q) && (i ≤ p) && (j ≥ q))
|| ((i + j ≤ p + q) && (i ≤ p) && (List1[i] ≤ List2[j])))

83

84 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

Do Joe and Mary’s algorithms do the same thing?

Notice that Joe and Mary’s algorithms are exactly the same except for the if statement in
line 1. (How convenient; they even used the same local variables!) In Mary’s algorithm we put
entry i of List1 into position k of List3 if

i + j ≤ p + q and i ≤ p and (j ≥ q or List1[i] ≤ List2[j]),

while in Joe’s algorithm we put entry i of List1 into position k of List3 if

(i+j ≤ p+q and i ≤ p and j ≥ q) or (i+j ≤ p+q and i ≤ p and List1[i] ≤ List2[j]).

Joe and Mary’s statements are both built up from the same constituent parts (namely com-
parison statements), so we can name these constituent parts and rewrite the statements. We
use

• s to stand for i + j ≤ p + q,

• t to stand for i ≤ p,

• u to stand for j ≥ q, and

• v to stand for List1[i] ≤ List2[j]

The condition in Mary’s if statement on Line 1 of her code becomes

s and t and (u or v)

while Joe’s if statement on Line 1 of his code becomes

(s and t and u) or (s and t and v).

By recasting the statements in this symbolic form, we see that s and t always appear together
as “s and t.” We can thus simplify their expressions by substituting w for “s and t.” Mary’s
condition now has the form

w and (u or v)

and Joe’s has the form

3.1. EQUIVALENCE AND IMPLICATION 85

(w and u) or (w and v).

Although we can argue, based on our knowledge of the structure of the English language,
that Joe’s statement and Mary’s statement are saying the same thing, it will help us understand
logic if we formalize the idea of “saying the same thing.” If you look closely at Joe’s and Mary’s
statements, you can see that we are saying that, the word “and” distributes over the word “or,”
just as set intersection distributes over set union, and multiplication distributes over addition.
In order to analyze when statements mean the same thing, and explain more precisely what we
mean when we say something like “and” distributes over “or,” logicians have adopted a standard
notation for writing symbolic versions of compound statements. We shall use the symbol ∧ to
stand for “and” and ∨ to stand for “or.” In this notation, Mary’s condition becomes

w ∧ (u ∨ v)

and Joe’s becomes

(w ∧ u) ∨ (w ∧ v).

We now have a nice notation (which makes our compound statements look a lot like the two
sides of the distributive law for intersection of sets over union), but we have not yet explained why
two statements with this symbolic form mean the same thing. We must therefore give a precise
definition of “meaning the same thing,” and develop a tool for analyzing when two statements
satisfy this definition. We are going to consider symbolic compound statements that may be
built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,” and

• the symbol ¬, standing for “not.”

Truth tables

We will develop a theory for deciding when a compound statement is true based on the truth or
falsity of its component statements. Using this theory, we will determine, for a particular setting
of variables, say s, t and u, whether a particular compound statement, say (s ⊕ t) ∧ (¬u ∨ (s ∧
t))∧¬(s⊕(t∨u)), is true or false. Our technique uses truth tables, which you have probably seen
before. We will see how truth tables are the proper tool to determine whether two statements
are equivalent.

As with arithmetic, the order of operations in a logical statement is important. In our sample
compound statement (s ⊕ t) ∧ (¬u ∨ (s ∧ t)) ∧ ¬(s ⊕ (t ∨ u)) we used parentheses to make it
clear which operation to do first, with one exception, namely our use of the ¬ symbol. The
symbol ¬ always has the highest priority, which means that when we wrote ¬u∨(s∧ t), we meant
(¬u) ∨ (s ∧ t), rather than ¬(u ∨ (s ∧ t)). The principle we use here is simple; the symbol ¬

86 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

applies to the smallest number of possible following symbols needed for it to make sense. This
is the same principle we use with minus signs in algebraic expressions. With this one exception,
we will always use parentheses to make the order in which we are to perform operations clear;
you should do the same.

The operators ∧, ∨, ⊕ and ¬ are called logical connectives. The truth table for a logical
connective states, in terms of the possible truth or falsity of the component parts, when the
compound statement made by connecting those parts is true and when it is false. The the truth
tables for the connectives we have mentioned so far are in Figure 3.1

Figure 3.1: The truth tables for the basic logical connectives.

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

These truth tables define the words “and,” “or,” “exclusive or” (“xor” for short), and “not”
in the context of symbolic compound statements. For example, the truth table for ∨—or—tells
us that when s and t are both true, then so is “s or t.” It tells us that when s is true and t is
false, or s is false and t is true, then “s or t” is true. Finally it tells us that when s and t are both
false, then so is “s or t.” Is this how we use the word “or” in English? The answer is sometimes!
The word “or” is used ambiguously in English. When a teacher says “Each question on the test
will be short answer or multiple choice,” the teacher is presumably not intending that a question
could be both. Thus the word “or” is being used here in the sense of “exclusive or”—the “⊕” in
the truth tables above. When someone says “Let’s see, this afternoon I could take a walk or I
could shop for some new gloves,” she probably does not mean to preclude the possibility of doing
both—perhaps even taking a walk downtown and then shopping for new gloves before walking
back. Thus in English, we determine the way in which someone uses the word “or” from context.
In mathematics and computer science we don’t always have context and so we agree that we will
say “exclusive or” or “xor” for short when that is what we mean, and otherwise we will mean
the “or” whose truth table is given by ∨. In the case of “and” and “not” the truth tables are
exactly what we would expect.

We have been thinking of s and t as variables that stand for statements. The purpose of
a truth table is to define when a compound statement is true or false in terms of when its
component statements are true and false. Since we focus on just the truth and falsity of our
statements when we are giving truth tables, we can also think of s and t as variables that can
take on the values “true” (T) and “false” (F). We refer to these values as the truth values of s
and t. Then a truth table gives us the truth values of a compound statement in terms of the
truth values of the component parts of the compound statement. The statements s ∧ t, s ∨ t
and s ⊕ t each have two component parts, s and t. Because there are two values we can assign
to s, and for each value we assign to s there are two values we can assign to t, by the product
principle, there are 2 · 2 = 4 ways to assign truth values to s and t. Thus we have four rows in
our truth table, one for each way of assigning truth values to s and t.

For a more complex compound statement, such as the one in Line 1 in Joe and Mary’s
programs, we still want to describe situations in which the statement is true and situations in

3.1. EQUIVALENCE AND IMPLICATION 87

Table 3.1: The truth table for Joe’s statement

w u v u ∨ v w ∧ (u ∨ v)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

which the statement is false. We will do this by working out a truth table for the compound
statement from the truth tables of its symbolic statements and its connectives. We use a variable
to represent the truth value each symbolic statement. The truth table has one column for each of
the original variables, and for each of the pieces we use to build up the compound statement. The
truth table has one row for each possible way of assigning truth values to the original variables.
Thus if we have two variables, we have, as above, four rows. If we have just one variable, then
we have, as above, just two rows. If we have three variables then we will have 23 = 8 rows, and
so on.

In Table 3.1 we give the truth table for the symbolic statement that we derived from Line 1
of Joe’s algorithm. The columns to the left of the double line contain the possible truth values of
the variables; the columns to the right correspond to various sub-expressions whose truth values
we need to compute. We give the truth table as many columns as we need in order to correctly
compute the final result; as a general rule, each column should be easily computed from one or
two previous columns.

In Table 3.2 we give the truth table for the statement that we derived from Line 1 of Mary’s
algorithm.

Table 3.2: The truth table for Mary’s statement

w u v w ∧ u w ∧ v (w ∧ u) ∨ (w ∧ v)
T T T T T T
T T F T F T
T F T F T T
T F F F F F
F T T F F F
F T F F F F
F F T F F F
F F F F F F

You will notice that the pattern of T’s and F’s that we used to the left of the double line
in both Joe’s and Mary’s truth tables are the same—namely, reverse alphabetical order.1 Thus

1Alphabetical order is sometimes called lexicographic order. Lexicography is the study of the principles and

88 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

row i of Table 3.1 represents exactly the same assignment of truth values to u , v, and w as
row i of Table 3.2. The final columns of the two truth tables are identical, which means that
Joe’s symbolic statement and Mary’s symbolic statement are true in exactly the same cases.
Therefore, the two statements must say the same thing, and Mary and Joe’s program segments
return exactly the same values. We say that two symbolic compound statements are equivalent
if they are true in exactly the same cases. Alternatively, two statements are equivalent if their
truth tables have the same final column (assuming both tables assign truth values to the original
symbolic statements in the same pattern).

Tables 3.1 and 3.2 actually prove a distributive law:

Lemma 3.1 The statements
w ∧ (u ∨ v)

and
(w ∧ u) ∨ (w ∧ v)

are equivalent.

DeMorgan’s Laws

Exercise 3.1-2 DeMorgan’s Laws say that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, and that
¬(p ∧ q) is equivalent to ¬p ∨ ¬q,. Use truth tables to demonstrate that DeMorgan’s
laws are correct.

Exercise 3.1-3 Show that p⊕q, the exclusive or of p and q, is equivalent to (p∨q)∧¬(p∧q).
Apply one of DeMorgan’s laws to ¬(¬(p ∨ q)) ∧ ¬(p ∧ q) to find another symbolic
statement equivalent to the exclusive or.

To verify the first DeMorgan’s Law, we create a pair of truth tables that we have condensed into
one “double truth table” in Table 3.3. The second double vertical line separates the computation
of the truth values of ¬(p∨q) and ¬p∧¬q We see that the fourth and the last columns are identical,

Table 3.3: Proving the first DeMorgan Law.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

and therefore the first DeMorgan’s Law is correct. We can verify the second of DeMorgan’s Laws
by a similar process.

To show that p ⊕ q is equivalent to (p ∨ q) ∧ ¬(p ∧ q), we use the “double truth table” in
Table 3.4.

practices used in making dictionaries. Thus you will also see the order we used for the T’s and F’s called reverse
lexicographic order, or reverse lex order for short.

3.1. EQUIVALENCE AND IMPLICATION 89

Table 3.4: An equivalent statement to p ⊕ q.

p q p ⊕ q p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
T T F T T F F
T F T T F T T
F T T T F T T
F F F F F T F

By applying DeMorgan’s law to ¬(¬(p∨ q))∧¬(p∧ q), we see that p⊕ q is also equivalent to
¬(¬(p ∨ q) ∨ (p ∧ q)). It was easier to use DeMorgan’s law to show this equivalence than to use
another double truth table.

Implication

Another kind of compound statement occurs frequently in mathematics and computer science.
Recall 2.21, Fermat’s Little Theorem:

If p is a prime, then ap−1 mod p = 1 for each non-zero a ∈ Zp.

Fermat’s Little Theorem combines two constituent statements,

p is a prime

and

ap−1 mod p = 1 for each non-zero a ∈ Zp.

We can also restate Fermat’s Little Theorem (a bit clumsily) as

p is a prime only if ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

p is a prime implies ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

ap−1 mod p = 1 for each non-zero a ∈ Zp if p is prime.

Using s to stand for “p is a prime” and t to stand for “ap−1 mod p = 1 for every non-zero
a ∈ Zp,” we symbolize any of the four statements of Fermat’s Little Theorem as

s ⇒ t,

which most people read as “s implies t.” When we translate from symbolic language to English,
it is often clearer to say “If s then t.”

We summarize this discussion in the following definition:

90 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

Definition 3.1 The following four English phrases are intended to mean the same thing. In
other words, they are defined by the same truth table:

• s implies t,

• if s then t,

• t if s, and

• s only if t.

Observe that the use of “only if” may seem a little different than the normal usage in English.
Also observe that there are still other ways of making an “if . . . then” statement in English. In a
number of our lemmas, theorems, and corollaries (for example, Corollary 2.6 and Lemma 2.5) we
have had two sentences. In the first we say “Suppose” In the second we say “Then” The
two sentences “Suppose s.” and “Then t.” are equivalent to the single sentence s ⇒ t. When we
have a statement equivalent to s ⇒ t, we call the statement s the hypothesis of the implication
and we call the statement t the conclusion of the implication.

If and only if

The word “if” and the phrase “only if” frequently appear together in mathematical statements.
For example, in Theorem 2.9 we proved

A number a has a multiplicative inverse in Zn if and only if there are integers x and
y such that ax + ny = 1.

Using s to stand for the statement “a number a has a multiplicative inverse in Zn” and t to stand
for the statement “there are integers x and y such that ax+ny = 1,” we can write this statement
symbolically as

s if and only if t.

Referring to Definition 3.1, we parse this as

s if t, and s only if t,

which again by the definition above is the same as

s ⇒ t and t ⇒ s.

We denote the statement “s if and only if t” by s ⇔ t. Statements of the form s ⇒ t and s ⇔ t are
called conditional statements, and the connectives ⇒ and ⇔ are called conditional connectives.

Exercise 3.1-4 Use truth tables to explain the difference between s ⇒ t and s ⇔ t.

3.1. EQUIVALENCE AND IMPLICATION 91

In order to be able to analyze the truth and falsity of statements involving “implies” and “if
and only if,” we need to understand exactly how they are different. By constructing truth tables
for these statements, we see that there is only one case in which they could have different truth
values. In particular if s is true and t is true, then we would say that both s ⇒ t and s ⇔ t are
true. If s is true and t is false, we would say that both s ⇒ t and s ⇔ t are false. In the case
that both s and t are false we would say that s ⇔ t is true. What about s ⇒ t? Let us try an
example. Suppose that s is the statement “it is supposed to rain” and t is the statement “I carry
an umbrella.” Then if, on a given day, it is not supposed to rain and I do not carry an umbrella,
we would say that the statement “if it is supposed to rain then I carry an umbrella” is true on
that day. This suggests that we also want to say s ⇒ t is true if s is false and t is false.2 Thus
the truth tables are identical in rows one, two, and four. For “implies” and “if and only if” to
mean different things, the truth tables must therefore be different in row three. Row three is the
case where s is false and t is true. Clearly in this case we would want s if and only if t to be
false, so our only choice is to say that s ⇒ t is true in this case. This gives us the truth tables in
Figure 3.2.

Figure 3.2: The truth tables for “implies” and for “if and only if.”

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

Here is another place where (as with the usage for “or”) English usage is sometimes inconsis-
tent. Suppose a parent says “I will take the family to McDougalls for dinner if you get an A on
this test,” and even though the student gets a C, the parent still takes the family to McDougalls
for dinner. While this is something we didn’t expect, was the parent’s statement still true? Some
people would say “yes”; others would say “no”. Those who would say “no” mean, in effect,
that in this context the parent’s statement meant the same as “I will take the family to dinner
at McDougalls if and only if you get an A on this test.” In other words, to some people, in
certain contexts, “If” and “If and only if” mean the same thing! Fortunately questions of child
rearing aren’t part of mathematics or computer science (at least not this kind of question!). In
mathematics and computer science, we adopt the two truth tables just given as the meaning of
the compound statement s ⇒ t (or “if s then t” or “t if s”) and the compound statement s ⇔ t
(or “s if and only if t.”) In particular, the truth table marked IMPLIES is the truth table referred
to in Definition 3.1. This truth table thus defines the mathematical meaning of s implies t, or
any of the other three statements referred to in that definition.

Some people have difficulty using the truth table for s ⇒ t because of this ambiguity in
English. The following example can be helpful in resolving this ambiguity. Suppose that I hold

2Note that we are making this conclusion on the basis of one example. Why can we do so? We are not trying
to prove something, but trying to figure out what the appropriate definition is for the ⇒ connective. Since we
have said that the truth or falsity of s ⇒ t depends only on the truth or falsity of s and t, one example serves to
lead us to an appropriate definition. If a different example led us to a different definition, then we would want to
define two different kinds of implications, just as we have two different kinds of “ors,” ∨ and ⊕. Fortunately, the
only kinds of conditional statements we need for doing mathematics and computer science are “implies” and “if
and only if.”

92 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

an ordinary playing card (with its back to you) and say “If this card is a heart, then it is a
queen.” In which of the following four circumstances would you say I lied:

1. the card is a heart and a queen

2. the card is a heart and a king

3. the card is a diamond and a queen

4. the card is a diamond and a king?

You would certainly say I lied in the case the card is the king of hearts, and you would certainly
say I didn’t lie if the card is the queen of hearts. Hopefully in this example, the inconsistency
of English language seems out of place to you and you would not say I am a liar in either of the
other cases. Now we apply the principle called the principle of the excluded middle

Principle 3.1 A statement is true exactly when it is not false.

This principle tells us that that my statement is true in the three cases where you wouldn’t say
I lied. We used this principle implicitly before when we introduced the principle of proof by
contradiction, Principle 2.1. We were explaining the proof of Corollary 2.6, which states

Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

We had assumed that the hypothesis of the corollary was true so that a ·n x = b does not have
a solution. Then we assumed the conclusion that a does not have a multiplicative inverse was
false. We saw that these two assumptions led to a contradiction, so that it was impossible for
both of them to be true. Thus we concluded whenever the first assumption was true, the second
had to be false. Why could we conclude this? Because the principle of the excluded middle says
that the second assumption has to be either true or false. We didn’t introduce the principle of
the excluded middle at this point for two reasons. First, we expected that the reader would agree
with our proof even if we didn’t mention the principle, and second, we didn’t want to confuse
the reader’s understanding of proof by contradiction by talking about two principles at once!

Important Concepts, Formulas, and Theorems

1. Logical statements. Logical statements may be built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,”

• the symbol ¬, standing for “not,”

3.1. EQUIVALENCE AND IMPLICATION 93

• the symbol ⇒, standing for “implies,” and

• the symbol ⇔ , standing for “if and only if.”

The operators ∧, ∨, ⊕, ⇒, ⇔, and ¬ are called logical connectives. The operators ⇒ and
⇔ are called conditional connectives.

2. Truth Tables. The following are truth tables for the basic logical connectives:

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

3. Equivalence of logical statements. We say that two symbolic compound statements are
equivalent if they are true in exactly the same cases.

4. Distributive Law. The statements

w ∧ (u ∨ v)

and

(w ∧ u) ∨ (w ∧ v)

are equivalent.

5. DeMorgan’s Laws. DeMorgan’s Laws say that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, and that
¬(p ∧ q) is equivalent to ¬p ∨ ¬q.

6. Implication. The following four English phrases are equivalent:

• s implies t,

• if s then t,

• t if s, and

• s only if t.

7. Truth tables for implies and if and only if.

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

8. Principle of the Excluded Middle. A statement is true exactly when it is not false.

94 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

Problems

1. Give truth tables for the following expressions:

a. (s ∨ t) ∧ (¬s ∨ t) ∧ (s ∨ ¬t)

b. (s ⇒ t) ∧ (t ⇒ u)

c. (s ∨ t ∨ u) ∧ (s ∨ ¬t ∨ u)

2. Find at least two more examples of the use of some word or phrase equivalent to “implies”
in lemmas, theorems, or corollaries in Chapters One or Two.

3. Find at least two more examples of the use of the phrase “if and only if” in lemmas,
theorems, and corollaries in Chapters One or Two.

4. Show that the statements s ⇒ t and ¬s ∨ t are equivalent.

5. Prove the DeMorgan law which states ¬(p ∧ q) = ¬p ∨ ¬q.

6. Show that p ⊕ q is equivalent to (p ∧ ¬q) ∨ (¬p ∧ q).

7. Give a simplified form of each of the following expressions (using T to stand for a statement
that is always true and F to stand for a statement that is always false)3:

• s ∨ s,

• s ∧ s,

• s ∨ ¬s,

• s ∧ ¬s.

8. Use a truth table to show that (s∨t)∧(u∨v) is equivalent to (s∧u)∨(s∧v)∨(t∧u)∨(t∧v).
What algebraic rule is this similar to?

9. Use DeMorgan’s Law, the distributive law, and Problems 7 and 8 to show that ¬((s ∨ t) ∧
(s ∨ ¬t)) is equivalent to ¬s.

10. Give an example in English where “or” seems to you to mean exclusive or (or where you
think it would for many people) and an example in English where “or” seems to you to
mean inclusive or (or where you think it would for many people).

11. Give an example in English where “if . . . then” seems to you to mean “if and only if” (or
where you think it would to many people) and an example in English where it seems to
you not to mean “if and only if” (or where you think it would not to many people).

12. Find a statement involving only ∧, ∨ and ¬ (and s and t) equivalent to s ⇔ t. Does your
statement have as few symbols as possible? If you think it doesn’t, try to find one with
fewer symbols.

13. Suppose that for each line of a 2-variable truth table, you are told whether the final column
in that line should evaluate to true or to false. (For example, you might be told that the
final column should contain T, F, T, and F in that order.) Explain how to create a logical
statement using the symbols s, t, ∧, ∨, and ¬ that has that pattern as its final column.
Can you extend this procedure to an arbitrary number of variables?

3A statement that is always true is called a tautology; a statement that is always false is called a contradiction

3.1. EQUIVALENCE AND IMPLICATION 95

14. In Problem 13, your solution may have used ∧, ∨ and ¬. Is it possible to give a solution
using only one of those symbols? Is it possible to give a solution using only two of these
symbols?

15. We proved that ∧ distributes over ∨ in the sense of giving two equivalent statements that
represent the two “sides” of the distributive law. For each question below, explain why
your answer is true.

a. Does ∨ distribute over ∧?

b. Does ∨ distribute over ⊕?

c. Does ∧ distribute over ⊕?

96 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

3.2 Variables and Quantifiers

Variables and universes

Statements we use in computer languages to control loops or conditionals are statements about
variables. When we declare these variables, we give the computer information about their possible
values. For example, in some programming languages we may declare a variable to be a “boolean”
or an “integer” or a “real.”4 In English and in mathematics, we also make statements about
variables, but it is not always clear which words are being used as variables and what values
these variables may take on. We use the phrase varies over to describe the set of values a
variable may take on. For example, in English, we might say “If someone’s umbrella is up, then
it must be raining.” In this case, the word “someone” is a variable, and presumably it varies
over the people who happen to be in a given place at a given time. In mathematics, we might
say “For every pair of positive integers m and n, there are nonnegative integers q and r with
0 ≤ r < n such that m = nq + r.” In this case m, n, q, and r are clearly our variables; our
statement itself suggests that two of our variables range over the positive integers and two range
over the nonnegative integers. We call the set of possible values for a variable the universe of
that variable.

In the statement “m is an even integer,” it is clear that m is a variable, but the universe is
not given. It might be the integers, just the even integers, or the rational numbers, or one of
many other sets. The choice of the universe is crucial for determining the truth or falsity of a
statement. If we choose the set of integers as the universe for m, then the statement is true for
some integers and false for others. On the other hand, if we choose integer multiples of 10 as our
universe, then the statement is always true. In the same way, when we control a while loop with
a statement such as “i < j” there are some values of i and j for which the statement is true and
some for which it is false. In statements like “m is an even integer” and “i < j” our variables
are not constrained and so are called free variables. For each possible value of a free variable,
we have a new statement, which might be either true or false, determined by substituting the
possible value for the variable. The truth value of the statement is determined only after such a
substitution.

Exercise 3.2-1 For what values of m is the statement m2 > m a true statement and for
what values is it a false statement? Since we have not specified a universe, your
answer will depend on what universe you choose to use.

If you used the universe of positive integers, the statement is true for every value of m but
1; if you used the real numbers, the statement is true for every value of m except for those in
the closed interval [0, 1]. There are really two points to make here. First, a statement about a
variable can often be interpreted as a statement about more than one universe, and so to make
it unambiguous, the universe must be clearly stated. Second, a statement about a variable can
be true for some values of a variable and false for others.

4Note that to declare a variable x as an integer in, say, a C program does not mean that same thing as saying
that x is an integer. In a C program, an integer may really be a 32-bit integer, and so it is limited to values
between 231 − 1 and −231. Similarly a real has some fixed precision, and hence a real variable y may not be able
to take on a value of, say, 10−985.

3.2. VARIABLES AND QUANTIFIERS 97

Quantifiers

In contrast, the statement
For every integer m, m2 > m. (3.1)

is false; we do not need to qualify our answer by saying that it is true some of the time and false
at other times. To determine whether Statement 3.1 is true or false, we could substitute various
values for m into the simpler statement m2 > m, and decide, for each of these values, whether
the statement m2 > m is true or false. Doing so, we see that the statement m2 > m is true for
values such as m = −3 or m = 9, but false for m = 0 or m = 1. Thus it is not the case that
for every integer m, m2 > m, so Statement 3.1 is false. It is false as a statement because it is
an assertion that the simpler statement m2 > m holds for each integer value of m we substitute
in. A phrase like “for every integer m” that converts a symbolic statement about potentially
any member of our universe into a statement about the universe instead is called a quantifier. A
quantifier that asserts a statement about a variable is true for every value of the variable in its
universe is called a universal quantifier.

The previous example illustrates a very important point.

If a statement asserts something for every value of a variable, then to show the
statement is false, we need only give one value of the variable for which the assertion
is untrue.

Another example of a quantifier is the phrase “There is an integer m” in the sentence

There is an integer m such that m2 > m.

This statement is also about the universe of integers, and as such it is true—there are plenty
of integers m we can substitute into the symbolic statement m2 > m to make it true. This is an
example of an “existential quantifier.” An existential quantifier asserts that a certain element of
our universe exists. A second important point similar to the one we made above is:

To show that a statement with an existential quantifier is true, we need only exhibit
one value of the variable being quantified that makes the statement true.

As the more complex statement

For every pair of positive integers m and n, there are nonnegative integers q and r
with 0 ≤ r < n such that m = qn + r,

shows, statements of mathematical interest abound with quantifiers. Recall the following defini-
tion of the “big-O” notation you have probably used in earlier computer science courses:

Definition 3.2 We say that f(x) = O(g(x)) if there are positive numbers c and n0 such that
f(x) ≤ cg(x) for every x > n0.

Exercise 3.2-2 Quantification is present in our everyday language as well. The sentences
“Every child wants a pony” and “No child wants a toothache” are two different
examples of quantified sentences. Give ten examples of everyday sentences that use
quantifiers, but use different words to indicate the quantification.

98 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

Exercise 3.2-3 Convert the sentence “No child wants a toothache” into a sentence of the
form “It is not the case that...” Find an existential quantifier in your sentence.

Exercise 3.2-4 What would you have to do to show that a statement about one variable
with an existential quantifier is false? Correspondingly, what would you have to do
to show that a statement about one variable with a universal quantifier is true?

As Exercise 3.2-2 points out, English has many different ways to express quantifiers. For
example, the sentences, “All hammers are tools”, “Each sandwich is delicious”, “No one in their
right mind would do that”, “Somebody loves me”, and “Yes Virginia, there is a Santa Claus” all
contain quantifiers. For Exercise 3.2-3, we can say “It is not the case that there is a child who
wants a toothache.” Our quantifier is the phrase “there is.”

To show that a statement about one variable with an existential quantifier is false, we have
to show that every element of the universe makes the statement (such as m2 > m) false. Thus
to show that the statement “There is an x in [0, 1] with x2 > x” is false, we have to show that
every x in the interval makes the statement x2 > x false. Similarly, to show that a statement
with a universal quantifier is true, we have to show that the statement being quantified is true for
every member of our universe. We will give more details about how to show a statement about
a variable is true or false for every member of our universe later in this section.

Mathematical statements of theorems, lemmas, and corollaries often have quantifiers. For
example in Lemma 2.5 the phrase “for any” is a quantifier, and in Corollary 2.6 the phrase
“there is” is a quantifier.

Standard notation for quantification

Each of the many variants of language that describe quantification describe one of two situations:

A quantified statement about a variable x asserts either

• that the statement is true for all x in the universe, or

• that there exists an x in the universe that makes the statement true.

All quantified statements have one of these two forms. We use the standard shorthand of ∀ for
the phrase “for all” and the standard shorthand of ∃ for the phrase “there exists.” We also adopt
the convention that we parenthesize the expression that is subject to the quantification. For
example, using Z to stand for the universe of all integers, we write

∀n ∈ Z (n2 ≥ n)

as a shorthand for the statement “For all integers n, n2 ≥ n.” It is perhaps more natural to read
the notation as “For all n in Z, n2 ≥ n,” which is how we recommend reading the symbolism.
We similarly use

∃n ∈ Z(n2 �> n)

to stand for “There exists an n in Z such that n2 �> n.” Notice that in order to cast our symbolic
form of an existence statement into grammatical English we have included the supplementary
word “an” and the supplementary phrase “such that.” People often leave out the “an” as they

3.2. VARIABLES AND QUANTIFIERS 99

read an existence statement, but rarely leave out the “such that.” Such supplementary language
is not needed with ∀.

As another example, we rewrite the definition of the “Big Oh” notation with these symbols.
We use the letter R to stand for the universe of real numbers, and the symbol R+ to stand for
the universe of positive real numbers.

f = O(g) means that ∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x))))

We would read this literally as

f is big Oh of g means that there exists a c in R+ such that there exists an n0 in R+

such that for all x in R, if x > n0, then f(x) ≤ cg(x).

Clearly this has the same meaning (when we translate it into more idiomatic English) as

f is big Oh of g means that there exist a c in R+ and an n0 in R+ such that for all
real numbers x > n0, f(x) ≤ cg(x).

This statement is identical to the definition of “big Oh” that we gave earlier in Definition 3.2,
except for more precision as to what c and n0 actually are.

Exercise 3.2-5 How would you rewrite Euclid’s division theorem, Theorem 2.12 using the
shorthand notation we have introduced for quantifiers? Use Z+ to to stand for the
positive integers and N to stand for the nonnegative integers.

We can rewrite Euclid’s division theorem as

∀m ∈ N(∀n ∈ Z+(∃q ∈ N(∃r ∈ N((r < n) ∧ (m = qn + r))))).

Statements about variables

To talk about statements about variables, we need a notation to use for such statements. For
example, we can use p(n) to stand for the statement n2 > n. Now, we can say that p(4) and
p(−3) are true, while p(1) and p(.5) are false. In effect we are introducing variables that stand
for statements about (other) variables! We typically use symbols like p(n), q(x), etc. to stand
for statements about a variable n or x. Then the statement “For all x in U p(x)” can be written
as ∀x ∈ U(p(x)) and the statement “There exists an n in U such that q(n)” can be written
as ∃n ∈ U(q(n)). Sometimes we have statements about more than one variable; for example,
our definition of “big Oh” notation had the form ∃c(∃n0(∀x(p(c, n0, x)))), where p(c, n0, x) is
(x > n0 ⇒ f(x) ≤ cg(x)). (We have left out mention of the universes for our variables here to
emphasize the form of the statement.)

Exercise 3.2-6 Rewrite Euclid’s division theorem, using the notation above for statements
about variables. Leave out the references to universes so that you can see clearly the
order in which the quantifiers occur.

The form of Euclid’s division theorem is ∀m(∀n(∃q(∃r(p(m, n, q, r))))).

100 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

Rewriting statements to encompass larger universes

It is sometimes useful to rewrite a quantified statement so that the universe is larger, and the
statement itself serves to limit the scope of the universe.

Exercise 3.2-7 Let R to stand for the real numbers and R+ to stand for the positive real
numbers. Consider the following two statements:

a) ∀x ∈ R+(x > 1)

b) ∃x ∈ R+(x > 1)

Rewrite these statements so that the universe is all the real numbers, but the state-
ments say the same thing in everyday English that they did before.

For Exercise 3.2-7, there are potentially many ways to rewrite the statements. Two partic-
ularly simple ways are ∀x ∈ R(x > 0 ⇒ x > 1) and ∃x ∈ R(x > 0 ∧ x > 1). Notice that we
translated one of these statements with “implies” and one with “and.” We can state this rule as
a general theorem:

Theorem 3.2 Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2. Suppose that
q(x) is a statement such that

U1 = {x| q(x) is true}. (3.2)

Then if p(x) is a statement about U2, it may also be interpreted as a statement about U1, and

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ⇒ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ∧ p(x)).

Proof: By Equation 3.2 the statement q(x) must be true for all x ∈ U1 and false for all x in U2

but not U1. To prove part (a) we must show that ∀x ∈ U1(p(x)) is true in exactly the same cases
as the statement ∀x ∈ U2(q(x) ⇒ p(x)). For this purpose, suppose first that ∀x ∈ U1(p(x)) is
true. Then p(x) is true for all x in U1. Therefore, by the truth table for “implies” and our remark
about Equation 3.2, the statement ∀x ∈ U2(q(x) ⇒ p(x)) is true. Now suppose ∀x ∈ U1(p(x)) is
false. Then there exists an x in U1 such that p(x) is false. Then by the truth table for “implies,”
the statement ∀x ∈ U2(q(x) ⇒ p(x)) is false. Thus the statement ∀x ∈ U1(p(x)) is true if and
only if the statement ∀x ∈ U2(q(x) ⇒ p(x)) is true. Therefore the two statements are true in
exactly the same cases. Part (a) of the theorem follows.

Similarly, for Part (b), we observe that if ∃x ∈ U1(p(x)) is true, then for some x′ ∈ U1, p(x′)
is true. For that x′, q(x′) is also true, and hence p(x′)∧ q(x′) is true, so that ∃x ∈ U2(q(x)∧p(x))
is true as well. On the other hand, if ∃x ∈ U1(p(x)) is false, then no x ∈ U1 has p(x) true.
Therefore by the truth table for “and” q(x)∧p(x) won’t be true either. Thus the two statements
in Part (b) are true in exactly the same cases and so are equivalent.

3.2. VARIABLES AND QUANTIFIERS 101

Proving quantified statements true or false

Exercise 3.2-8 Let R stand for the real numbers and R+ stand for the positive real
numbers. For each of the following statements, say whether it is true or false and
why.

a) ∀x ∈ R+(x > 1)

b) ∃x ∈ R+(x > 1)

c) ∀x ∈ R(∃y ∈ R(y > x))

d) ∀x ∈ R(∀y ∈ R(y > x))

e) ∃x ∈ R(x ≥ 0 ∧ ∀y ∈ R+(y > x))

In Exercise 3.2-8, since .5 is not greater than 1, statement (a) is false. However since 2 > 1,
statement (b) is true. Statement (c) says that for each real number x there is a real number y
bigger than x, which we know is true. Statement (d) says that every y in R is larger than every
x in R, and so it is false. Statement (e) says that there is a nonnegative number x such that
every positive y is larger than x, which is true because x = 0 fills the bill.

We can summarize what we know about the meaning of quantified statements as follows.

Principle 3.2 (The meaning of quantified statements)

• The statement ∃x ∈ U(p(x)) is true if there is at least one value of x in U for which the
statement p(x) is true.

• The statement ∃x ∈ U(p(x)) is false if there is no x ∈ U for which p(x) is true.

• The statement ∀x ∈ U(p(x)) is true if p(x) is true for each value of x in U .

• The statement ∀x ∈ U(p(x)) is false if p(x) is false for at least one value of x in U .

Negation of quantified statements

An interesting connection between ∀ and ∃ arises from the negation of statements.

Exercise 3.2-9 What does the statement “It is not the case that for all integers n, n2 > 0”
mean?

From our knowledge of English we see that since the statement ¬∀n ∈ Z(n2 > 0) asserts that it
is not the case that, for all integers n, we have n2 > 0, there must be some integer n such that
n2 �> 0. In other words, it says there is some integer n such that n2 ≤ 0. Thus the negation
of our “for all” statement is a “there exists” statement. We can make this idea more precise by
recalling the notion of equivalence of statements. We have said that two symbolic statements are
equivalent if they are true in exactly the same cases. By considering the case when p(x) is true
for all x ∈ U , (we call this case “always true”) and the case when p(x) is false for at least one
x ∈ U (we call this case “not always true”) we can analyze the equivalence. The theorem that
follows, which formalizes the example above in which p(x) was the statement x2 > 0, is proved
by dividing these cases into two possibilities.

102 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

Theorem 3.3 The statements ¬∀x ∈U(p(x)) and ∃x ∈ U(¬p(x)) are equivalent.

Proof: Consider the following table which we have set up much like a truth table, except
that the relevant cases are not determined by whether p(x) is true or false, but by whether p(x)
is true for all x in the universe U or not.

p(x) ¬p(x) ∀x ∈ U(p(x)) ¬∀x ∈ U(p(x)) ∃x ∈ U(¬p(x))
always true always false true false false

not always true not always false false true true

Since the last two columns are identical, the theorem holds.

Corollary 3.4 The statements ¬∃x ∈ U(q(x)) and ∀x ∈ U(¬q(x)) are equivalent.

Proof: Since the two statements in Theorem 3.3 are equivalent, their negations are also
equivalent. We then substitute ¬q(x) for p(x) to prove the corollary.

Put another way, to negate a quantified statement, you switch the quantifier and “push” the
negation inside.

To deal with the negation of more complicated statements, we simply take them one quantifier
at a time. Recall Definition 3.2, the definition of big Oh notation,

f(x) = O(g(x)) if ∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

What does it mean to say that f(x) is not O(g(x))? First we can write

f(x) �= O(g(x)) if ¬∃c ∈ R+(∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

After one application of Corollary 3.4 we get

f(x) �= O(g(x)) if ∀c ∈ R+(¬∃n0 ∈ R+(∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

After another application of Corollary 3.4 we obtain

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(¬∀x ∈ R(x > n0 ⇒ f(x) ≤ cg(x)))).

Now we apply Theorem 3.3 and obtain

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(∃x ∈ R(¬(x > n0 ⇒ f(x) ≤ cg(x))))).

Now ¬(p ⇒ q) is equivalent to p ∧ ¬q, so we can write

f(x) �= O(g(x)) if ∀c ∈ R+(∀n0 ∈ R+(∃x ∈ R((x > n0) ∧ (f(x) �≤ cg(x)))))).

Thus f(x) is not O(g(x)) if for every c in R+ and every n0 in R+, there is an x such that
x > n0 and f(x) �≤ cg(x).

In our next exercise, we use the “Big Theta” notation defined as follows:

3.2. VARIABLES AND QUANTIFIERS 103

Definition 3.3 f(x) = Θ(g(x)) means that f(x) = O(g(x)) and g(x) = O(f(x)).

Exercise 3.2-10 Express ¬(f(x) = Θ(g(x))) in terms similar to those we used to describe
f(x) �= O(g(x)).

Exercise 3.2-11 Suppose the universe for a statement p(x) is the integers from 1 to 10.
Express the statement ∀x(p(x)) without any quantifiers. Express the negation in
terms of ¬p without any quantifiers. Discuss how negation of “for all” and “there
exists” statements corresponds to DeMorgan’s Law.

By DeMorgan’s law, ¬(f = Θ(g)) means ¬(f = O(g)) ∨ ¬(g = O(f)). Thus ¬(f = Θ(g)) means
that either for every c and n0 in R+ there is an x in R with x > n0 and f(x) �< cg(x) or for every
c and n0 in R+ there is an x in R with x > n0 and g(x) < cf(x) (or both).

For Exercise 3.2-11 we see that ∀x(p(x)) is simply

p(1) ∧ p(2) ∧ p(3) ∧ p(4) ∧ p(5) ∧ p(6) ∧ p(7) ∧ p(8) ∧ p(9) ∧ p(10).

By DeMorgan’s law the negation of this statement is

¬p(1) ∨ ¬p(2) ∨ ¬p(3) ∨ ¬p(4) ∨ ¬p(5) ∨ ¬p(6) ∨ ¬p(7) ∨ ¬p(8) ∨ ¬p(9) ∨ ¬p(10).

Thus the relationship that negation gives between “for all” and “there exists” statements is the
extension of DeMorgan’s law from a finite number of statements to potentially infinitely many
statements about a potentially infinite universe.

Implicit quantification

Exercise 3.2-12 Are there any quantifiers in the statement “The sum of even integers is
even?”

It is an elementary fact about numbers that the sum of even integers is even. Another way
to say this is that if m and n are even, then m + n is even. If p(n) stands for the statement “n
is even,” then this last sentence translates to p(m) ∧ p(n) ⇒ p(m + n). From the logical form of
the statement, we see that our variables are free, so we could substitute various integers in for
m and n to see whether the statement is true. But in Exercise 3.2-12, we said we were stating a
more general fact about the integers. What we meant to say is that for every pair of integers m
and n, if m and n are even, then m + n is even. In symbols, using p(k) for “k is even,” we have

∀m ∈ Z(∀n ∈ Z(p(m) ∧ p(n) ⇒ p(m + n))).

This way of representing the statement captures the meaning we originally intended. This is one
of the reasons that mathematical statements and their proofs sometimes seem confusing—just as
in English, sentences in mathematics have to be interpreted in context. Since mathematics has
to be written in some natural language, and since context is used to remove ambiguity in natural
language, so must context be used to remove ambiguity from mathematical statements made in
natural language. In fact, we frequently rely on context in writing mathematical statements with
implicit quantifiers because, in context, it makes the statements easier to read. For example, in
Lemma 2.8 we said

104 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

The equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

In context it was clear that the a we were talking about was an arbitrary member of Zn. It would
simply have made the statement read more clumsily if we had said

For every a ∈ Zn, the equation
a ·n x = 1

has a solution in Zn if and only if there exist integers x and y such that

ax + ny = 1.

On the other hand, we were making a transition from talking about Zn to talking about the
integers, so it was important for us to include the quantified statement “there exist integers x
and y such that ax+ny = 1.” More recently in Theorem 3.3, we also did not feel it was necessary
to say “For all universes U and for all statements p about U ,” at the beginning of the theorem.
We felt the theorem would be easier to read if we kept those quantifiers implicit and let the reader
(not necessarily consciously) infer them from context.

Proof of quantified statements

We said that “the sum of even integers is even” is an elementary fact about numbers. How do
we know it is a fact? One answer is that we know it because our teachers told us so. (And
presumably they knew it because their teachers told them so.) But someone had to figure it out
in the first place, and so we ask how we would prove this statement? A mathematician asked to
give a proof that the sum of even numbers is even might write

If m and n are even, then m = 2i and n = 2j so that

m + n = 2i + 2j = 2(i + j)

and thus m + n is even.

Because mathematicians think and write in natural language, they will often rely on context
to remove ambiguities. For example, there are no quantifiers in the proof above. However the
sentence, while technically incomplete as a proof, captures the essence of why the sum of two
even numbers is even. A typical complete (but more formal and wordy than usual) proof might
go like this.

Let m and n be integers. Suppose m and n are even. If m and n are even, then by
definition there are integers i and j such that m = 2i and n = 2j. Thus there are
integers i and j such that m = 2i and n = 2j. Then

m + n = 2i + 2j = 2(i + j),

so by definition m + n is an even integer. We have shown that if m and n are even,
then m + n is even. Therefore for every m and n, if m and n are even integers, then
so is m + n.

3.2. VARIABLES AND QUANTIFIERS 105

We began our proof by assuming that m and n are integers. This gives us symbolic notation for
talking about two integers. We then appealed to the definition of an even integer, namely that
an integer h is even if there is another integer k so that h = 2k. (Note the use of a quantifier
in the definition.) Then we used algebra to show that m + n is also two times another number.
Since this is the definition of m + n being even, we concluded that m + n is even. This allowed
us to say that if m and n are even, the m + n is even. Then we asserted that for every pair of
integers m and n, if m and n are even, then m + n is even.

There are a number of principles of proof illustrated here. The next section will be devoted to
a discussion of principles we use in constructing proofs. For now, let us conclude with a remark
about the limitations of logic. How did we know that we wanted to write the symbolic equation

m + n = 2i + 2j = 2(i + j)?

It was not logic that told us to do this, but intuition and experience.

Important Concepts, Formulas, and Theorems

1. Varies over. We use the phrase varies over to describe the set of values a variable may take
on.

2. Universe. We call the set of possible values for a variable the universe of that variable.

3. Free variables. Variables that are not constrained in any way whatever are called free
variables.

4. Quantifier. A phrase that converts a symbolic statement about potentially any member of
our universe into a statement about the universe instead is called a quantifier. There are
two types of quantifiers:

• Universal quantifier. A quantifier that asserts a statement about a variable is true for
every value of the variable in its universe is called a universal quantifier.

• Existential quantifier. A quantifier that asserts a statement about a variable is true
for at least one value of the variable in its universe is called an existential quantifier.

5. Larger universes. Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2.
Suppose that q(x) is a statement such that

U1 = {x| q(x) is true}.

Then if p(x) is a statement about U2, it may also be interpreted as a statement about U1,
and

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ⇒ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ∧ p(x)).

6. Proving quantified statements true or false.

• The statement ∃x ∈ U(p(x)) is true if there is at least one value of x in U for which
the statement p(x) is true.

106 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

• The statement ∃x ∈ U(p(x)) is false if there is no x ∈ U for which p(x) is true.

• The statement ∀x ∈ U(p(x)) is true if p(x) is true for each value of x in U .

• The statement ∀x ∈ U(p(x)) is false if p(x) is false for at least one value of x in U .

7. Negation of quantified statements. To negate a quantified statement, you switch the quan-
tifier and push the negation inside.

• The statements ¬∀x ∈U(p(x)) and ∃x ∈ U(¬p(x)) are equivalent.

• The statements ¬∃x ∈U(p(x)) and ∀x ∈ U(¬p(x)) are equivalent.

8. Big-Oh We say that f(x) = O(g(x)) if there are positive numbers c and n0 such that
f(x) ≤ cg(x) for every x > n0.

9. Big-Theta. f(x) = Θ(g(x)) means that f = O(g(x)) and g = O(f(x)).

10. Some notation for sets of numbers. We use R to stand for the real numbers, R+ to stand
for the positive real numbers, Z to stand for the integers (positive, negative, and zero), Z+

to stand for the positive integers, and N to stand for the nonnegative integers.

Problems

1. For what positive integers x is the statement (x − 2)2 + 1 ≤ 2 true? For what integers
is it true? For what real numbers is it true? If we expand the universe for which we
are considering a statement about a variable, does this always increase the size of the
statement’s truth set?

2. Is the statement “There is an integer greater than 2 such that (x − 2)2 + 1 ≤ 2” true or
false? How do you know?

3. Write the statement that the square of every real number is greater than or equal to zero
as a quantified statement about the universe of real numbers. You may use R to stand for
the universe of real numbers.

4. The definition of a prime number is that it is an integer greater than 1 whose only positive
integer factors are itself and 1. Find two ways to write this definition so that all quantifiers
are explicit. (It may be convenient to introduce a variable to stand for the number and
perhaps a variable or some variables for its factors.)

5. Write down the definition of a greatest common divisor of m and n in such a way that
all quantifiers are explicit and expressed explicitly as “for all” or “there exists.” Write
down Euclid’s extended greatest common divisor theorem that relates the greatest common
divisor of m and n algebraically to m and n. Again make sure all quantifiers are explicit
and expressed explicitly as “for all” or “there exists.”

6. What is the form of the definition of a greatest common divisor, using s(x, y, z) to be the
statement x = yz and t(x, y) to be the statement x < y? (You need not include references
to the universes for the variables.)

7. Which of the following statements (in which Z+ stands for the positive integers and Z
stands for all integers) is true and which is false, and why?

3.2. VARIABLES AND QUANTIFIERS 107

(a) ∀z ∈ Z+(z2 + 6z + 10 > 20).

(b) ∀z ∈ Z(z2 − z ≥ 0).

(c) ∃z ∈ Z+(z − z2 > 0).

(d) ∃z ∈ Z(z2 − z = 6).

8. Are there any (implicit) quantifiers in the statement “The product of odd integers is odd?”
If so, what are they?

9. Rewrite the statement “The product of odd integers is odd,” with all quantifiers (including
any in the definition of odd integers) explicitly stated as “for all” or “there exist.”

10. Rewrite the following statement without any negations. It is not the case that there exists
an integer n such that n > 0 and for all integers m > n, for every polynomial equation
p(x) = 0 of degree m there are no real numbers for solutions.

11. Consider the following slight modification of Theorem 3.2. For each part below, either
prove that it is true or give a counterexample.

Let U1 be a universe, and let U2 be another universe with U1 ⊆ U2. Suppose that q(x) is a
statement such that U1 = {x| q(x) is true}.

(a) ∀x ∈ U1(p(x)) is equivalent to ∀x ∈ U2(q(x) ∧ p(x)).

(b) ∃x ∈ U1(p(x)) is equivalent to ∃x ∈ U2(q(x) ⇒ p(x)).

12. Let p(x) stand for “x is a prime,” q(x) for “x is even,” and r(x, y) stand for “x = y.” Write
down the statement “There is one and only one even prime,” using these three symbolic
statements and appropriate logical notation. (Use the set of integers for your universe.)

13. Each expression below represents a statement about the integers. Using p(x) for “x is
prime,” q(x, y) for “x = y2,” r(x, y) for “x ≤ y,” s(x, y, z) for “z = xy,” and t(x, y) for
“x = y,” determine which expressions represent true statements and which represent false
statements.

(a) ∀x ∈ Z(∃y ∈ Z(q(x, y) ∨ p(x)))

(b) ∀x ∈ Z(∀y ∈ Z(s(x, x, y) ⇔ q(x, y)))

(c) ∀y ∈ Z(∃x ∈ Z(q(y, x)))

(d) ∃z ∈ Z(∃x ∈ Z(∃y ∈ Z(p(x) ∧ p(y) ∧ ¬t(x, y)))

14. Find a reason why (∃x ∈ U(p(x)))∧(∃y ∈ U(q(y))) is not equivalent to ∃z ∈ U(p(z)∨q(z)).
Are the statements (∃x ∈ U(p(x))) ∨ (∃y ∈ U(q(y))) and ∃z ∈ U(p(z) ∨ q(z)) equivalent?

15. Give an example (in English) of a statement that has the form ∀x ∈ U(∃y ∈ V (p(x, y))).
(The statement can be a mathematical statement or a statement about “everyday life,” or
whatever you prefer.) Now write in English the statement using the same p(x, y) but of the
form ∃y ∈ V (∀x ∈ U(p(x, y))). Comment on whether “for all” and “there exist” commute.

108 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

3.3 Inference

Direct Inference (Modus Ponens) and Proofs

We concluded our last section with a proof that the sum of two even numbers is even. That
proof contained several crucial ingredients. First, we introduced symbols for members of the
universe of integers. In other words, rather than saying “suppose we have two integers,” we
introduced symbols for the two members of our universe we assumed we had. How did we know
to use algebraic symbols? There are many possible answers to this question, but in this case our
intuition was probably based on thinking about what an even number is, and realizing that the
definition itself is essentially symbolic. (You may argue that an even number is just twice another
number, and you would be right. Apparently no symbols are in that definition. But they really
are there; they are the phrases “even number” and “another number.” Since we all know algebra
is easier with symbolic variables rather than words, we should recognize that it makes sense to
use algebraic notation.) Thus this decision was based on experience, not logic.

Next we assumed the two integers were even. We then used the definition of even numbers,
and, as our previous parenthetic comment suggests, it was natural to use the definition symbol-
ically. The definition tells us that if m is an even number, then there exists another integer i
such that m = 2i. We combined this with the assumption that m is even to conclude that in
fact there does exist an integer i such that m = 2i. This is an example of using the principle of
direct inference (called modus ponens in Latin).

Principle 3.3 (Direct inference) From p and p ⇒ q we may conclude q.

This common-sense principle is a cornerstone of logical arguments. But why is it true? In Table
3.5 we take another look at the truth table for implication.

Table 3.5: Another look at implication

p q p ⇒ q

T T T
T F F
F T T
F F T

The only line which has a T in both the p column and the p ⇒ q column is the first line. In
this line q is true also, and we therefore conclude that if p and p ⇒ q hold then q must hold also.
While this may seem like a somewhat “inside out” application of the truth table, it is simply a
different way of using a truth table.

There are quite a few rules (called rules of inference) like the principle of direct inference that
people commonly use in proofs without explicitly stating them. Before beginning a formal study
of rules of inference, we complete our analysis of which rules we used in the proof that the sum
of two even integers is even. After concluding that m = 2i and n = 2j, we next used algebra to
show that because m = 2i and n = 2j, there exists a k such that m + n = 2k (our k was i + j).
Next we used the definition of even number again to say that m + n was even. We then used a
rule of inference which says

3.3. INFERENCE 109

Principle 3.4 (Conditional Proof) If, by assuming p, we may prove q, then the statement
p ⇒ q is true.

Using this principle, we reached the conclusion that if m and n are even integers, then m + n
is an even integer. In order to conclude that this statement is true for all integers m and n, we
used another rule of inference, one of the more difficult to describe. We originally introduced
the variables m and n. We used only well-known consequences of the fact that they were in the
universe of integers in our proof. Thus we felt justified in asserting that what we concluded about
m and n is true for any pair of integers. We might say that we were treating m and n as generic
members of our universe. Thus our rule of inference says

Principle 3.5 (Universal Generalization) If we can prove a statement about x by assuming
x is a member of our universe, then we can conclude the statement is true for every member of
our universe.

Perhaps the reason this rule is hard to put into words is that it is not simply a description of a
truth table, but is a principle that we use in order to prove universally quantified statements.

Rules of inference for direct proofs

We have seen the ingredients of a typical proof. What do we mean by a proof in general? A proof
of a statement is a convincing argument that the statement is true. To be more precise about
it, we can agree that a direct proof consists of a sequence of statements, each of which is either a
hypothesis5, a generally accepted fact, or the result of one of the following rules of inference for
compound statements.

Rules of Inference for Direct Proofs

1) From an example x that does not satisfy p(x), we may conclude ¬p(x).

2) From p(x) and q(x), we may conclude p(x) ∧ q(x).

3) From either p(x) or q(x), we may conclude p(x) ∨ q(x).

4) From either q(x) or ¬p(x) we may conclude p(x) ⇒ q(x).

5) From p(x) ⇒ q(x) and q(x) ⇒ p(x) we may conclude p(x) ⇔ q(x).

6) From p(x) and p(x) ⇒ q(x) we may conclude q(x).

7) From p(x) ⇒ q(x) and q(x) ⇒ r(x) we may conclude p(x) ⇒ r(x).

8) If we can derive q(x) from the hypothesis that x satisfies p(x), then we may conclude
p(x) ⇒ q(x).

9) If we can derive p(x) from the hypothesis that x is a (generic) member of our universe U ,
we may conclude ∀x ∈ U(p(x)).

5If we are proving an implication s ⇒ t, we call s a hypothesis. If we make assumptions by saying “Let
. . . ,” “Suppose . . . ,” or something similar before we give the statement to be proved, then these assumptions are
hypotheses as well.

110 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

10) From an example of an x ∈ U satisfying p(x) we may conclude ∃x ∈ U(p(x)).

The first rule is a statement of the principle of the excluded middle as it applies to statements
about variables. The next four four rules are in effect a description of the truth tables for “and,”
“or,” “implies” and “if and only if.” Rule 5 says what we must do in order to write a proof of
an “if and only if” statement. Rule 6, exemplified in our earlier discussion, is the principle of
direct inference, and describes one row of the truth table for p ⇒ q. Rule 7 is the transitive law,
one we could derive by truth table analysis. Rule 8, the principle of conditional proof, which is
also exemplified earlier, may be regarded as yet another description of one row of the truth table
of p ⇒ q. Rule 9 is the principle of universal generalization, discussed and exemplified earlier.
Rule 10 specifies what we mean by the truth of an existentially quantified statement, according
to Principle 3.2.

Although some of our rules of inference are redundant, they are useful. For example, we could
have written a portion of our proof that the sum of even numbers is even as follows without using
Rule 8.

“Let m and n be integers. If m is even, then there is a k with m = 2k. If n is even,
then there is a j with n = 2j. Thus if m is even and n is even, there are a k and j
such that m + n = 2k + 2j = 2(k + j). Thus if m is even and n is even, there is an
integer h = k + j such that m + n = 2h. Thus if m is even and n is even, m + n is
even.”

This kind of argument could always be used to circumvent the use of Rule 8, so Rule 8 is not
required as a rule of inference, but because it permits us to avoid such unnecessarily complicated
“silliness” in our proofs, we choose to include it. Rule 7, the transitive law, has a similar role.

Exercise 3.3-1 Prove that if m is even, then m2 is even. Explain which steps of the proof
use one of the rules of inference above.

For Exercise 3.3-1, we can mimic the proof that the sum of even integers is even.

Let m be integer. Suppose that m is even. If m is even, then there is a k with m = 2k.
Thus, there is a k such that m2 = 4k2. Therefore, there is an integer h = 2k2 such
that m2 = 2h. Thus if m is even, m2 is even. Therefore, for all integers m, if m is
even, then m2 is even.

In our first sentence we are setting things up to use Rule 9. In the second sentence we are simply
stating an implicit hypothesis. In the next two sentences we use Rule 6, the principle of direct
inference. When we said “Therefore, there is an integer h = 2k2 such that m2 = 2h,” we were
simply stating an algebraic fact. In our next sentence we used Rule 8. Finally, we used Rule 9.
You might have written the proof in a different way and used different rules of inference.

Contrapositive rule of inference.

Exercise 3.3-2 Show that “p implies q” is equivalent to “¬q implies ¬p.”

3.3. INFERENCE 111

Exercise 3.3-3 Is “p implies q” equivalent to “q implies p?”

To do Exercise 3.3-2, we construct the double truth table in Table 3.6. Since the columns
under p ⇒ q and under ¬q ⇒ ¬p are exactly the same, we know the two statements are equivalent.
This exercise tells us that if we know that ¬q ⇒ ¬p, then we can conclude that p ⇒ q. This is

Table 3.6: A double truth table for p ⇒ q and ¬q ⇒ ¬p.

p q p ⇒ q ¬p ¬q ¬q ⇒ ¬p

T T T F F T
T F F F T F
F T T T F T
F F T T T T

called the principle of proof by contraposition.

Principle 3.6 (Proof by Contraposition) The statement p ⇒ q and the statement ¬q ⇒ ¬p
are equivalent, and so a proof of one is a proof of the other.

The statement ¬q ⇒ ¬p is called the contrapositive of the statement p ⇒ q. The following
example demonstrates the utility of the principle of proof by contraposition.

Lemma 3.5 If n is a positive integer with n2 > 100, then n > 10.

Proof: Suppose n is not greater than 10. (Now we use the rule of algebra for inequalities which
says that if x ≤ y and c ≥ 0, then cx ≤ cy.) Then since 1 ≤ n ≤ 10,

n · n ≤ n · 10 ≤ 10 · 10 = 100.

Thus n2 is not greater than 100. Therefore, if n is not greater than 10, n2 is not greater than
100. Then, by the principle of proof by contraposition, if n2 > 100, n must be greater than 10.

We adopt Principle 3.6 as a rule of inference, called the contrapositive rule of inference.

11) From ¬q(x) ⇒ ¬p(x) we may conclude p(x) ⇒ q(x).

In our proof of the Chinese Remainder Theorem, Theorem 2.24, we wanted to prove that for a
certain function f that if x and y were different integers between 0 and mn−1, then f(x) �= f(y).
To prove this we assumed that in fact f(x) = f(y) and proved that x and y were not different
integers between 0 and mn − 1. Had we known the principle of contrapositive inference, we
could have concluded then and there that f was one-to-one. Instead, we used the more common
principle of proof by contradiction, the major topic of the remainder of this section, to complete
our proof. If you look back at the proof, you will see that we might have been able to shorten it
by a sentence by using contrapositive inference.

For Exercise 3.3-3, a quick look at the double truth table for p ⇒ q and q ⇒ p in Table 3.7
demonstrates that these two statements are not equivalent. The statement q ⇒ p is called the
converse of p ⇒ q. Notice that p ⇔ q is true exactly when p ⇒ q and its converse are true. It
is surprising how often people, even professional mathematicians, absent-mindedly try to prove
the converse of a statement when they mean to prove the statement itself. Try not to join this
crowd!

112 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

Table 3.7: A double truth table for p ⇒ q and q ⇒ p.

p q p ⇒ q q ⇒ p

T T T T
T F F T
F T T F
F F T T

Proof by contradiction

Proof by contrapositive inference is an example of what we call indirect proof. We have actually
seen another example indirect proof, the principle of proof by contradiction. In our proof of
Corollary 2.6 we introduced the principle of proof by contradiction, Principle 2.1. We were
trying to prove the statement

Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

We assumed that the hypothesis that a ·n x = b does not have a solution was true. We also
assumed that the conclusion that a does not have a multiplicative inverse was false. We showed
that these two assumptions together led to a contradiction. Then, using the principle of the
excluded middle, Principle 3.1 (without saying so), we concluded that if the hypothesis is in fact
true, then the only possibility was that the conclusion is true as well.

We used the principle again later in our proof of Euclid’s Division Theorem. Recall that in
that proof we began by assuming that the theorem was false. We then chose among the pairs
of integers (m, n) such that m �= qn + r with 0 ≤ r < n a pair with the smallest possible m.
We then made some computations by which we proved that in this case there are a q and r with
0 ≤ r < n such that m = qn + r. Thus we started out by assuming the theorem was false, and
from that assumption we drew drew a contradiction to the assumption. Since all our reasoning,
except for the assumption that the theorem was false, used accepted rules of inference, the only
source of that contradiction was our assumption. Thus, by the principle of the excluded middle,
our assumption had to be incorrect. We adopt the principle of proof by contradiction (also called
the principle of reduction to absurdity) as our last rule of inference.

12) If from assuming p(x) and ¬q(x), we can derive both r(x) and ¬r(x) for some statement
r(x), then we may conclude p(x) ⇒ q(x).

There can be many variations of proof by contradiction. For example, we may assume p is
true and q is false, and from this derive the contradiction that p is false, as in the following
example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. This contradicts x2 + x − 2 = 0. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, then x �= 0.

3.3. INFERENCE 113

Here the statement r was identical to p, namely x2 + x − 2 = 0.

On the other hand, we may instead assume p is true and q is false, and derive a contradiction
of a known fact, as in the following example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. Thus 0 = −2, a contradiction. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, then x �= 0.

Here the statement r is the known fact that 0 �= −2.

Sometimes the statement r that appears in the principle of proof by contradiction is simply
a statement that arises naturally as we are trying to construct our proof, as in the following
example.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Suppose that x2 + x − 2 = 0. Then x2 + x = 2. Assume that x = 0. Then
x2 + x = 0 + 0 = 0. But this is a contradiction (to our observation that x2 + x = 2).
Thus (by the principle of proof by contradiction), if x2 + x − 2 = 0, then x �= 0.

Here the statement r is “x2 + x = 2.”

Finally, if proof by contradiction seems to you not to be much different from proof by con-
traposition, you are right, as the example that follows shows.

Prove that if x2 + x − 2 = 0, then x �= 0.

Proof: Assume that x = 0. Then x2+x−2 = 0+0−2 = −2, so that x2+x−2 �= 0.
Thus (by the principle of proof by contraposition), if x2 + x − 2 = 0, then x �= 0.

Any proof that uses one of the indirect methods of inference is called an indirect proof. The last
four examples illustrate the rich possibilities that indirect proof provides us. Of course they also
illustrate why indirect proof can be confusing. There is no set formula that we use in writing a
proof by contradiction, so there is no rule we can memorize in order to formulate indirect proofs.
Instead, we have to ask ourselves whether assuming the opposite of what we are trying to prove
gives us insight into why the assumption makes no sense. If it does, we have the basis of an
indirect proof, and the way in which we choose to write it is a matter of personal choice.

Exercise 3.3-4 Without extracting square roots, prove that if n is a positive integer such
that n2 < 9, then n < 3. You may use rules of algebra for dealing with inequalities.

Exercise 3.3-5 Prove that
√

5 is not rational.

To prove the statement in Exercise 3.3-4, we assume, for purposes of contradiction, that n ≥ 3.
Squaring both sides of this equation, we obtain

n2 ≥ 9 ,

114 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

which contradicts our hypothesis that n2 < 9. Therefore, by the principle of proof by contradic-
tion, n < 3.

To prove the statement in Exercise 3.3-5, we assume, for the purpose of contradiction, that
√

5
is rational. This means that it can be expressed as the fraction m

n , where m and n are integers.
Squaring both sides of the equation m

n =
√

5, we obtain

m2

n2
= 5,

or
m2 = 5n2.

Now m2 must have an even number of prime factors (counting each prime factor as many times
as it occurs) as must n2. But 5n2 has an odd number of prime factors. Thus a product of an
even number of prime factors is equal to a product of an odd number of prime factors, which is
a contradiction since each positive integer may be expressed uniquely as a product of (positive)
prime numbers. Thus by the principle of proof by contradiction,

√
5 is not rational.

Important Concepts, Formulas, and Theorems

1. Principle of direct inference or modus ponens. From p and p ⇒ q we may conclude q.

2. Principle of conditional proof. If, by assuming p, we may prove q, then the statement p ⇒ q
is true.

3. Principle of universal generalization. If we can prove a statement about x by assuming x is
a member of our universe, then we can conclude it is true for every member of our universe.

4. Rules of Inference. 12 rules of inference appear in this chapter. They are

1) From an example x that does not satisfy p(x), we may conclude ¬p(x).

2) From p(x) and q(x), we may conclude p(x) ∧ q(x).

3) From either p(x) or q(x), we may conclude p(x) ∨ q(x).

4) From either q(x) or ¬p(x) we may conclude p(x) ⇒ q(x).

5) From p(x) ⇒ q(x) and q(x) ⇒ p(x) we may conclude p(x) ⇔ q(x).

6) From p(x) and p(x) ⇒ q(x) we may conclude q(x).

7) From p(x) ⇒ q(x) and q(x) ⇒ r(x) we may conclude p(x) ⇒ r(x).

8) If we can derive q(x) from the hypothesis that x satisfies p(x), then we may conclude
p(x) ⇒ q(x).

9) If we can derive p(x) from the hypothesis that x is a (generic) member of our universe
U , we may conclude ∀x ∈ U(p(x)).

10) From an example of an x ∈ U satisfying p(x) we may conclude ∃x ∈ U(p(x)).

11) From ¬q(x) ⇒ ¬p(x) we may conclude p(x) ⇒ q(x).

12) If from assuming p(x) and ¬q(x), we can derive both r(x) and ¬r(x) for some statement
r, then we may conclude p(x) ⇒ q(x).

3.3. INFERENCE 115

5. Contrapositive of p ⇒ q. The contrapositive of the statement p ⇒ q is the statement
¬q ⇒ ¬p.

6. Converse of p ⇒ q. The converse of the statement p ⇒ q is the statement q ⇒ p.

7. Contrapositive rule of inference. From ¬q ⇒ ¬p we may conclude p ⇒ q.

8. Principle of proof by contradiction. If from assuming p and ¬q, we can derive both r and
¬r for some statement r, then we may conclude p ⇒ q.

Problems

1. Write down the converse and contrapositive of each of these statements.

(a) If the hose is 60 feet long, then the hose will reach the tomatoes.

(b) George goes for a walk only if Mary goes for a walk.

(c) Pamela recites a poem if Andre asks for a poem.

2. Construct a proof that if m is odd, then m2 is odd.

3. Construct a proof that for all integers m and n, if m is even and n is odd, then m + n is
odd.

4. What do we really mean when we say “prove that if m is odd and n is odd then m + n is
even?” Prove this more precise statement.

5. Prove that for all integers m and n if m is odd and n is odd, then m · n is odd.

6. Is the statement p ⇒ q equivalent to the statement ¬p ⇒ ¬q?

7. Construct a contrapositive proof that for all real numbers x if x2 − 2x �= −1, then x �= 1.

8. Construct a proof by contradiction that for all real numbers x if x2−2x �= −1, then x �= 1.

9. Prove that if x3 > 8, then x > 2.

10. Prove that
√

3 is irrational.

11. Construct a proof that if m is an integer such that m2 is even, then m is even.

12. Prove or disprove the following statement. “For every positive integer n, if n is prime, then
12 and n3 − n2 + n have a common factor.”

13. Prove or disprove the following statement. “For all integers b, c, and d, if x is a rational
number such that x2 + bx + c = d, then x is an integer.” (Hints: Are all the quantifiers
given explicitly? It is ok to use the quadratic formula.)

14. Prove that there is no largest prime number.

15. Prove that if f(x), g(x) and h(x) are functions from R+ to R+ such that f(x) = O(g(x))
and g(x) = O(h(x)), then f(x) = O(h(x)).

116 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

Chapter 4

Induction, Recursion, and
Recurrences

4.1 Mathematical Induction

Smallest Counter-Examples

In Section 3.3, we saw one way of proving statements about infinite universes: we considered a
“generic” member of the universe and derived the desired statement about that generic member.
When our universe is the universe of integers, or is in a one-to-one correspondence with the
integers, there is a second technique we can use.

Recall our our proof of Euclid’s Division Theorem (Theorem 2.12), which says that for each
pair (m, n) of positive integers, there are nonnegative integers q and r such that m = nq + r and
0 ≤ r < n. For the purpose of a proof by contradiciton, we assumed that the statement was
fales. Then we said the following. “Among all pairs (m, n) that make it false, choose the smallest
m that makes it false. We cannot have m < n because then the statement would be true with
q = 0 and r = m, and we cannot have m = n because then the statement is true with q = 1
and r = 0. This means m − n is a positive number smaller than m. We assumed that m was
the smallest value that made the theorem false, and so the theorem must be true for the pair
(m − n, n). Therefore, there must exist a q′ and r′ such that

m − n = q′n + r′, with 0 ≤ r′ < n.

Thus m = (q′+1)n+r′. Now, by setting q = q′+1 and r = r′, we can satisfy the theorem for the
pair (m, n), contradicting the assumption that the statement is false. Thus the only possibility
is that the statement is true.”

Focus on the sentences “This means m−n is a positive number smaller than m. We assumed
that m was the smallest value that made the theorem false, and so the theorem must be true for
the pair (m − n, n). Therefore, there must exist a q′ and r′ such that

m − n = q′n + r′, with 0 ≤ r′ < n.

Thus m = (q′ + 1)n + r′.” To analyze these sentences, let p(m, n) denote the statement “there
are nonnegative integers q and r with 0 ≤ r < n such that m = nq + r” The quoted sentences

117

118 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

we focused on provide a proof that p(m − n, n) ⇒ p(m, n). This implication is the crux of the
proof. Let us give an analysis of the proof that shows the pivotal role of this impliction.

• We assumed a counter-example with a smallest m existed.

• Then using the fact that p(m′, n) had to be true for every m′ smaller than m, we chose
m′ = m − n, and observed that p(m′, n) had to be true.

• Then we used the implication p(m − n, n) ⇒ p(m, n) to conclude the truth of p(m, n).

• But we had assumed that p(m, n) was false, so this is the assumption we contradicted in
the proof by contradiction.

Exercise 4.1-1 In Chapter 1 we learned Gauss’s trick for showing that for all positive
integers n,

1 + 2 + 3 + 4 + ... + n =
n(n + 1)

2
. (4.1)

Use the technique of asserting that if there is a counter-example, there is a smallest
counter-example and deriving a contradiction to prove that the sum is n(n + 1)/2.
What implication did you have to prove in the process?

Exercise 4.1-2 For what values of n ≥ 0 do you think 2n+1 ≥ n2 + 2? Use the technique
of asserting there is a smallest counter-example and deriving a contradiction to prove
you are right. What implication did you have to prove in the process?

Exercise 4.1-3 For what values of n ≥ 0 do you think 2n+1 ≥ n2 + 3? Is it possible
to use the technique of asserting there is a smallest counter-example and deriving a
contradiction to prove you are right? If so, do so and describe the implication you
had to prove in the process. If not, why not?

Exercise 4.1-4 Would it make sense to say that if there is a counter example there is a
largest counter-example and try to base a proof on this? Why or why not?

In Exercise 4.1-1, suppose the formula for the sum is false. Then there must be a smallest
n such that the formula does not hold for the sum of the first n positive integers. Thus for any
positive integer i smaller than n,

1 + 2 + · · · + i =
i(i + 1)

2
. (4.2)

Because 1 = 1 · 2/2, Equation 4.1 holds when n = 1, and therefore the smallest counterexample
is not when n = 1. So n > 1, and n − 1 is one of the positive integers i for which the formula
holds. Substituting n − 1 for i in Equation 4.2 gives us

1 + 2 + · · · + n − 1 =
(n − 1)n

2
.

Adding n to both sides gives

1 + 2 + · · · + n − 1 + n =
(n − 1)n

2
+ n

=
n2 − n + 2n

2

=
n(n + 1)

2
.

4.1. MATHEMATICAL INDUCTION 119

Thus n is not a counter-example after all, and therefore there is no counter-example to the
formula. Thus the formula holds for all positive integers n. Note that the crucial step was
proving that p(n − 1) ⇒ p(n), where p(n) is the formula

1 + 2 + · · · + n =
n(n + 1)

2
.

In Exercise 4.1-2, let p(n) be the statement that 2n+1 ≥ n2 + 2. Some experimenting with
small values of n leads us to believe this statement is true for all nonnegative integers. Thus we
want to prove p(n) is true for all nonnegative integers n. To do so, we assume that the statement
that “p(n) is true for all nonnegative integers n” is false. When a “for all” statement is false,
there must be some n for which it is false. Therefore, there is some smallest nonnegative integer
n so that 2n+1 �≥ n2 + 2. Assume now that n has this value. This means that for all nonnegative
integers i with i < n, 2i+1 ≥ i2 + 2. Since we know from our experimentation that n �= 0, we
know n − 1 is a nonnegative integer less than n, so using n − 1 in place of i, we get

2(n−1)+1 ≥ (n − 1)2 + 2,

or

2n ≥ n2 − 2n + 1 + 2
= n2 − 2n + 3. (4.3)

From this we want to draw a contradiction, presumably a contradiction to 2n+1 �≥ n2 + 2.

To get the contradiction, we want to convert the left-hand side of Equation 4.3 to 2n+1. For
this purpose, we multiply both sides by 2, giving

2n+1 = 2 · 2n

≥ 2n2 − 4n + 6 .

You may have gotten this far and wondered “What next?” Since we want to obtain a contra-
diction, we want to convert the right hand side into something like n2 + 2. More precisely, we
will convert the right-hand side into n2 + 2 plus an additional term. If we can show that the
additional term is nonnegative, the proof will be complete. Thus we write

2n+1 ≥ 2n2 − 4n + 6
= (n2 + 2) + (n2 − 4n + 4)
= n2 + 2 + (n − 2)2

≥ n2 + 2 , (4.4)

since (n − 2)2 ≥ 0. This is a contradiction, so there must not have been a smallest counter-
example, and thus there must be no counter-example. Therefore 2n ≥ n2 + 2 for all nonnegative
integers n.

What implication did we prove above? Let p(n) stand for 2n+1 ≥ n2 + 2. Then in Equations
4.3 and 4.4 we proved that p(n − 1) ⇒ p(n). Notice that at one point in our proof we had to
note that we had considered the case with n = 0 already. Although we have given a proof by
smallest counterexample, it is natural to ask whether it would make more sense to try to prove
the statement directly. Would it make more sense to forget about the contradiction now that we

120 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

have p(n − 1) ⇒ p(n) in hand and just observe that p(0) and p(n − 1) ⇒ p(n) implies p(1),that
p(1) and p(n − 1) ⇒ p(n) implies p(2), and so on so that we have p(k) for every k? We will
address this question shortly.

Now let’s consider Exercise 4.1-3. Notice that 2n+1 �> n2+3 for n = 0 and 1, but 2n+1 > n2+3
for any larger n we look at at. Let us try to prove that 2n+1 > n2 + 3 for n ≥ 2. We now let
p′(n) be the statement 2n+1 > n2 +3. We can easily prove p′(2): since 8 = 23 ≥ 22 +3 = 7. Now
suppose that among the integers larger than 2 there is a counter-example m to p′(n). That is,
suppose that there is an m such that m > 2 and p′(m) is false. Then there is a smallest such m, so
that for k between 2 and m−1, p′(k) is true. If you look back at your proof that p(n−1) ⇒ p(n),
you will see that, when n ≥ 2, essentially the same proof applies to p′ as well. That is, with
very similar computations we can show that p′(n − 1) ⇒ p′(n), so long as n ≥ 2. Thus since
p′(m − 1) is true, our implication tells us that p′(m) is also true. This is a contradiction to our
assumption that p′(m) is false. therefore, p′(m) is true. Again, we could conclude from p′(2) and
p′(2) ⇒ p′(3) that p′(3) is true, and similarly for p′(4), and so on. The implication we had to
prove was p′(n − 1) ⇒ p′(n).

For Exercise 4.1-4 if we have a counter-example to a statement p(n) about an integer n,
this means that there is an m such that p(m) is false. To find a smallest counter example we
would need to examine p(0), p(1), . . . , perhaps all the way up to p(m) in order to find a smallest
counter-example, that is a smallest number k such that p(k) is false. Since this involves only a
finite number of cases, it makes sense to assert that there is a smallest counter-example. But, in
answer to Exercise 4.1-4, it does not make sense to assert that there is a largest counter example,
because there are infinitely many cases n that we would have to check in hopes if finding a largest
one, and thus we might never find one. Even if we found one, we wouldn’t be able to figure out
that we had a largest counter-example just by checking larger and larger values of n, because we
would never run out of values of n to check. Sometimes there is a largest counter-example, as in
Exercise 4.1-3. To prove this, though, we didn’t check all cases. Instead, based on our intuition,
we guessed that the largest counter example was n = 1. Then we proved that we were right by
showing that among numbers greater than or equal to two, there is no smallest counter-example.
Sometimes there is no largest counter example n to a statement p(n); for example n2 < n is false
for all all integers n, and therefore there is no largest counter-example.

The Principle of Mathematical Induction

It may seem clear that repeatedly using the implication p(n−1) ⇒ p(n) will prove p(n) for all n (or
all n ≥ 2). That observation is the central idea of the Principle of Mathematical Induction, which
we are about to introduce. In a theoretical discussion of how one constructs the integers from first
principles, the principle of mathematical induction (or the equivalent principle that every set of
nonnegative integers has a smallest element, thus letting us use the “smallest counter-example”
technique) is one of the first principles we assume. The principle of mathematical induction is
usually described in two forms. The one we have talked about so far is called the “weak form.”
It applies to statements about integers n.

The Weak Principle of Mathematical Induction. If the statement p(b) is true, and the
statement p(n − 1) ⇒ p(n) is true for all n > b, then p(n) is true for all integers n ≥ b.

Suppose, for example, we wish to give a direct inductive proof that 2n+1 > n2 + 3 for n ≥ 2.
We would proceed as follows. (The material in square brackets is not part of the proof; it is a

4.1. MATHEMATICAL INDUCTION 121

running commentary on what is going on in the proof.)

We shall prove by induction that 2n+1 > n2 +3 for n ≥ 2. First, 22+1 = 23 = 8, while
22 + 3 = 7. [We just proved p(2). We will now proceed to prove p(n − 1) ⇒ p(n).]
Suppose now that n > 2 and that 2n > (n − 1)2 + 3. [We just made the hypothesis
of p(n − 1) in order to use Rule 8 of our rules of inference.]

Now multiply both sides of this inequality by 2, giving us

2n+1 > 2(n2 − 2n + 1) + 6
= n2 + 3 + n2 − 4n + 4 + 1
= n2 + 3 + (n − 2)2 + 1 .

Since (n − 2)2 + 1 is positive for n > 2, this proves 2n+1 > n2 + 3. [We just showed
that from the hypothesis of p(n − 1) we can derive p(n). Now we can apply Rule 8
to assert that p(n − 1) ⇒ p(n).] Therefore

2n > (n − 1)2 + 3 ⇒ 2n+1 > n2 + 3.

Therefore by the principle of mathematical induction, 2n+1 > n2 + 3 for n ≥ 2.

In the proof we just gave, the sentence “First, 22+1 = 23 = 8, while 22 + 3 = 7” is called
the base case. It consisted of proving that p(b) is true, where in this case b is 2 and p(n) is
2n+1 > n2 + 3. The sentence “Suppose now that n > 2 and that 2n > (n − 1)2 + 3.” is called
the inductive hypothesis. This is the assumption that p(n − 1) is true. In inductive proofs, we
always make such a hypothesis1 in order to prove the implication p(n− 1) ⇒ p(n). The proof of
the implication is called the inductive step of the proof. The final sentence of the proof is called
the inductive conclusion.

Exercise 4.1-5 Use mathematical induction to show that

1 + 3 + 5 + · · · + (2k − 1) = k2

for each positive integer k.

Exercise 4.1-6 For what values of n is 2n > n2? Use mathematical induction to show
that your answer is correct.

For Exercise 4.1-5, we note that the formula holds when k = 1. Assume inductively that the
formula holds when k = n − 1, so that 1 + 3 + · · · + (2n − 3) = (n − 1)2. Adding 2n − 1 to both
sides of this equation gives

1 + 3 + · · · + (2n − 3) + (2n − 1) = n2 − 2n + 1 + 2n − 1
= n2. (4.5)

Thus the formula holds when k = n, and so by the principle of mathematical induction, the
formula holds for all positive integers k.

1At times, it might be more convenient to assume that p(n) is true and use this assumption to prove that
p(n + 1) is true. This proves the implication p(n) ⇒ p(n + 1), which lets us reason in the same way.

122 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Notice that in our discussion of Exercise 4.1-5 we nowhere mentioned a statement p(n). In
fact, p(n) is the statement we get by substituting n for k in the formula, and in Equation 4.5 we
were proving p(n − 1) ⇒ p(n). Next notice that we did not explicitly say we were going to give
a proof by induction; instead we told the reader when we were making the inductive hypothesis
by saying “Assume inductively that” This convention makes the prose flow nicely but still
tells the reader that he or she is reading a proof by induction. Notice also how the notation in
the statement of the exercise helped us write the proof. If we state what we are trying to prove
in terms of a variable other than n, say k, then we can assume that our desired statement holds
when this variable (k) is n − 1 and then prove that the statement holds when k = n. Without
this notational device, we have to either mention our statement p(n) explicitly, or avoid any
discussion of substituting values into the formula we are trying to prove. Our proof above that
2n+1 > n2 + 3 demonstrates this last approach to writing an inductive proof in plain English.
This is usually the “slickest” way of writing an inductive proof, but it is often the hardest to
master. We will use this approach first for the next exercise.

For Exercise 4.1-6 we note that 2 = 21 > 12 = 1, but then the inequality fails for n = 2, 3, 4.
However, 32 > 25. Now we assume inductively that for n > 5 we have 2n−1 > (n − 1)2.
Multiplying by 2 gives us

2n > 2(n2 − 2n + 1) = n2 + n2 − 4n + 2
> n2 + n2 − n · n
= n2 ,

since n > 5 implies that −4n > −n·n. (We also used the fact that n2+n2−4n+2 > n2+n2−4n.)
Thus by the principle of mathematical induction, 2n > n2 for all n ≥ 5.

Alternatively, we could write the following. Let p(n) denote the inequality 2n > n2. Then p(5)
is true because 32 > 25. Assume that n > 5 and p(n − 1) is true. This gives us 2n−1 > (n − 1)2.
Multiplying by 2 gives

2n > 2(n2 − 2n + 1)
= n2 + n2 − 4n + 2
> n2 + n2 − n · n
= n2 ,

since n > 5 implies that −4n > −n · n. Therefore p(n − 1) ⇒ p(n). Thus by the principle of
mathematical induction, 2n > n2 for all n ≥ 5.

Notice how the “slick” method simply assumes that the reader knows we are doing a proof
by induction from our ”Assume inductively. . . ,” and mentally supplies the appropriate p(n) and
observes that we have proved p(n − 1) ⇒ p(n) at the right moment.

Here is a slight variation of the technique of changing variables. To prove that 2n > n2 when
n ≥ 5, we observe that the inequality holds when n = 5 since 32 > 25. Assume inductively that
the inequality holds when n = k, so that 2k > k2. Now when k ≥ 5, multiplying both sides of
this inequality by 2 yields

2k+1 > 2k2 = k2 + k2

≥ k2 + 5k

> k2 + 2k + 1
= (k + 1)2 ,

4.1. MATHEMATICAL INDUCTION 123

since k ≥ 5 implies that k2 ≥ 5k and 5k = 2k+3k > 2k+1. Thus by the principle of mathematical
induction, 2n > n2 for all n ≥ 5.

This last variation of the proof illustrates two ideas. First, there is no need to save the name
n for the variable we use in applying mathematical induction. We used k as our “inductive
variable” in this case. Second, as suggested in a footnote earlier, there is no need to restrict
ourselves to proving the implication p(n − 1) ⇒ p(n). In this case, we proved the implication
p(k) ⇒ p(k +1). Clearly these two implications are equivalent as n ranges over all integers larger
than b and as k ranges over all integers larger than or equal to b.

Strong Induction

In our proof of Euclid’s division theorem we had a statement of the form p(m, n) and, assuming
that it was false, we chose a smallest m such that p(m, n) is false for some n. This meant we
could assume that p(m′, n) is true for all m′ < m, and we needed this assumption, because we
ended up showing that p(m − n, n) ⇒ p(m, n) in order to get our contradiction. This situation
differs from the examples we used to introduce mathematical induction, for in those we used an
implication of the form p(n− 1) ⇒ p(n). The essence of our method in proving Euclid’s division
theorem is that we have a statement q(k) we want to prove. We suppose it is false, so that there
must be a smallest k for which q(k) is false. This means we may assume q(k′) is true for all k′

in the universe of q with k′ < k. We then use this assumption to derive a proof of q(k), thus
generating our contradiction.

Again, we can avoid the step of generating a contradiction in the following way. Suppose first
we have a proof of q(0). Suppose also that we have a proof that

q(0) ∧ q(1) ∧ q(2) ∧ . . . ∧ q(k − 1) ⇒ q(k)

for all k larger than 0. Then from q(0) we can prove q(1), from q(0) ∧ q(1) we can prove q(2),
from q(0)∧ q(1)∧ q(2) we can prove q(3) and so on, giving us a proof of q(n) for any n we desire.
This is another form of the mathematical induction principle. We use it when, as in Euclid’s
division theorem, we can get an implication of the form q(k′) ⇒ q(k) for some k′ < k or when
we can get an implication of the form q(0) ∧ q(1) ∧ q(2) ∧ . . . ∧ q(k − 1) ⇒ q(k). (As is the case
in Euclid’s division theorem, we often don’t really know what the k′ is, so in these cases the first
kind of situation is really just a special case of the second. Thus, we do not treat the first of
the two implications separately.) We have described the method of proof known as the Strong
Principle of Mathematical Induction.

The Strong Principle of Mathematical Induction. If the statement p(b) is true, and the
statement p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n) is true for all n > b, then p(n) is true for
all integers n ≥ b.

Exercise 4.1-7 Prove that every positive integer is either a power of a prime number or
the product of powers of prime numbers.

In Exercise 4.1-7 we can observe that 1 is a power of a prime number; for example 1 = 20.
Suppose now we know that every number less than n is a power of a prime number or a product
of powers of prime numbers. Then if n is not a prime number, it is a product of two smaller

124 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

numbers, each of which is, by our supposition, a power of a prime number or a product of powers
of prime numbers. Therefore n is a power of a prime number or a product of powers of prime
numbers. Thus, by the strong principle of mathematical induction, every positive integer is a
power of a prime number or a product of powers of prime numbers.

Note that there was no explicit mention of an implication of the form

p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n) .

This is common with inductive proofs. Note also that we did not explicitly identify the base case
or the inductive hypothesis in our proof. This is common too. Readers of inductive proofs are
expected to recognize when the base case is being given and when an implication of the form
p(n − 1) ⇒ p(n) or p(b) ∧ p(b + 1) ∧ · · · ∧ p(n − 1) ⇒ p(n) is being proved.

Mathematical induction is used frequently in discrete math and computer science. Many
quantities that we are interested in measuring, such as running time, space, or output of a
program, typically are restricted to positive integers, and thus mathematical induction is a natural
way to prove facts about these quantities. We will use it frequently throughout this book. We
typically will not distinguish between strong and weak induction, we just think of them both as
induction. (In Problems 14 and 15 at the end of the section you will be asked to derive each
version of the principle from the other.)

Induction in general

To summarize what we have said so far, a typical proof by mathematical induction showing that
a statement p(n) is true for all integers n ≥ b consists of three steps.

1. First we show that p(b) is true. This is called “establishing a base case.”

2. Then we show either that for all n > b, p(n − 1) ⇒ p(n), or that for all n > b,

p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n).

For this purpose, we make either the inductive hypothesis of p(n − 1) or the inductive
hypothesis p(b)∧ p(b + 1)∧ . . .∧ p(n− 1). Then we derive p(n) to complete the proof of the
implication we desire, either p(n − 1) ⇒ p(n) or p(b) ∧ p(b + 1) ∧ . . . ∧ p(n − 1) ⇒ p(n).

Instead we could

2.′ show either that for all n ≥ b, p(n) ⇒ p(n + 1) or

p(b) ∧ p(b + 1) ∧ · · · ∧ p(n) ⇒ p(n + 1).

For this purpose, we make either the inductive hypothesis of p(n) or the inductive hypothesis
p(b)∧p(b+1)∧ . . .∧p(n). Then we derive p(n = 1) to complete the proof of the implication
we desire, either p(n) ⇒ p(n = 1) or p(b) ∧ p(b + 1) ∧ . . . ∧ p(n) ⇒ p(n = 1).

3. Finally, we conclude on the basis of the principle of mathematical induction that p(n) is
true for all integers n greater than or equal to b.

4.1. MATHEMATICAL INDUCTION 125

The second step is the core of an inductive proof. This is usually where we need the most insight
into what we are trying to prove. In light of our discussion of Exercise 4.1-6, it should be clear
that step 2′ is simply a variation on the theme of writing an inductive proof.

It is important to realize that induction arises in some circumstances that do not fit the “pat”
typical description we gave above. These circumstances seem to arise often in computer science.
However, inductive proofs always involve three things. First we always need a base case or cases.
Second, we need to show an implication that demonstrates that p(n) is true given that p(n′) is
true for some set of n′ < n, or possibly we may need to show a set of such implications. Finally,
we reach a conclusion on the basis of the first two steps.

For example, consider the problem of proving the following statement:

n∑

i=0

⌊
i

2

⌋
=






n2

4 if n is even
n2−1

4 if n is odd
(4.6)

In order to prove this, one must show that p(0) is true, p(1) is true, p(n − 2) ⇒ p(n) if n is
odd, and that p(n− 2) ⇒ p(n), if n is even. Putting all these together, we see that our formulas
hold for all n ≥ 0. We can view this as either two proofs by induction, one for even and one
for odd numbers, or one proof in which we have two base cases and two methods of deriving
results from previous ones. This second view is more profitable, because it expands our view of
what induction means, and makes it easier to find inductive proofs. In particular we could find
situations where we have just one implication to prove but several base cases to check to cover
all cases, or just one base case, but several different implications to prove to cover all cases.

Logically speaking, we could rework the example above so that it fits the pattern of strong
induction. For example, when we prove a second base case, then we have just proved that the
first base case implies it, because a true statement implies a true statement. Writing a description
of mathematical induction that covers all kinds of base cases and implications one might want to
consider in practice would simply give students one more unnecessary thing to memorize, so we
shall not do so. However, in the mathematics literature and especially in the computer science
literature, inductive proofs are written with multiple base cases and multiple implications with
no effort to reduce them to one of the standard forms of mathematical induction. So long as it is
possible to ”cover” all the cases under consideration with such a proof, it can be rewritten as a
standard inductive proof. Since readers of such proofs are expected to know this is possible, and
since it adds unnecessary verbiage to a proof to do so, this is almost always left out.

Important Concepts, Formulas, and Theorems

1. Weak Principle of Mathematical Induction. The weak principle of mathematical induction
states that

If the statement p(b) is true, and the statement p(n − 1) ⇒ p(n) is true for all
n > b, then p(n) is true for all integers n ≥ b.

2. Strong Principle of Mathematical Induction. The strong principle of mathematical induc-
tion states that

If the statement p(b) is true, and the statement p(b)∧p(b+1)∧. . .∧p(n−1) ⇒ p(n)
is true for all n > b, then p(n) is true for all integers n ≥ b.

126 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

3. Base Case. Every proof by mathematical induction, strong or weak, begins with a base case
which establishes the result being proved for at least one value of the variable on which we
are inducting. This base case should prove the result for the smallest value of the variable
for which we are asserting the result. In a proof with multiple base cases, the base cases
should cover all values of the variable which are not covered by the inductive step of the
proof.

4. Inductive Hypothesis. Every proof by induction includes an inductive hypothesis in which
we assume the result p(n) we are trying to prove is true when n = k − 1 or when n < k (or
in which we assume an equivalent statement).

5. Inductive Step. Every proof by induction includes an inductive step in which we prove the
implication that p(k−1) ⇒ p(k) or the implication that p(b)∧p(b+1)∧· · ·∧p(k−1) ⇒ p(k),
or some equivalent implication.

6. Inductive Conclusion. A proof by mathematical induction should include, at least implicitly,
a concluding statement of the form “Thus by the principle of mathematical induction . . . ,”
which asserts that by the principle of mathematical induction the result p(n) which we are
trying to prove is true for all values of n including and beyond the base case(s).

Problems

1. This exercise explores ways to prove that 2
3 + 2

9 + · · · + 2
3n = 1 −

(
1
3

)n
for all positive

integers n.

(a) First, try proving the formula by contradiction. Thus you assume that there is some
integer n that makes the formula false. Then there must be some smallest n that makes
the formula false. Can this smallest n be 1? What do we know about 2

3 + 2
9 + · · ·+ 2

3i

when i is a positive integer smaller than this smallest n? Is n − 1 a positive integer
for this smallest n? What do we know about 2

3 + 2
9 + · · · + 2

3n−1 for this smallest n?
Write this as an equation and add 2

3n to both sides and simplify the right side. What
does this say about our assumption that the formula is false? What can you conclude

about the truth of the formula? If p(k) is the statement 2
3 + 2

9 + · · · + 2
3k = 1 −

(
1
3

)k
,

what implication did we prove in the process of deriving our contradiction?

(b) What is the base step in a proof by mathematical induction that 2
3 + 2

9 + · · ·+ 2
3n = 1−(

1
3

)n
for all positive integers n? What would you assume as an inductive hypothesis?

What would you prove in the inductive step of a proof of this formula by induction?
Prove it. What does the principle of mathematical induction allow you to conclude?

If p(k) is the statement 2
3 + 2

9 + · · ·+ 2
3k = 1−

(
1
3

)k
, what implication did we prove in

the process of doing our proof by induction?

2. Use contradiction to prove that 1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n+1)(n+2)
3 .

3. Use induction to prove that 1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n+1)(n+2)
3 .

4. Prove that 13 + 23 + 33 + · · · + n3 = n2(n+1)2

4 .

5. Write a careful proof of Euclid’s division theorem using strong induction.

4.1. MATHEMATICAL INDUCTION 127

6. Prove that
∑n

i=j

(i
j

)
=

(n+1
j+1

)
. As well as the inductive proof that we are expecting, there is

a nice “story” proof of this formula. It is well worth trying to figure it out.

7. Prove that every number greater than 7 is a sum of a nonnegative integer multiple of 3 and
a nonnegative integer multiple of 5.

8. The usual definition of exponents in an advanced mathematics course (or an intermediate
computer science course) is that a0 = 1 and an+1 = an · a. Explain why this defines an for
all nonnegative integers n. Prove the rule of exponents am+n = aman from this definition.

9. Our arguments in favor of the sum principle were quite intuitive. In fact the sum principle
for n sets follows from the sum principle for two sets. Use induction to prove the sum
principle for a union of n sets from the sum principle for a union of two sets.

10. We have proved that every positive integer is a power of a prime number or a product of
powers of prime numbers. Show that this factorization is unique in the following sense: If
you have two factorizations of a positive integer, both factorizations use exactly the same
primes, and each prime occurs to the same power in both factorizations. For this purpose,
it is helpful to know that if a prime divides a product of integers, then it divides one of the
integers in the product. (Another way to say this is that if a prime is a factor of a product
of integers, then it is a factor of one of the integers in the product.)

11. Prove that 14 + 24 + · · · + n4 = O(n5 − n4).

12. Find the error in the following “proof” that all positive integers n are equal. Let p(n) be
the statement that all numbers in an n-element set of positive integers are equal. Then
p(1) is true. Now assume p(n − 1) is true, and let N be the set of the first n integers. Let
N ′ be the set of the first n − 1 integers, and let N ′′ be the set of the last n − 1 integers.
Then by p(n − 1) all members of N ′ are equal and all members of N ′′ are equal. Thus the
first n − 1 elements of N are equal and the last n − 1 elements of N are equal, and so all
elements of N are equal. Thus all positive integers are equal.

13. Prove by induction that the number of subsets of an n-element set is 2n.

14. Prove that the Strong Principle of Mathematical Induction implies the Weak Principle of
Mathematical Induction.

15. Prove that the Weak Principal of Mathematical Induction implies the Strong Principal of
Mathematical Induction.

16. Prove (4.6).

128 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

4.2 Recursion, Recurrences and Induction

Recursion

Exercise 4.2-1 Describe the uses you have made of recursion in writing programs. Include
as many as you can.

Exercise 4.2-2 Recall that in the Towers of Hanoi problem we have three pegs numbered
1, 2 and 3, and on one peg we have a stack of n disks, each smaller in diameter than
the one below it as in Figure 4.1. An allowable move consists of removing a disk

Figure 4.1: The Towers of Hanoi

1 2 3 1 2 3

from one peg and sliding it onto another peg so that it is not above another disk of
smaller size. We are to determine how many allowable moves are needed to move the
disks from one peg to another. Describe the strategy you have used or would use in
a recursive program to solve this problem.

For the Tower of Hanoi problem, to solve the problem with no disks you do nothing. To solve
the problem of moving all disks to peg 2, we do the following

1. (Recursively) solve the problem of moving n − 1 disks from peg 1 to peg 3,

2. move disk n to peg 2,

3. (Recursively) solve the problem of moving n − 1 disks on peg 3 to peg 2.

Thus if M(n) is the number of moves needed to move n disks from peg i to peg j, we have

M(n) = 2M(n − 1) + 1.

This is an example of a recurrence equation or recurrence. A recurrence equation for a
function defined on the set of integers greater than or equal to some number b is one that tells
us how to compute the nth value of a function from the (n− 1)st value or some or all the values
preceding n. To completely specify a function on the basis of a recurrence, we have to give enough
information about the function to get started. This information is called the initial condition (or
the initial conditions) (which we also call the base case) for the recurrence. In this case we have
said that M(0) = 0. Using this, we get from the recurrence that M(1) = 1, M(2) = 3, M(3) = 7,
M(4) = 15, M(5) = 31, and are led to guess that M(n) = 2n − 1.

Formally, we write our recurrence and initial condition together as

M(n) =

{
0 if n = 0
2M(n − 1) + 1 otherwise

(4.7)

4.2. RECURSION, RECURRENCES AND INDUCTION 129

Now we give an inductive proof that our guess is correct. The base case is trivial, as we
have defined M(0) = 0, and 0 = 20 − 1. For the inductive step, we assume that n > 0 and
M(n − 1) = 2n−1 − 1. From the recurrence, M(n) = 2M(n − 1) + 1. But, by the inductive
hypothesis, M(n − 1) = 2n−1 − 1, so we get that:

M(n) = 2M(n − 1) + 1 (4.8)
= 2(2n−1 − 1) + 1 (4.9)
= 2n − 1. (4.10)

thus by the principle of mathematical induction, M(n) = 2n − 1 for all nonnegative integers n.

The ease with which we solved this recurrence and proved our solution correct is no accident.
Recursion, recurrences and induction are all intimately related. The relationship between recur-
sion and recurrences is reasonably transparent, as recurrences give a natural way of analyzing
recursive algorithms. Recursion and recurrences are abstractions that allow you to specify the
solution to an instance of a problem of size n as some function of solutions to smaller instances.
Induction also falls naturally into this paradigm. Here, you are deriving a statement p(n) from
statements p(n′) for n′ < n. Thus we really have three variations on the same theme.

We also observe, more concretely, that the mathematical correctness of solutions to recur-
rences is naturally proved via induction. In fact, the correctness of recurrences in describing the
number of steps needed to solve a recursive problem is also naturally proved by induction. The
recurrence or recursive structure of the problem makes it straightforward to set up the induction
proof.

First order linear recurrences

Exercise 4.2-3 The empty set (∅) is a set with no elements. How many subsets does it
have? How many subsets does the one-element set {1} have? How many subsets does
the two-element {1, 2} set have? How many of these contain 2? How many subsets
does {1, 2, 3} have? How many contain 3? Give a recurrence for the number S(n) of
subsets of an n-element set, and prove by induction that your recurrence is correct.

Exercise 4.2-4 When someone is paying off a loan with initial amount A and monthly
payment M at an interest rate of p percent, the total amount T (n) of the loan after n
months is computed by adding p/12 percent to the amount due after n−1 months and
then subtracting the monthly payment M . Convert this description into a recurrence
for the amount owed after n months.

Exercise 4.2-5 Given the recurrence

T (n) = rT (n − 1) + a,

where r and a are constants, find a recurrence that expresses T (n) in terms of T (n−2)
instead of T (n − 1). Now find a recurrence that expresses T (n) in terms of T (n − 3)
instead of T (n − 2) or T (n − 1). Now find a recurrence that expresses T (n) in terms
of T (n − 4) rather than T (n − 1), T (n − 2), or T (n − 3). Based on your work so far,
find a general formula for the solution to the recurrence

T (n) = rT (n − 1) + a,

with T (0) = b, and where r and a are constants.

130 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

If we construct small examples for Exercise 4.2-3, we see that ∅ has only 1 subset, {1} has 2
subsets, {1, 2} has 4 subsets, and {1, 2, 3} has 8 subsets. This gives us a good guess as to what
the general formula is, but in order to prove it we will need to think recursively. Consider the
subsets of {1, 2, 3}:

∅ {1} {2} {1, 2}
{3} {1, 3} {2, 3} {1, 2, 3}

The first four subsets do not contain three, and the second four do. Further, the first four
subsets are exactly the subsets of {1, 2}, while the second four are the four subsets of {1, 2} with 3
added into each one. This suggests that the recurrence for the number of subsets of an n-element
set (which we may assume is {1, 2, . . . , n}) is

S(n) =

{
2S(n − 1) if n ≥ 1
1 if n = 0

. (4.11)

To prove this recurrence is correct, we note that the subsets of an n-element set can be partitioned
by whether they contain element n or not. The subsets of {1, 2, . . . , n} containing element n can
be constructed by adjoining the element n to the subsets not containing element n. So the
number of subsets containing element n is the same as the number of subsets not containing
element n. The number of subsets not containing element n is just the number of subsets of an
n − 1-element set. Therefore each block of our partition has size equal to the number of subsets
of an n − 1-element set. Thus, by the sum principle, the number of subsets of {1, 2, . . . , n} is
twice the number of subsets of {1, 2, . . . , n− 1}. This proves that S(n) = 2S(n− 1) if n > 0. We
already observed that ∅ has no subsets, so we have proved the correctness of Recurrence 4.11.

For Exercise 4.2-4 we can algebraically describe what the problem said in words by

T (n) = (1 + .01p/12) · T (n − 1) − M,

with T (0) = A. Note that we add .01p/12 times the principal to the amount due each month,
because p/12 percent of a number is .01p/12 times the number.

Iterating a recurrence

Turning to Exercise 4.2-5, we can substitute the right hand side of the equation T (n − 1) =
rT (n − 2) + a for T (n − 1) in our recurrence, and then substitute the similar equations for
T (n − 2) and T (n − 3) to write

T (n) = r(rT (n − 2) + a) + a

= r2T (n − 2) + ra + a

= r2(rT (n − 3) + a) + ra + a

= r3T (n − 3) + r2a + ra + a

= r3(rT (n − 4) + a) + r2a + ra + a

= r4T (n − 4) + r3a + r2a + ra + a

4.2. RECURSION, RECURRENCES AND INDUCTION 131

From this, we can guess that

T (n) = rnT (0) + a
n−1∑

i=0

ri

= rnb + a
n−1∑

i=0

ri. (4.12)

The method we used to guess the solution is called iterating the recurrence because we re-
peatedly use the recurrence with smaller and smaller values in place of n. We could instead have
written

T (0) = b

T (1) = rT (0) + a

= rb + a

T (2) = rT (1) + a

= r(rb + a) + a

= r2b + ra + a

T (3) = rT (2) + a

= r3b + r2a + ra + a

This leads us to the same guess, so why have we introduced two methods? Having different
approaches to solving a problem often yields insights we would not get with just one approach.
For example, when we study recursion trees, we will see how to visualize the process of iterating
certain kinds of recurrences in order to simplify the algebra involved in solving them.

Geometric series

You may recognize that sum
∑n−1

i=0 ri in Equation 4.12. It is called a finite geometric series with
common ratio r. The sum

∑n−1
i=0 ari is called a finite geometric series with common ratio r and

initial value a. Recall from algebra the factorizations

(1 − x)(1 + x) = 1 − x2

(1 − x)(1 + x + x2) = 1 − x3

(1 − x)(1 + x + x2 + x3) = 1 − x4

These factorizations are easy to verify, and they suggest that (1−r)(1+r+r2+· · ·+rn−1) = 1−rn,
or

n−1∑

i=0

ri =
1 − rn

1 − r
. (4.13)

In fact this formula is true, and lets us rewrite the formula we got for T (n) in a very nice form.

Theorem 4.1 If T (n) = rT (n − 1) + a, T (0) = b, and r �= 1 then

T (n) = rnb + a
1 − rn

1 − r
(4.14)

for all nonnegative integers n.

132 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Proof: We will prove our formula by induction. Notice that the formula gives T (0) =
r0b + a1−r0

1−r which is b, so the formula is true when n = 0. Now assume that n > 0 and

T (n − 1) = rn−1b + a
1 − rn−1

1 − r
.

Then we have

T (n) = rT (n − 1) + a

= r

(
rn−1b + a

1 − rn−1

1 − r

)
+ a

= rnb +
ar − arn

1 − r
+ a

= rnb +
ar − arn + a − ar

1 − r

= rnb + a
1 − rn

1 − r
.

Therefore by the principle of mathematical induction, our formula holds for all integers n greater
than 0.

We did not prove Equation 4.13. However it is easy to use Theorem 4.1 to prove it.

Corollary 4.2 The formula for the sum of a geometric series with r �= 1 is
n−1∑

i=0

ri =
1 − rn

1 − r
. (4.15)

Proof: Define T (n) =
∑n−1

i=0 ri. Then T (n) = rT (n − 1) + 1, and since T (0) is a sum with no
terms, T (0) = 0. Applying Theorem 4.1 with b = 0 and a = 1 gives us T (n) = 1−rn

1−r .

Often, when we see a geometric series, we will only be concerned with expressing the sum
in big-O notation. In this case, we can show that the sum of a geometric series is at most the
largest term times a constant factor, where the constant factor depends on r, but not on n.

Lemma 4.3 Let r be a quantity whose value is independent of n and not equal to 1. Let t(n) be
the largest term of the geometric series

n−1∑

i=0

ri.

Then the value of the geometric series is O(t(n)).

Proof: It is straightforward to see that we may limit ourselves to proving the lemma for r > 0.
We consider two cases, depending on whether r > 1 or r < 1. If r > 1, then

n−1∑

i=0

ri =
rn − 1
r − 1

≤ rn

r − 1

= rn−1 r

r − 1
= O(rn−1).

4.2. RECURSION, RECURRENCES AND INDUCTION 133

On the other hand, if r < 1, then the largest term is r0 = 1, and the sum has value

1 − rn

1 − r
<

1
1 − r

.

Thus the sum is O(1), and since t(n) = 1, the sum is O(t(n)).

In fact, when r is nonnegative, an even stronger statement is true. Recall that we said that,
for two functions f and g from the real numbers to the real numbers that f = Θ(g) if f = O(g)
and g = O(f).

Theorem 4.4 Let r be a nonnegative quantity whose value is independent of n and not equal to
1. Let t(n) be the largest term of the geometric series

n−1∑

i=0

ri.

Then the value of the geometric series is Θ(t(n)).

Proof: By Lemma 4.3, we need only show that t(n) = O(rn−1
r−1). Since all ri are nonnegative,

the sum
∑n−1

i=0 ri is at least as large as any of its summands. But t(n) is one of these summands,
so t(n) = O(rn−1

r−1).

Note from the proof that t(n) and the constant in the big-O upper bound depend on r. We
will use this Theorem in subsequent sections.

First order linear recurrences

A recurrence of the form T (n) = f(n)T (n − 1) + g(n) is called a first order linear recurrence.
When f(n) is a constant, say r, the general solution is almost as easy to write down as in the
case we already figured out. Iterating the recurrence gives us

T (n) = rT (n − 1) + g(n)

= r
(
rT (n − 2) + g(n − 1)

)
+ g(n)

= r2T (n − 2) + rg(n − 1) + g(n)

= r2
(
rT (n − 3) + g(n − 2)

)
+ rg(n − 1) + g(n)

= r3T (n − 3) + r2g(n − 2) + rg(n − 1) + g(n)

= r3
(
rT (n − 4) + g(n − 3)

)
+ r2g(n − 2) + rg(n − 1) + g(n)

= r4T (n − 4) + r3g(n − 3) + r2g(n − 2) + rg(n − 1) + g(n)
...

= rnT (0) +
n−1∑

i=0

rig(n − i)

This suggests our next theorem.

134 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Theorem 4.5 For any positive constants a and r, and any function g defined on the nonnegative
integers, the solution to the first order linear recurrence

T (n) =

{
rT (n − 1) + g(n) if n > 0
a if n = 0

is

T (n) = rna +
n∑

i=1

rn−ig(i). (4.16)

Proof: Let’s prove this by induction.

Since the sum
∑n

i=1 rn−ig(i) in Equation 4.16 has no terms when n = 0, the formula gives
T (0) = 0 and so is valid when n = 0. We now assume that n is positive and T (n − 1) =
rn−1a +

∑n−1
i=1 r(n−1)−ig(i). Using the definition of the recurrence and the inductive hypothesis

we get that

T (n) = rT (n − 1) + g(n)

= r

(
rn−1a +

n−1∑

i=1

r(n−1)−ig(i)

)
+ g(n)

= rna +
n−1∑

i=1

r(n−1)+1−ig(i) + g(n)

= rna +
n−1∑

i=1

rn−ig(i) + g(n)

= rna +
n∑

i=1

rn−ig(i).

Therefore by the principle of mathematical induction, the solution to

T (n) =

{
rT (n − 1) + g(n) if n > 0
a if n = 0

is given by Equation 4.16 for all nonnegative integers n.

The formula in Theorem 4.5 is a little less easy to use than that in Theorem 4.1 because it
gives us a sum to compute. Fortunately, for a number of commonly occurring functions g the
sum

∑n
i=1 rn−ig(i) is reasonable to compute.

Exercise 4.2-6 Solve the recurrence T (n) = 4T (n − 1) + 2n with T (0) = 6.

Exercise 4.2-7 Solve the recurrence T (n) = 3T (n − 1) + n with T (0) = 10.

For Exercise 4.2-6, using Equation 4.16, we can write

T (n) = 6 · 4n +
n∑

i=1

4n−i · 2i

= 6 · 4n + 4n
n∑

i=1

4−i · 2i

4.2. RECURSION, RECURRENCES AND INDUCTION 135

= 6 · 4n + 4n
n∑

i=1

(1
2

)i

= 6 · 4n + 4n · 1
2
·

n−1∑

i=0

(1
2

)i

= 6 · 4n + (1 − (
1
2
)n) · 4n

= 7 · 4n − 2n

For Exercise 4.2-7 we begin in the same way and face a bit of a surprise. Using Equation
4.16, we write

T (n) = 10 · 3n +
n∑

i=1

3n−i · i

= 10 · 3n + 3n
n∑

i=1

i3−i

= 10 · 3n + 3n
n∑

i=1

i

(
1
3

)i

. (4.17)

Now we are faced with a sum that you may not recognize, a sum that has the form
n∑

i=1

ixi = x
n∑

i=1

ixi−1,

with x = 1/3. However by writing it in in this form, we can use calculus to recognize it as x
times a derivative. In particular, using the fact that 0x0 = 0, we can write

n∑

i=1

ixi = x
n∑

i=0

ixi−1 = x
d

dx

n∑

i=0

xi = x
d

dx

(
1 − xn+1

1 − x

)
.

But using the formula for the derivative of a quotient from calculus, we may write

x
d

dx

(
1 − xn+1

1 − x

)
= x

(1 − x)(−(n + 1)xn) − (1 − xn+1)(−1)
(1 − x)2

=
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
.

Connecting our first and last equations, we get
n∑

i=1

ixi =
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
. (4.18)

Substituting in x = 1/3 and simplifying gives us
n∑

i=1

i

(
1
3

)i

= −3
2

(n + 1)
(

1
3

)n+1

− 3
4

(
1
3

)n+1

+
3
4
.

Substituting this into Equation 4.17 gives us

T (n) = 10 · 3n + 3n

(
−3

2
(n + 1)

(
1
3

)n+1

− 3
4

(1/3)n+1 +
3
4

)

= 10 · 3n − n + 1
2

− 1
4

+
3n+1

4

=
43
4

3n − n + 1
2

− 1
4
.

136 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

The sum that arises in this exercise occurs so often that we give its formula as a theorem.

Theorem 4.6 For any real number x �= 1,

n∑

i=1

ixi =
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
. (4.19)

Proof: Given before the statement of the theorem.

Important Concepts, Formulas, and Theorems

1. Recurrence Equation or Recurrence. A recurrence equation is one that tells us how to
compute the nth term of a sequence from the (n − 1)st term or some or all the preceding
terms.

2. Initial Condition. To completely specify a function on the basis of a recurrence, we have to
give enough information about the function to get started. This information is called the
initial condition (or the initial conditions) for the recurrence.

3. First Order Linear Recurrence. A recurrence T (n) = f(n)T (n − 1) + g(n) is called a first
order linear recurrence.

4. Constant Coefficient Recurrence. A recurrence in which T (n) is expressed in terms of a
sum of constant multiples of T (k) for certain values k < n (and perhaps another function
of n) is called a constant coefficient recurrence.

5. Solution to a First Order Constant Coefficient Linear Recurrence. If T (n) = rT (n−1)+a,
T (0) = b, and r �= 1 then

T (n) = rnb + a
1 − rn

1 − r

for all nonnegative integers n.

6. Finite Geometric Series. A finite geometric series with common ratio r is a sum of the
form

∑n−1
i=0 ri. The formula for the sum of a geometric series with r �= 1 is

n−1∑

i=0

ri =
1 − rn

1 − r
.

7. Big-Theta Bounds on the Sum of a Geometric Series. Let r be a nonnegative quantity
whose value is independent of n and not equal to 1. Let t(n) be the largest term of the
geometric series

n−1∑

i=0

ri.

Then the value of the geometric series is Θ(t(n)).

4.2. RECURSION, RECURRENCES AND INDUCTION 137

8. Solution to a First Order Linear Recurrence. For any positive constants a and r, and
any function g defined on the nonnegative integers, the solution to the first order linear
recurrence

T (n) =

{
rT (n − 1) + g(n) if n > 0
a if n = 0

is

T (n) = rna +
n∑

i=1

rn−ig(i).

9. Iterating a Recurrence. We say we are iterating a recurrence when we guess its solution by
using the equation that expresses T (n) in terms of T (k) for k smaller than n to re-express
T (n) in terms of T (k) for k smaller than n − 1, then for k smaller than n − 2, and so on
until we can guess the formula for the sum.

10. An Important Sum. For any real number x �= 1,

n∑

i=1

ixi =
nxn+2 − (n + 1)xn+1 + x

(1 − x)2
.

Problems

1. Prove Equation 4.15 directly by induction.

2. Prove Equation 4.18 directly by induction.

3. Solve the recurrence M(n) = 2M(n − 1) + 2, with a base case of M(1) = 1. How does it
differ from the solution to Recurrence 4.7?

4. Solve the recurrence M(n) = 3M(n − 1) + 1, with a base case of M(1) = 1. How does it
differ from the solution to Recurrence 4.7.

5. Solve the recurrence M(n) = M(n − 1) + 2, with a base case of M(1) = 1. How does it
differ from the solution to Recurrence 4.7.

6. There are m functions from a one-element set to the set {1, 2, . . . , m}. How many functions
are there from a two-element set to {1, 2, . . . , m}? From a three-element set? Give a
recurrence for the number T (n) of functions from an n-element set to {1, 2, . . . , m}. Solve
the recurrence.

7. Solve the recurrence that you derived in Exercise 4.2-4.

8. At the end of each year, a state fish hatchery puts 2000 fish into a lake. The number of fish
in the lake at the beginning of the year doubles due to reproduction by the end of the year.
Give a recurrence for the number of fish in the lake after n years and solve the recurrence.

9. Consider the recurrence T (n) = 3T (n − 1) + 1 with the initial condition that T (0) = 2.
We know that we could write the solution down from Theorem 4.1. Instead of using the
theorem, try to guess the solution from the first four values of T (n) and then try to guess
the solution by iterating the recurrence four times.

138 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

10. What sort of big-Θ bound can we give on the value of a geometric series 1+r+r2 + · · ·+rn

with common ratio r = 1?

11. Solve the recurrence T (n) = 2T (n − 1) + n2n with the initial condition that T (0) = 1.

12. Solve the recurrence T (n) = 2T (n − 1) + n32n with the initial condition that T (0) = 2.

13. Solve the recurrence T (n) = 2T (n − 1) + 3n with T (0) = 1.

14. Solve the recurrence T (n) = rT (n − 1) + rn with T (0) = 1.

15. Solve the recurrence T (n) = rT (n − 1) + r2n with T (0) = 1

16. Solve the recurrence T (n) = rT (n − 1) + sn with T (0) = 1.

17. Solve the recurrence T (n) = rT (n − 1) + n with T (0) = 1.

18. The Fibonacci numbers are defined by the recurrence

T (n) =

{
T (n − 1) + T (n − 2) if n > 0
1 if n = 0 or n = 1

(a) Write down the first ten Fibonacci numbers.

(b) Show that (1+
√

5
2)n and (1−

√
5

2)n are solutions to the equation F (n) = F (n − 1) +
F (n − 2).

(c) Why is

c1(
1 +

√
5

2
)n + c2(

1 −
√

5
2

)n

a solution to the equation F (n) = F (n − 1) + F (n − 2) for any real numbers c1 and
c2?

(d) Find constants c1 and c2 such that the Fibonacci numbers are given by

F (n) = c1(
1 +

√
5

2
)n + c2(

1 −
√

5
2

)n

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 139

4.3 Growth Rates of Solutions to Recurrences

Divide and Conquer Algorithms

One of the most basic and powerful algorithmic techniques is divide and conquer. Consider, for
example, the binary search algorithm, which we will describe in the context of guessing a number
between 1 and 100. Suppose someone picks a number between 1 and 100, and allows you to ask
questions of the form “Is the number greater than k?” where k is an integer you choose. Your
goal is to ask as few questions as possible to figure out the number. Your first question should
be “Is the number greater than 50?” Why is this? Well, after asking if the number is bigger
than 50, you have learned either that the number is between one and 50, or that the number is
between 51 and 100. In either case have reduced your problem to one in which the range is only
half as big. Thus you have divided the problem up into a problem that is only half as big, and
you can now (recursively) conquer this remaining problem. (If you ask any other question, the
size of one of the possible ranges of values you could end up with would be more than half the
size of the original problem.) If you continue in this fashion, always cutting the problem size in
half, you will reduce the problem size down to one fairly quickly, and then you will know what
the number is. Of course it would be easier to cut the problem size exactly in half each time if
we started with a number in the range from one to 128, but the question doesn’t sound quite so
plausible then. Thus to analyze the problem we will assume someone asks you to figure out a
number between 0 and n, where n is a power of 2.

Exercise 4.3-1 Let T (n) be number of questions in binary search on the range of numbers
between 1 and n. Assuming that n is a power of 2, give a recurrence for T (n).

For Exercise 4.3-1 we get:

T (n) =

{
T (n/2) + 1 if n ≥ 2
1 if n = 1

(4.20)

That is, the number of guesses to carry out binary search on n items is equal to 1 step (the guess)
plus the time to solve binary search on the remaining n/2 items.

What we are really interested in is how much time it takes to use binary search in a computer
program that looks for an item in an ordered list. While the number of questions gives us a
feel for the amount of time, processing each question may take several steps in our computer
program. The exact amount of time these steps take might depend on some factors we have little
control over, such as where portions of the list are stored. Also, we may have to deal with lists
whose length is not a power of two. Thus a more realistic description of the time needed would
be

T (n) ≤
{

T (�n/2�) + C1 if n ≥ 2
C2 if n = 1,

(4.21)

where C1 and C2 are constants.

Note that �x� stands for the smallest integer larger than or equal to x, while
x� stands for
the largest integer less than or equal to x. It turns out that the solution to (4.20) and (4.21)
are roughly the same, in a sense that will hopefully become clear later. (This is almost always

140 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

the case.) For now, let us not worry about floors and ceilings and the distinction between things
that take 1 unit of time and things that take no more than some constant amount of time.

Let’s turn to another example of a divide and conquer algorithm, mergesort. In this algorithm,
you wish to sort a list of n items. Let us assume that the data is stored in an array A in positions
1 through n. Mergesort can be described as follows:

MergeSort(A,low,high)
if (low == high)

return
else

mid = (low + high)/2
MergeSort(A,low,mid)
MergeSort(A,mid+1,high)
Merge the sorted lists from the previous two steps

More details on mergesort can be found in almost any algorithms textbook. Suffice to say
that the base case (low = high) takes one step, while the other case executes 1 step, makes two
recursive calls on problems of size n/2, and then executes the Merge instruction, which can be
done in n steps.

Thus we obtain the following recurrence for the running time of mergesort:

T (n) =

{
2T (n/2) + n if n > 1
1 if n = 1

(4.22)

Recurrences such as this one can be understood via the idea of a recursion tree, which we
introduce below. This concept allows us to analyze recurrences that arise in divide-and-conquer
algorithms, and those that arise in other recursive situations, such as the Towers of Hanoi, as
well. A recursion tree for a recurrence is a visual and conceptual representation of the process of
iterating the recurrence.

Recursion Trees

We will introduce the idea of a recursion tree via several examples. It is helpful to have an
“algorithmic” interpretation of a recurrence. For example, (ignoring for a moment the base case)
we can interpret the recurrence

T (n) = 2T (n/2) + n (4.23)

as “in order to solve a problem of size n we must solve 2 problems of size n/2 and do n units of
additional work.” Similarly we can interpret

T (n) = T (n/4) + n2

as “in order to solve a problem of size n we must solve one problem of size n/4 and do n2 units
of additional work.”

We can also interpret the recurrence

T (n) = 3T (n − 1) + n

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 141

Figure 4.2: The initial stage of drawing a recursion tree diagram.

Problem Size

n

Work

n

n/2

as “in order to solve a problem of size n, we must solve 3 subproblems of size n − 1 and do n
additional units of work.

In Figure 4.2 we draw the beginning of the recursion tree diagram for (4.23). For now, assume
n is a power of 2. A recursion tree diagram has three parts, a left, a middle, and a right. On
the left, we keep track of the problem size, in the middle we draw the tree, and on right we keep
track of the work done. We draw the diagram in levels, each level of the diagram representing
a level of recursion. Equivalently, each level of the diagram represents a level of iteration of the
recurrence. So to begin the recursion tree for (4.23), we show, in level 0 on the left, that we
have problem of size n. Then by drawing a root vertex with two edges leaving it, we show in the
middle that we are splitting our problem into 2 problems. We note on the right that we do n
units of work in addition to whatever is done on the two new problems we created. In the next
level, we draw two vertices in the middle representing the two problems into which we split our
main problem and show on the left that each of these problems has size n/2.

You can see how the recurrence is reflected in levels 0 and 1 of the recursion tree. The
top vertex of the tree represents T (n), and on the next level we have two problems of size n/2,
representing the recursive term 2T (n/2) of our recurrence. Then after we solve these two problems
we return to level 0 of the tree and do n additional units of work for the nonrecursive term of
the recurrence.

Now we continue to draw the tree in the same manner. Filling in the rest of level one and
adding a few more levels, we get Figure 4.3.

Let us summarize what the diagram tells us so far. At level zero (the top level), n units of
work are done. We see that at each succeeding level, we halve the problem size and double the
number of subproblems. We also see that at level 1, each of the two subproblems requires n/2
units of additional work, and so a total of n units of additional work are done. Similarly level
2 has 4 subproblems of size n/4 and so 4(n/4) = n units of additional work are done. Notice
that to compute the total work done on a level we multiply the number of subproblems by the
amount of additional work per subproblem.

To see how iteration of the recurrence is reflected in the diagram, we iterate the recurrence
once, getting

T (n) = 2T (n/2) + n

T (n) = 2(2T (n/4) + n/2) + n

T (n) = 4T (n/4) + n + n = 4T (n/4) + 2n

142 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Figure 4.3: Four levels of a recursion tree diagram.

8(n/8) = n

Problem Size

n

n/2

n

Work

n/4

n/8

n/2 + n/2 = n

n/4 + n/4 + n/4 + n/4 = n

If we examine levels 0, 1, and 2 of the diagram, we see that at level 2 we have four vertices which
represent four problems, each of size n/4 This corresponds to the recursive term that we obtained
after iterating the recurrence. However after we solve these problems we return to level 1 where
we twice do n/2 additional units of work and to level 0 where we do another n additional units
of work. In this way each time we add a level to the tree we are showing the result of one more
iteration of the recurrence.

We now have enough information to be able to describe the recursion tree diagram in general.
To do this, we need to determine, for each level, three things:

• the number of subproblems,

• the size of each subproblem,

• the total work done at that level.

We also need to figure out how many levels there are in the recursion tree.

We see that for this problem, at level i, we have 2i subproblems of size n/2i. Further, since
a problem of size 2i requires 2i units of additional work, there are (2i)[n/(2i)] = n units of work
done per level. To figure out how many levels there are in the tree, we just notice that at each
level the problem size is cut in half, and the tree stops when the problem size is 1. Therefore
there are log2 n + 1 levels of the tree, since we start with the top level and cut the problem size
in half log2 n times.2 We can thus visualize the whole tree in Figure 4.4.

The computation of the work done at the bottom level is different from the other levels. In
the other levels, the work is described by the recursive equation of the recurrence; in this case
the amount of work is the n in T (n) = 2T (n/2) + n. At the bottom level, the work comes from
the base case. Thus we must compute the number of problems of size 1 (assuming that one is
the base case), and then multiply this value by T (1) = 1. In our recursion tree in Figure 4.4,
the number of nodes at the bottom level is 2log2 n = n. Since T (1) = 1, we do n units of work at

2To simplify notation, for the remainder of the book, if we omit the base of a logarithm, it should be assumed
to be base 2.

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 143

Figure 4.4: A finished recursion tree diagram.

levels

Problem Size

n

n/2

n

Work

n/4

n/8

n/2 + n/2 = n

n/4 + n/4 + n/4 + n/4 = n

8(n/8) = n

1 n(1) = n

log n +1

the bottom level of the tree. Had we chosen to say that T (1) was some constant other than 1,
this would not have been the case. We emphasize that the correct value always comes from the
base case; it is just a coincidence that it sometimes also comes from the recursive equation of the
recurrence.

The bottom level of the tree represents the final stage of iterating the recurrence. We have
seen that at this level we have n problems each requiring work T (1) = 1, giving us total work n
at that level. After we solve the problems represented by the bottom level, we have to do all the
additional work from all the earlier levels. For this reason, we sum the work done at all the levels
of the tree to get the total work done. Iteration of the recurrence shows us that the solution to
the recurrence is the sum of all the work done at all the levels of the recursion tree.

The important thing is that we now know how much work is done at each level. Once we
know this, we can sum the total amount of work done over all the levels, giving us the solution
to our recurrence. In this case, there are log2 n + 1 levels, and at each level the amount of work
we do is n units. Thus we conclude that the total amount of work done to solve the problem
described by recurrence (4.23) is n(log2 n + 1). The total work done throughout the tree is the
solution to our recurrence, because the tree simply models the process of iterating the recurrence.
Thus the solution to recurrence (4.22) is T (n) = n(log n + 1).

Since one unit of time will vary from computer to computer, and since some kinds of work
might take longer than other kinds, we are usually interested in the big-θ behavior of T (n). For
example, we can consider a recurrence that it identical to (4.22), except that T (1) = a, for some
constant a. In this case, T (n) = an + n log n, because an units of work are done at level 1 and
n additional units of work are done at each of the remaining log n levels. It is still true that
T (n) = Θ(n log n), because the different base case did not change the solution to the recurrence
by more than a constant factor3. Although recursion trees can give us the exact solutions (such
as T (n) = an + n log n above) to recurrences, our interest in the big-Θ behavior of solutions will
usually lead us to use a recursion tree to determine the big-Θ or even, in complicated cases, just
the big-O behavior of the actual solution to the recurrence. In Problem 10 we explore whether

3More precisely, n log n < an + n log n < (a + 1)n log n for any a > 0.

144 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

the value of T (1) actually influences the big-Θ behavior of the solution to a recurrence.

Let’s look at one more recurrence.

T (n) =

{
T (n/2) + n if n > 1
1 if n = 1

(4.24)

Again, assume n is a power of two. We can interpret this as follows: to solve a problem of
size n, we must solve one problem of size n/2 and do n units of additional work. We draw the
tree for this problem in Figure 4.5 and see that the problem sizes are the same as in the previous
tree. The remainder, however, is different. The number of subproblems does not double, rather

Figure 4.5: A recursion tree diagram for Recurrence 4.24.

Problem Size

n

n/2

1

n

Work

n/4

n/8

1

log n + 1
levels

n/2

n/4

n/8

it remains at one on each level. Consequently the amount of work halves at each level. Note that
there are still log n + 1 levels, as the number of levels is determined by how the problem size is
changing, not by how many subproblems there are. So on level i, we have 1 problem of size n/2i,
for total work of n/2i units.

We now wish to compute how much work is done in solving a problem that gives this recur-
rence. Note that the additional work done is different on each level, so we have that the total
amount of work is

n + n/2 + n/4 + · · · + 2 + 1 = n

(
1 +

1
2

+
1
4

+ · · · +
(

1
2

)log2 n
)

,

which is n times a geometric series. By Theorem 4.4, the value of a geometric series in which the
largest term is one is Θ(1). This implies that the work done is described by T (n) = Θ(n).

We emphasize that there is exactly one solution to recurrence (4.24); it is the one we get by
using the recurrence to compute T (2) from T (1), then to compute T (4) from T (2), and so on.
What we have done here is show that T (n) = Θ(n). In fact, for the kinds of recurrences we have
been examining, once we know T (1) we can compute T (n) for any relevant n by repeatedly using
the recurrence, so there is no question that solutions do exist and can, in principle, be computed
for any value of n. In most applications, we are not interested in the exact form of the solution,
but a big-O upper bound, or Big-Θ bound on the solution.

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 145

Exercise 4.3-2 Find a big-Θ bound for the solution to the recurrence

T (n) =

{
3T (n/3) + n if n ≥ 3
1 if n < 3

using a recursion tree. Assume that n is a power of 3.

Exercise 4.3-3 Solve the recurrence

T (n) =

{
4T (n/2) + n if n ≥ 2
1 if n = 1

using a recursion tree. Assume that n is a power of 2. Convert your solution to a
big-Θ statement about the behavior of the solution.

Exercise 4.3-4 Can you give a general big-Θ bound for solutions to recurrences of the
form T (n) = aT (n/2) + n when n is a power of 2? You may have different answers
for different values of a.

The recurrence in Exercise 4.3-2 is similar to the mergesort recurrence. One difference is
that at each step we divide into 3 problems of size n/3. Thus we get the picture in Figure 4.6.
Another difference is that the number of levels, instead of being log2 n + 1 is now log3 n + 1, so

Figure 4.6: The recursion tree diagram for the recurrence in Exercise 4.3-2.

Problem Size

n n

Work

n/3 + n/3 + n/3 = n

1 n(1) = n

log n + 1
levels

n/3

n/9 9(n/9) = n

the total work is still Θ(n log n) units. (Note that logb n = Θ(log2 n) for any b > 1.)

Now let’s look at the recursion tree for Exercise 4.3-3. Here we have 4 children of size n/2,
and we get Figure 4.7. Let’s look carefully at this tree. Just as in the mergesort tree there are
log2 n + 1 levels. However, in this tree, each node has 4 children. Thus level 0 has 1 node, level
1 has 4 nodes, level 2 has 16 nodes, and in general level i has 4i nodes. On level i each node
corresponds to a problem of size n/2i and hence requires n/2i units of additional work. Thus
the total work on level i is 4i(n/2i) = 2in units. This formula applies on level log2 n (the bottom

146 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Figure 4.7: The Recursion tree for Exercise 4.3-3.

Problem Size

n n

Work

n/2 + n/2 + n/2 + n/2 = 2n

1 n^2(1) = n^2

log n + 1
levels

n/2

n/4 16(n/4) = 4n

level) as well since there are n2 = 2log2 nn nodes, each requiring T (1) = 1 work. Summing over
the levels, we get

log2 n∑

i=0

2in = n

log2 n∑

i=0

2i.

There are many ways to simplify that expression, for example from our formula for the sum
of a geometric series we get

T (n) = n

log2 n∑

i=0

2i

= n
1 − 2(log2 n)+1

1 − 2

= n
1 − 2n

−1
= 2n2 − n

= Θ(n2).

More simply, by Theorem 4.4 we have that T (n) = nΘ(2log n) = Θ(n2).

Three Different Behaviors

Now let’s compare the recursion tree diagrams for the recurrences T (n) = 2T (n/2) + n, T (n) =
T (n/2) + n and T (n) = 4T (n/2) + n. Note that all three trees have depth 1 + log2 n, as this is
determined by the size of the subproblems relative to the parent problem, and in each case, the
size of each subproblem is 1/2 the size of of the parent problem. The trees differ, however, in the
amount of work done per level. In the first case, the amount of work on each level is the same.
In the second case, the amount of work done on a level decreases as you go down the tree, with
the most work being at the top level. In fact, it decreases geometrically, so by Theorem 4.4 the

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 147

total work done is bounded above and below by a constant times the work done at the root node.
In the third case, the number of nodes per level is growing at a faster rate than the problem
size is decreasing, and the level with the largest amount of work is the bottom one. Again we
have a geometric series, and so by Theorem 4.4 the total work is bounded above and below by a
constant times the amount of work done at the last level.

If you understand these three cases and the differences among them, you now understand the
great majority of the recursion trees that arise in algorithms.

So to answer Exercise 4.3-4, which asks for a general Big-Θ bound for the solutions to recur-
rences of the form T (n) = aT (n/2) + n, we can conclude the following:

Lemma 4.7 Suppose that we have a recurrence of the form

T (n) = aT (n/2) + n,

where a is a positive integer and T (1) is nonnegative. Thus we have the following big-Theta
bounds on the solution.

1. If a < 2 then T (n) = Θ(n).

2. If a = 2 then T (n) = Θ(n log n)

3. If a > 2 then T (n) = Θ(nlog2 a)

Proof: Cases 1 and 2 follow immediately from our observations above. We can verify case 3
as follows. At each level i we have ai nodes, each corresponding to a problem of size n/2i. Thus
at level i the total amount of work is ai(n/2i) = n(a/2)i units. Summing over the log2 n levels,
we get

alog2 nT (1) + n

(log2 n)−1∑

i=0

(a/2)i.

The sum given by the summation sign is a geometric series, so, since a/2 �= 1, the sum will be
big-Θ of the largest term (see Theorem 4.4). Since a > 2, the largest term in this case is clearly
the last one, namely n(a/2)(log2 n)−1, and applying rules of exponents and logarithms, we get that
n times the largest term is

n

(
a

2

)(log2 n)−1

=
2
a
· n · alog2 n

2log2 n
=

2
a
· n · alog2 n

n
=

2
a
· alog2 n

=
2
a
alog2(alog2a

=
2
a
· 2log2 a log2 n =

2
a
· nlog2 a. (4.25)

Thus T (1)alog2 n = T (1)nlog2 a. Since 2
a and T (1) are both nonnegative, the total work done is

Θ(nlog2 a).

In fact Lemma 4.7 holds for all positive real numbers a; we can iterate the recurrence to see
this. Since a recursion tree diagram is a way to visualize iterating the recurrence when a is an
integer, iteration is the natural thing to try when a is not an integer.

Notice that in the last two equalities of computation we made in Equation 4.25, we showed
that alog n = nlog a. This is a useful and, perhaps, surprising fact, so we state it (in slightly more
generality) as a corollary to the proof.

Corollary 4.8 For any base b, we have alogb n = nlogb a.

148 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Important Concepts, Formulas, and Theorems

1. Divide and Conquer Algorithm. A divide and conquer algorithm is one that solves a problem
by dividing it into problems that are smaller but otherwise of the same type as the original
one, recursively solves these problems, and then assembles the solution of these so-called
subproblems into a solution of the original one. Not all problems can be solved by such a
strategy, but a great many problems of interest in computer science can.

2. Mergesort. In mergesort we sort a list of items that have some underlying order by dividing
the list in half, sorting the first half (by recursively using mergesort), sorting the second
half (by recursively using mergesort), and then merging the two sorted list. For a list of
length one mergesort returns the same list.

3. Recursion Tree. A recursion tree diagram for a recurrence of the form T (n) = aT (n/b)+g(n)
has three parts, a left, a middle, and a right. On the left, we keep track of the problem
size, in the middle we draw the tree, and on right we keep track of the work done. We
draw the diagram in levels, each level of the diagram representing a level of recursion. The
tree has a vertex representing the initial problem and one representing each subproblem
we have to solve. Each non-leaf vertex has a children. The vertices are divided into levels
corresponding to (sub-)problems of the same size; to the left of a level of vertices we write
the size of the problems the vertices correspond to; to the right of the vertices on a given
level we write the total amount of work done at that level by an algorithm whose work is
described by the recurrence, not including the work done by any recursive calls from that
level.

4. The Base Level of a Recursion Tree. The amount of work done on the lowest level in a
recursion tree is the number of nodes times the value given by the initial condition; it is not
determined by attempting to make a computation of “additional work” done at the lowest
level.

5. Bases for Logarithms. We use log n as an alternate notation for log2 n. A fundamental fact
about logarithms is that logb n = Θ(log2 n) for any real number b > 1.

6. An Important Fact About Logarithms. For any b > 0, alogb n = nlogb a.

7. Three behaviors of solutions. The solution to a recurrence of the form T (n) = aT (n/2) + n
behaves in one of the following ways:

(a) if a < 2 then T (n) = Θ(n).

(b) if a = 2 then T (n) = Θ(n log n)

(c) if a > 2 then T (n) = Θ(nlog2 a).

Problems

1. Draw recursion trees and find big-Θ bounds on the solutions to the following recurrences.
For all of these, assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 149

(c) T (n) = 3T (n/2) + n

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

2. Draw recursion trees and find exact solutions to the following recurrences. For all of these,
assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

(c) T (n) = 3T (n/2) + n

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

3. Find the exact solution to Recurrence 4.24.

4. Show that logb n = Θ(log2 n), for any constant b > 1.

5. Prove Corollary 4.8 by showing that alogb n = nlogb a for any b > 0.

6. Recursion trees will still work, even if the problems do not break up geometrically, or even
if the work per level is not nc units. Draw recursion trees and and find the best big-O
bounds you can for solutions to the following recurrences. For all of these, assume that
T (1) = 1.

(a) T (n) = T (n − 1) + n

(b) T (n) = 2T (n − 1) + n

(c) T (n) = T (
√n�) + 1 (You may assume n has the form n = 22i
.)

(d) T (n) = 2T (n/2) + n log n (You may assume n is a power of 2.)

7. In each case in the previous problem, is the big-O bound you found a big-Θ bound?

8. If S(n) = aS(n − 1) + g(n) and g(n) < cn with 0 ≤ c < a, how fast does S(n) grow (in
big-Θ terms)?

9. If S(n) = aS(n−1)+g(n) and g(n) = cn with 0 < a ≤ c, how fast does S(n) grow in big-Θ
terms?

10. Given a recurrence of the form T (n) = aT (n/b) + g(n) with T (1) = c > 0 and g(n) > 0
for all n and a recurrence of the form S(n) = aS(n/b) + g(n) with S(1) = 0 (and the same
a, b, and g(n)), is there any difference in the big-Θ behavior of the solutions to the two
recurrences? What does this say about the influence of the initial condition on the big-Θ
behavior of such recurrences?

150 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

4.4 The Master Theorem

Master Theorem

In the last section, we saw three different kinds of behavior for recurrences of the form

T (n) =

{
aT (n/2) + n if n > 1
d if n = 1.

These behaviors depended upon whether a < 2, a = 2, or a > 2. Remember that a was the
number of subproblems into which our problem was divided. Dividing by 2 cut our problem size
in half each time, and the n term said that after we completed our recursive work, we had n
additional units of work to do for a problem of size n. There is no reason that the amount of
additional work required by each subproblem needs to be the size of the subproblem. In many
applications it will be something else, and so in Theorem 4.9 we consider a more general case.
Similarly, the sizes of the subproblems don’t have to be 1/2 the size of the parent problem. We
then get the following theorem, our first version of a theorem called the Master Theorem. (Later
on we will develop some stronger forms of this theorem.)

Theorem 4.9 Let a be an integer greater than or equal to 1 and b be a real number greater than
1. Let c be a positive real number and d a nonnegative real number. Given a recurrence of the
form

T (n) =

{
aT (n/b) + nc if n > 1
d if n = 1

in which n is restricted to be a power of b,

1. if logb a < c, T (n) = Θ(nc),

2. if logb a = c, T (n) = Θ(nc log n),

3. if logb a > c, T (n) = Θ(nlogb a).

Proof: In this proof, we will set d = 1, so that the work done at the bottom level of the tree
is the same as if we divided the problem one more time and used the recurrence to compute the
additional work. As in Footnote 3 in the previous section, it is straightforward to show that we
get the same big-Θ bound if d is positive. It is only a little more work to show that we get the
same big-Θ bound if d is zero.

Let’s think about the recursion tree for this recurrence. There will be 1 + logb n levels. At
each level, the number of subproblems will be multiplied by a, and so the number of subproblems
at level i will be ai. Each subproblem at level i is a problem of size (n/bi). A subproblem of size
n/bi requires (n/bi)c additional work and since there are ai problems on level i, the total number
of units of work on level i is

ai(n/bi)c = nc

(
ai

bci

)
= nc

(
a

bc

)i

. (4.26)

Recall from Lemma 4.7 that the different cases for c = 1 were when the work per level was
decreasing, constant, or increasing. The same analysis applies here. From our formula for work

4.4. THE MASTER THEOREM 151

on level i, we see that the work per level is decreasing, constant, or increasing exactly when (a
bc)i

is decreasing, constant, or increasing, respectively. These three cases depend on whether (a
bc) is

less than one, equal to one, or greater than one, respectively. Now observe that

(a
bc) = 1

⇔ a = bc

⇔ logb a = c logb b

⇔ logb a = c.

This shows us where the three cases in the statement of the theorem come from. Now we
need to show the bound on T (n) in the different cases. In the following paragraphs, we will use
the facts (whose proof is a straightforward application of the definition of logarithms and rules
of exponents) that for any x, y and z, each greater than 1, xlogy z = zlogy x (see Corollary 4.8,
Problem 5 at the end of the previous section, and Problem 3 at the end of this section) and that
logx y = Θ(log2 y) (see Problem 4 at the end of the previous section).

In general, the total work done is computed by summing the expression for the work per level
given in Equation 4.26 over all the levels, giving

logb n∑

i=0

nc
(

a

bc

)i

= nc
logb n∑

i=0

(
a

bc

)i

In case 1, (part 1 in the statement of the theorem) this is nc times a geometric series with a ratio
of less than 1. Theorem 4.4 tells us that

nc
logb n∑

i=0

(
a

bc

)i

= Θ(nc).

Exercise 4.4-1 Prove Case 2 (part 2 of the statement) of the Master Theorem.

Exercise 4.4-2 Prove Case 3 (part 3 of the statement) of the Master Theorem.

In Case 2 we have that a
bc = 1 and so

nc
logb n∑

i=0

(
a

bc

)i

= nc
logb n∑

i=0

1i

= nc(1 + logb n)
= Θ(nc log n).

In Case 3, we have that a
bc > 1. So in the series

logb n∑

i=0

nc
(

a

bc

)i

= nc
logb n∑

i=0

(
a

bc

)i

,

the largest term is the last one, so by Theorem 4.4,the sum is Θ
(
nc

(
a
bc

)logb n
)
. But

152 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

nc
(

a

bc

)logb n

= nc · alogb n

(bc)logb n

= nc · nlogb a

nlogb bc

= nc · nlogb a

nc

= nlogb a.

Thus the solution is Θ(nlogb a).

We note that we may assume that a is a real number with a > 1 and give a somewhat similar
proof (replacing the recursion tree with an iteration of the recurrence), but we do not give the
details here.

Solving More General Kinds of Recurrences

Exercise 4.4-3 What can you say about the big-θ behavior of the solution to

T (n) =

{
2T (n/3) + 4n3/2 if n > 1
d if n = 1,

where n can be any nonnegative power of three?

Exercise 4.4-4 If f(n) = n
√

n + 1, what can you say about the Big-Θ behavior of solu-
tions to

S(n) =

{
2S(n/3) + f(n) if n > 1
d if n = 1,

where n can be any nonnegative power of three?

For Exercise 4.4-3, the work done at each level of the tree except for the bottom level will be
four times the work done by the recurrence

T ′(n) =

{
2T ′(n/3) + n3/2 if n > 1
d if n = 1,

Thus the work done by T will be no more than four times the work done by T ′, but will be
larger than the work done by T ′. Therefore T (n) = Θ(T ′(n)). Thus by the master theorem, since
log3 2 < 1 < 3/2, we have that T (n) = Θ(n3/2).

For Exercise 4.4-4, Since n
√

n + 1 > n
√

n = n3/2 we have that S(n) is at least as big as the
solution to the recurrence

T ′(n) =

{
2T ′(n/3) + n3/2 if n > 1
d if n = 1,

where n can be any nonnegative power of three. But the solution to the recurrence for S will be
no more than the solution to the recurrence in Exercise 4.4-3 for T , because n

√
n + 1 ≤ 4n3/2

for n ≥ 0. Since T (n) = Θ(T ′(n)), then S(n) = Θ(T ′(n)) as well.

4.4. THE MASTER THEOREM 153

Extending the Master Theorem

As Exercise 4.4-3 and Exercise 4.4-4 suggest, there is a whole range of interesting recurrences that
do not fit the master theorem but are closely related to recurrences that do. These recurrences
have the same kind of behavior predicted by our original version of the Master Theorem, but the
original version of the Master Theorem does not apply to them, just as it does not apply to the
recurrences of Exercise 4.4-3 and Exercise 4.4-4.

We now state a second version of the Master Theorem that covers these cases. A still stronger
version of the theorem may be found in Introduction to Algorithms by Cormen, et. al., but the
version here captures much of the interesting behavior of recurrences that arise from the analysis
of algorithms.

Theorem 4.10 Let a and b be positive real numbers with a ≥ 1 and b > 1. Let T (n) be defined
for powers n of b by

T (n) =

{
aT (n/b) + f(n) if n > 1
d if n = 1.

Then

1. if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)).

2. if f(n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a logb n)

3. if f(n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

Proof: We construct a recursion tree or iterate the recurrence. Since we have assumed that
f(n) = Θ(nc), there are constants c1 and c2, independent of the level, so that the work at each
level is between c1n

c
(

a
bc

)i and c2n
c
(

a
bc

)i so from this point on the proof is largely a translation
of the original proof.

Exercise 4.4-5 What does the Master Theorem tell us about the solutions to the recur-
rence

T (n) =

{
3T (n/2) + n

√
n + 1 if n > 1

1 if n = 1?

As we saw in our solution to Exercise 4.4-4 x
√

x + 1 = Θ(x3/2). Since 23/2 =
√

23 =
√

8 < 3,
we have that log2 3 > 3/2. Then by conclusion 3 of version 2 of the Master Theorem, T (n) =
Θ(nlog2 3).

The remainder of this section is devoted to carefully analyzing divide and conquer recurrences
in which n is not a power of b and T (n/b) is replaced by T (�n/b�). While the details are
somewhat technical, the end result is that the big-Θ behavior of such recurrences is the same as
the corresponding recurrences for functions defined on powers of b. In particular, the following
theorem is a consequence of what we prove.

154 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Theorem 4.11 Let a and b be positive real numbers with a ≥ 1 and b ≥ 2. Let T (n) satisfy the
recurrence

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1.

Then

1. if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)).

2. if f(n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a logb n)

3. if f(n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

(The condition that b ≥ 2 can be changed to B > 1 with an appropriate change in the base case
of the recurrence, but the base case will then depend on b.) The reader should be able to skip
over the remainder of this section without loss of continuity.

More realistic recurrences (Optional)

So far, we have considered divide and conquer recurrences for functions T (n) defined on integers
n which are powers of b. In order to consider a more realistic recurrence in the master theorem,
namely

T (n) =

{
aT (�n/b�) + nc if n > 1
d if n = 1,

or

T (n) =

{
aT (
n/b�) + nc if n > 1
d if n = 1,

or even

T (n) =

{
a′T (�n/b�) + (a − a′)T (
n/b�) + nc if n > 1
d if n = 1,

it turns out to be easiest to first extend the domain for our recurrences to a much bigger set than
the nonnegative integers, either the real or rational numbers, and then to work backwards.

For example, we can write a recurrence of the form

t(x) =

{
f(x)t(x/b) + g(x) if x ≥ b
k(x) if 1 ≤ x < b

for two (known) functions f and g defined on the real [or rational] numbers greater than 1 and
one (known) function k defined on the real [or rational] numbers x with 1 ≤ x < b. Then so long
as b > 1 it is possible to prove that there is a unique function t defined on the real [or rational]
numbers greater than or equal to 1 that satisfies the recurrence. We use the lower case t in this
situation as a signal that we are considering a recurrence whose domain is the real or rational
numbers greater than or equal to 1.

Exercise 4.4-6 How would we compute t(x) in the recurrence

t(x) =

{
3t(x/2) + x2 if x ≥ 2
5x if 1 ≤ x < 2

if x were 7? How would we show that there is one and only one function t that satisfies
the recurrence?

4.4. THE MASTER THEOREM 155

Exercise 4.4-7 Is it the case that there is one and only one solution to the recurrence

T (n) =

{
f(n)T (�n/b�) + g(n) if n > 1
k if n = 1

when f and g are (known) functions defined on the positive integers, and k and b are
(known) constants with b an integer larger than or equal to 2?

To compute t(7) in Exercise 4.4-6 we need to know t(7/2). To compute t(7/2), we need to
know t(7/4). Since 1 < 7/4 < 2, we know that t(7/4) = 35/4. Then we may write

t(7/2) = 3 · 35
4

+
49
4

=
154
4

=
77
2

.

Next we may write

t(7) = 3t(7/2) + 72

= 3 · 77
2

+ 49

=
329
2

.

Clearly we can compute t(x) in this way for any x, though we are unlikely to enjoy the arithmetic.
On the other hand suppose all we need to do is to show that there is a unique value of t(x)
determined by the recurrence, for all real numbers x ≥ 1. If 1 ≤ x < 2, then t(x) = 5x, which
uniquely determines t(x). Given a number x ≥ 2, there is a smallest integer i such that x/2i < 2,
and for this i, we have 1 ≤ x/2i. We can now prove by induction on i that t(x) is uniquely
determined by the recurrence relation.

In Exercise 4.4-7 there is one and only one solution. Why? Clearly T (1) is determined by
the recurrence. Now assume inductively that n > 1 and that T (m) is uniquely determined for
positive integers m < n. We know that n ≥ 2, so that n/2 ≤ n − 1. Since b ≥ 2, we know
that n/2 ≥ n/b, so that n/b ≤ n − 1. Therefore �n/b� < n, so that we know by the inductive
hypothesis that T (�n/b�) is uniquely determined by the recurrence. Then by the recurrence,

T (n) = f(n)T
(⌈

n

b

⌉)
+ g(n),

which uniquely determines T (n). Thus by the principle of mathematical induction, T (n) is
determined for all positive integers n.

For every kind of recurrence we have dealt with, there is similarly one and only one solution.
Because we know solutions exist, we don’t find formulas for solutions to demonstrate that solu-
tions exist, but rather to help us understand properties of the solutions. In this section and the
last section, for example, we were interested in how fast the solutions grew as n grew large. This
is why we were finding Big-O and Big-Θ bounds for our solutions.

Recurrences for general n (Optional)

We will now show how recurrences for arbitrary real numbers relate to recurrences involving
floors and ceilings. We begin by showing that the conclusions of the Master Theorem apply to
recurrences for arbitrary real numbers when we replace the real numbers by “nearby” powers
of b.

156 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Theorem 4.12 Let a and b be positive real numbers with b > 1 and c and d be real numbers.
Let t(x) be the solution to the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Let T (n) be the solution to the recurrence

T (n) =

{
aT (n/b) + nc if n ≥ 0
d if n = 1,

defined for n a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(x) = Θ(T (m(x)))

Proof: If we iterate (or, in the case that a is an integer, draw recursion trees for) the two
recurrences, we can see that the results of the iterations are nearly identical. This means the
solutions to the recurrences have the same big-Θ behavior. See the Appendix to this Section for
details.

Removing Floors and Ceilings (Optional)

We have also pointed out that a more realistic Master Theorem would apply to recurrences of
the form T (n) = aT (
n/b�) + nc, or T (n) = aT (�n/b�) + nc, or even T (n) = a′T (�n/b�) + (a −
a′)T (
n/b�)+nc. For example, if we are applying mergesort to an array of size 101, we really break
it into pieces, of size 50 and 51. Thus the recurrence we want is not really T (n) = 2T (n/2) + n,
but rather T (n) = T (
n/2�) + T (�n/2�) + n.

We can show, however, that one can essentially “ignore” the floors and ceilings in typical
divide-and-conquer recurrences. If we remove the floors and ceilings from a recurrence relation,
we convert it from a recurrence relation defined on the integers to one defined on the rational
numbers. However we have already seen that such recurrences are not difficult to handle.

The theorem below says that in recurrences covered by the master theorem, if we remove
ceilings, our recurrences still have the same big-Θ bounds on their solutions. A similar proof
shows that we may remove floors and still get the same big-Θ bounds. Without too much more
work we can see that we can remove floors and ceilings simultaneously without changing the
big-Θ bounds on our solutions. Since we may remove either floors or ceilings, that means that we
may deal with recurrences of the form T (n) = a′T (�n/b�)+ (a−a′)T (
n/b�)+nc. The condition
that b > 2 can be replaced by b > 1, but the base case for the recurrence will depend on b.

Theorem 4.13 Let a and b be positive real numbers with b ≥ 2 and let c and d be real numbers.
Let T (n) be the function defined on the integers by the recurrence

T (n) =

{
aT (�n/b�) + nc if n > 1
d n = 1,

and let t(x) be the function on the real numbers defined by the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b

Then T (n) = Θ(t(n)). The same statement applies with ceilings replaced by floors.

4.4. THE MASTER THEOREM 157

Proof: As in the previous theorem, we can consider iterating the two recurrences. It is
straightforward (though dealing with the notation is difficult) to show that for a given value of
n, the iteration for computing T (n) has at most two more levels than the iteration for computing
t(n). The work per level also has the same Big-Θ bounds at each level, and the work for the two
additional levels of the iteration for T (n) has the same Big-Θ bounds as the work at the bottom
level of the recursion tree for t(n). We give the details in the appendix at the end of this section.

Theorem 4.12 and Theorem 4.13 tell us that the Big-Θ behavior of solutions to our more
realistic recurrences

T (n) =

{
aT (�n/b�) + nc if n > 1
d n=1

is determined by their Big-Θ behavior on powers of the base b.

Floors and ceilings in the stronger version of the Master Theorem (Optional)

In our first version of the master theorem, we showed that we could ignore ceilings and assume
our variables were powers of b. In fact we can ignore them in circumstances where the function
telling us the “work” done at each level of our recursion tree is Θ(xc) for some positive real
number c. This lets us apply the second version of the master theorem to recurrences of the form
T (n) = aT (�n/b�) + f(n).

Theorem 4.14 Theorems 4.12 and 4.13 apply to recurrences in which the xc or nc term is
replaced by f(x) or f(n) for a function f with f(x) = Θ(xc).

Proof: We iterate the recurrences or construct recursion trees in the same way as in the proofs
of the original theorems, and find that the condition f(x) = Θ(xc) gives us enough information
to again bound the solution above and below with multiples of the solution of the recurrence
with xc. The details are similar to those in the original proofs.

Appendix: Proofs of Theorems (Optional)

For convenience, we repeat the statements of the earlier theorems whose proofs we merely out-
lined.

Theorem 4.12 Let a and b be positive real numbers with b > 1 and c and d be real numbers.
Let t(x) be the solution to the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Let T (n) be the solution to the recurrence

T (n) =

{
aT (n/b) + nc if n ≥ 0
d if n = 1,

defined for n is a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(x) = Θ(T (m(x)))

158 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Proof: By iterating each recursion 4 times (or using a four level recursion tree in the case
that a is an integer), we see that

t(x) = a4t
(x

b4

)
+

(a

bc

)3
xc +

(a

bc

)2
xc +

a

bc
xc

and
T (n) = a4T

(n

b4

)
+

(a

bc

)3
nc +

(a

bc

)2
nc +

a

bc
nc.

Thus, continuing until we have a solution, in both cases we get a solution that starts with a raised
to an exponent that we will denote as either e(x) or e(n) when we want to distinguish between
them and e when it is unnecessary to distinguish. The solution for t will be ae times t(x/be)

plus xc times a geometric series
∑e−1

i=0

(
a
bc

)i
. The solution for T will be ae times d plus nc times

a geometric series
∑e−1

i=0

(
a
bc

)i
. In both cases t(x/be) (or T (n/be)) will be d. In both cases the

geometric series will be Θ(1), Θ(e) or Θ
(

a
bc

)e
, depending on whether a

bc is less than 1, equal to 1,
or greater than one. Clearly e(n) = logb n. Since we must divide x by b an integer number greater
than logb x− 1 times in order to get a value in the range from 1 to b, e(x) =
logb x�. Thus, if m
is the largest integer power of b less than or equal to x, then 0 ≤ e(x) − e(m) < 1. Let us use r
to stand for the real number a

bc . Then we have r0 ≤ re(x)−e(m) < r, or re(m) ≤ re(x) ≤ r · re(m).
Thus we have re(x) = Θ(re(m)) Finally, mc ≤ xc ≤ bcmc, and so xc = Θ(mc). Therefore, every
term of t(x) is Θ of the corresponding term of T (m). Further, there are only a fixed number of
different constants involved in our Big-Θ bounds. Therefore since t(x) is composed of sums and
products of these terms, t(x) = Θ(T (m)).

Theorem 4.13 Let a and b be positive real numbers with b ≥ 2 and let c and d be real numbers.
Let T (n) be the function defined on the integers by the recurrence

T (n) =

{
aT (�n/b�) + nc if n ≥ b
d n = 1,

and let t(x) be the function on the real numbers defined by the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Then T (n) = Θ(t(n)).

Proof: As in the previous proof, we can iterate both recurrences. Let us compare what the
results will be of iterating the recurrence for t(n) and the recurrence for T (n) the same number
of times. Note that

�n/b� < n/b + 1
��n/b�/b� < �n/b2 + 1/b� < n/b2 + 1/b + 1

���n/b�/b�/b� < �n/b3 + 1/b2 + 1/b� < n/b3 + 1/b2 + 1/b + 1

This suggests that if we define n0 = n, and ni = �ni−1/b�, then, using the fact that b ≥ 2, it
is straightforward to prove by induction, or with the formula for the sum of a geometric series,

4.4. THE MASTER THEOREM 159

that ni < n/bi + 2. The number ni is the argument of T in the ith iteration of the recurrence
for T . We have just seen that it differs from the argument of t in the ith iteration of t by at
most 2. In particular, we might have to iterate the recurrence for T twice more than we iterate
the recurrence for t to reach the base case. When we iterate the recurrence for t, we get the
same solution we got in the previous theorem, with n substituted for x. When we iterate the
recurrence for T , we get for some integer j that

T (n) = ajd +
j−1∑

i=0

ainc
i ,

with n
bi ≤ ni ≤ n

bi + 2. But, so long as n/bi ≥ 2, we have n/bi + 2 ≤ n/bi−1. Since the number of
iterations of T is at most two more than the number of iterations of t, and since the number of
iterations of t is
logb n�, we have that j is at most
logb n� + 2. Therefore all but perhaps the
last three values of ni are less than or equal to n/bi−1, and these last three values are at most b2,
b, and 1. Putting all these bounds together and using n0 = n gives us

j−1∑

i=0

ai
(n

bi

)c
≤

j−1∑

i=0

ainc
i

≤ nc +
j−4∑

i=1

ai
(n

bi−1

)c
+ aj−2(b2)c + aj−1bc + aj1c,

or
j−1∑

i=0

ai
(n

bi

)c
≤

j−1∑

i=0

ainc
i

≤ nc + b
j−4∑

i=1

ai
(n

bi

)c
+ aj−2

(
bj

bj−2

)c

+ aj−1

(
bj

bj−1

)c

+ aj

(
bj

bj

)c

.

As we shall see momentarily these last three “extra” terms and the b in front of the summation
sign do not change the Big-Θ behavior of the right-hand side.

As in the proof of the master theorem, the Big-Θ behavior of the left hand side depends on
whether a/bc is less than 1, in which case it is Θ(nc), equal to 1, in which case it is Θ(nc logb n),
or greater than one in which case it is Θ(nlogb a). But this is exactly the Big-Θ behavior of the
right-hand side, because n < bj < nb2, so bj = Θ(n), which means that

(
bj

bi

)c
= Θ

((
n
bi

)c)
,

and the b in front of the summation sign does not change its Big-Θ behavior. Adding ajd to
the middle term of the inequality to get T (n) does not change this behavior. But this modified
middle term is exactly T (n). Since the left and right hand sides have the same big-Θ behavior
as t(n), we have T(n) = Θ(t(n)).

Important Concepts, Formulas, and Theorems

1. Master Theorem, simplified version. The simplified version of the Master Theorem states:
Let a be an integer greater than or equal to 1 and b be a real number greater than 1. Let c
be a positive real number and d a nonnegative real number. Given a recurrence of the form

T (n) =

{
aT (n/b) + nc if n > 1
d if n = 1

then for n a power of b,

160 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

(a) if logb a < c, T (n) = Θ(nc),

(b) if logb a = c, T (n) = Θ(nc log n),

(c) if logb a > c, T (n) = Θ(nlogb a).

2. Properties of Logarithms. For any x, y and z, each greater than 1, xlogy z = zlogy x. Also,
logx y = Θ(log2 y).

3. Master Theorem, More General Version. Let a and b be positive real numbers with a ≥ 1
and b ≥ 2. Let T (n) be defined for powers n of b by

T (n) =

{
aT (n/b) + f(n) if n > 1
d if n = 1

Then

(a) if f(n) = Θ(nc) where logb a < c, then T (n) = Θ(nc) = Θ(f(n)).

(b) if f(n) = Θ(nc), where logb a = c, then T (n) = Θ(nlogb a logb n)

(c) if f(n) = Θ(nc), where logb a > c, then T (n) = Θ(nlogb a).

A similar result with a base case that depends on b holds when 1 < b < 2.

4. Important Recurrences have Unique Solutions. (Optional.) The recurrence

T (n) =

{
f(n)T (�n/b�) + g(n) if n > 1
k if n = 1

has a unique solution when f and g are (known) functions defined on the positive integers,
and k and b are (known) constants with b an integer larger than 2.

5. Recurrences Defined on the Positive Real Numbers and Recurrences Defined on the Positive
Integers. (Optional.) Let a and b be positive real numbers with b > 1 and c and d be real
numbers. Let t(x) be the solution to the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b.

Let T (n) be the solution to the recurrence

T (n) =

{
aT (n/b) + nc if n ≥ 0
d if n = 1,

where n is a nonnegative integer power of b. Let m(x) be the largest integer power of b less
than or equal to x. Then t(x) = Θ(T (m(x)))

6. Removing Floors and Ceilings from Recurrences. (Optional.) Let a and b be positive real
numbers with b ≥ 2 and let c and d be real numbers. Let T (n) be the function defined on
the integers by the recurrence

T (n) =

{
aT (�n/b�) + nc if n > 1
d n = 1

,

4.4. THE MASTER THEOREM 161

and let t(x) be the function on the real numbers defined by the recurrence

t(x) =

{
at(x/b) + xc if x ≥ b
d if 1 ≤ x < b

.

Then T (n) = Θ(t(n)). The same statement applies with ceilings replaced by floors.

7. Extending 5 and 6 (Optional.) In the theorems summarized in 5 and 6 the nc or xc term
may be replaced by a function f with f(x) = Θ(xc).

8. Solutions to Realistic Recurrences. The theorems summarized in 5, 6, and 7 tell us that
the Big-Θ behavior of solutions to our more realistic recurrences

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d n=1,

where f(n) = Θ(nc), is determined by their Big-Θ behavior on powers of the base b and
with f(n) = nc.

Problems

1. Use the master theorem to give Big-Θ bounds on the solutions to the following recurrences.
For all of these, assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

(c) T (n) = 3T (n/2) + n

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

2. Extend the proof of the Master Theorem, Theorem 4.9 to the case T (1) = d.

3. Show that for any x, y and z, each greater than 1, xlogy z = zlogy x.

4. (Optional) Show that for each real number x ≥ 0 there is one and only one value of t(x)
given by the recurrence

t(x) =

{
7xt(x − 1) + 1 if x ≥ 1
1 if 0 ≤ x < 1.

5. (Optional) Show that for each real number x ≥ 1 there is one and only one value of t(x)
given by the recurrence

t(x) =

{
3xT (x/2) + x2 if x ≥ 2
1 if 1 ≤ x < 2

.

162 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

6. (Optional) How many solutions are there to the recurrence

T (n) =

{
f(n)T (�n/b�) + g(n) if n > 1
k if n = 1

if b < 2? If b = 10/9, by what would we have to replace the condition that T (n) = k if
n = 1 in order to get a unique solution?

7. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
3T (�n/2�) +

√
n + 3 if n > 1

d if n = 1.

8. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
3T (�n/2�) +

√
n3 + 3 if n > 1

d if n = 1.

9. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
3T (�n/2�) +

√
n4 + 3 if n > 1

d if n = 1.

10. Give a big-Θ bound on the solution to the recurrence

T (n) =

{
2T (�n/2�) +

√
n2 + 3 if n > 1

d if n = 1.

11. (Optional) Explain why theorem 4.11 is a consequence of Theorem 4.12 and Theorem 4.13

4.5. MORE GENERAL KINDS OF RECURRENCES 163

4.5 More general kinds of recurrences

Recurrence Inequalities

The recurrences we have been working with are really idealized versions of what we know about
the problems we are working on. For example, in merge-sort on a list of n items, we say we
divide the list into two parts of equal size, sort each part, and then merge the two sorted parts.
The time it takes to do this is the time it takes to divide the list into two parts plus the time
it takes to sort each part, plus the time it takes to merge the two sorted lists. We don’t specify
how we are dividing the list, or how we are doing the merging. (We assume the sorting is done
by applying the same method to the smaller lists, unless they have size 1, in which case we do
nothing.) What we do know is that any sensible way of dividing the list into two parts takes no
more than some constant multiple of n time units (and might take no more than constant time if
we do it by leaving the list in place and manipulating pointers) and that any sensible algorithm
for merging two lists will take no more than some (other) constant multiple of n time units. Thus
we know that if T (n) is the amount of time it takes to apply merge sort to n data items, then
there is a constant c (the sum of the two constant multiples we mentioned) such that

T (n) ≤ 2T (n/2) + cn. (4.27)

Thus real world problems often lead us to recurrence inequalities rather than recurrence
equations. These are inequalities that state that T (n) is less than or equal to some expression
involving values of T (m) for m < n. (We could also include inequalities with a greater than
or equal to sign, but they do not arise in the applications we are studying.) A solution to a
recurrence inequality is a function T that satisfies the inequality. For simplicity we will expand
what we mean by the word recurrence to include either recurrence inequalities or recurrence
equations.

In Recurrence 4.27 we are implicitly assuming that T is defined only on positive integer values
and, since we said we divided the list into two equal parts each time, our analysis only makes
sense if we assume that n is a power of 2.

Note that there are actually infinitely many solutions to Recurrence 4.27. (For example for
any c′ < c, the unique solution to

T (n) =

{
2T (n/2) + c′n if n ≥ 2
k if n = 1

(4.28)

satisfies Inequality 4.27 for any constant k.) The idea that Recurrence 4.27 has infinitely many
solutions, while Recurrence 4.28 has exactly one solution is analogous to the idea that x− 3 ≤ 0
has infinitely many solutions while x − 3 = 0 has one solution. Later in this section we shall see
how to show that all the solutions to Recurrence 4.27 satisfy T (n) = O(n log2 n). In other words,
no matter how we sensibly implement merge sort, we have a O(n log2 n) time bound on how long
the merge sort process takes.

Exercise 4.5-1 Carefully prove by induction that for any function T defined on the non-
negative powers of 2, if

T (n) ≤ 2T (n/2) + cn

for some constant c, then T (n) = O(n log n).

164 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

A Wrinkle with Induction

We can analyze recurrence inequalities via a recursion tree. The process is virtually identical to
our previous use of recursion trees. We must, however, keep in mind that on each level, we are
really computing an upper bound on the work done on that level. We can also use a variant of the
method we used a few sections ago, guessing an upper bound and verifying by induction. We use
this method for the recurrence in Exercise 4.5-1. Here we wish to show that T (n) = O(n log n).
From the definition of Big-O, we can see that we wish to show that T (n) ≤ kn log n for some
positive constant k (so long as n is larger than some value n0).

We are going to do something you may find rather curious. We will consider the possibility
that we have a value of k for which the inequality holds. Then in analyzing the consequences
of this possibility, we will discover that there are assumptions that we need to make about k in
order for such a k to exist. What we will really be doing is experimenting to see how we will
need to choose k to make an inductive proof work.

We are given that T (n) ≤ 2T (n/2) + cn for all positive integers n that are powers of 2. We
want to prove there is another positive real number k > 0 and an n0 > 0 such that for n > n0,
T (n) ≤ kn log n. We cannot expect to have the inequality T (n) ≤ kn log n hold for n = 1,
because log 1 = 0. To have T (2) ≤ k · 2 log 2 = k · 2, we must choose k ≥ T (2)

2 . This is the first
assumption we must make about k. Our inductive hypothesis will be that if n is a power of 2 and
m is a power of 2 with 2 ≤ m < n then T (m) ≤ km log m. Now n/2 < n, and since n is a power
of 2 greater than 2, we have that n/2 ≥ 2, so (n/2) log n/2 ≥ 2. By the inductive hypothesis,
T (n/2) ≤ k(n/2) log n/2. But then

T (n) ≤ 2T (n/2) + cn ≤ 2k
n

2
log

n

2
+ cn (4.29)

= kn log
n

2
+ cn (4.30)

= kn log n − kn log 2 + cn (4.31)
= kn log n − kn + cn. (4.32)

Recall that we are trying to show that T (n) ≤ kn log n. But that is not quite what Line 4.32
tells us. This shows that we need to make another assumption about k, namely that −kn+cn ≤ 0,
or k ≥ c. Then if both our assumptions about k are satisfied, we will have T (n) < kn log n, and
we can conclude by the principle of mathematical induction that for all n > 1 (so our n0 is 2),
T (n) ≤ kn log n, so that T (n) = O(n log n).

A full inductive proof that T (n) = O(n log n) is actually embedded in the discussion above,
but since it might not appear to everyone to be a proof, below we will summarize our observations
in a more traditional looking proof. However you should be aware that some authors and teachers
prefer to write their proofs in a style that shows why we make the choices about k that we do,
and so you should learn how to to read discussions like the one above as proofs.

We want to show that if T (n) ≤ T (n/2) + cn, then T (n) = O(n log n). We are given a real
number c > 0 such that T (n) ≤ 2T (n/2) + cn for all n > 1. Choose k to be larger than or equal
to T (2)

2 and larger than or equal to c. Then

T (2) ≤ k · 2 log 2

4.5. MORE GENERAL KINDS OF RECURRENCES 165

because k ≥ T (n0)/2 and log 2 = 1. Now assume that n > 2 and assume that for m with
2 ≤ m < n, we have T (m) ≤ km log m. Since n is a power of 2, we have n ≥ 4, so that n/2 is an
m with 2 ≤ m < n. Thus, by the inductive hypothesis,

T

(
n

2

)
≤ k

n

2
log

n

2.

Then by the recurrence,

T (n) ≤ 2k
n

2
log

n

2
+ cn

= kn(log n − 1) + cn

= kn log n + cn − kn

≤ kn log n,

since k ≥ c. Thus by the principle of mathematical induction, T (n) ≤ kn log n for all n > 2, and
therefore T (n) = O(n log n).

There are three things to note about this proof. First without the preceding discussion, the
choice of k seems arbitrary. Second, without the preceding discussion, the implicit choice of 2 for
the n0 in the big-O statement also seems arbitrary. Third, the constant k is chosen in terms of
the previous constant c. Since c was given to us by the recurrence, it may be used in choosing the
constant we use to prove a Big-O statement about solutions to the recurrence. If you compare
the formal proof we just gave with the informal discussion that preceded it, you will find each
step of the formal proof actually corresponds to something we said in the informal discussion.
Since the informal discussion explained why we were making the choices we did, it is natural that
some people prefer the informal explanation to the formal proof.

Further Wrinkles in Induction Proofs

Exercise 4.5-2 Suppose that c is a real number greater than zero. Show by induction
that any solution T (n) to the recurrence

T (n) ≤ T (n/3) + cn

with n restricted to integer powers of 3 has T (n) = O(n).

Exercise 4.5-3 Suppose that c is a real number greater than zero. Show by induction
that any solution T (n) to the recurrence

T (n) ≤ 4T (n/2) + cn

with n restricted to integer powers of 2 has T (n) = O(n2).

In Exercise 4.5-2 we are given a constant c such that T (n) ≤ T (n/3) + cn if n > 1. Since
we want to show that T (n) = O(n), we want to find two more constants n0 and k such that
T (n) ≤ kn whenever n > n0.

We will choose n0 = 1 here. (This was not an arbitrary choice; it is based on observing that
T (1) ≤ kn is not an impossible condition to satisfy when n = 1.) In order to have T (n) ≤ kn for

166 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

n = 1, we must assume k ≥ T (1). Now assuming inductively that T (m) ≤ km when 1 ≤ m < n
we can write

T (n) ≤ T (n/3) + cn

≤ k(n/3) + cn

= kn +
(

c − 2k

3

)
n

Thus, as long as c − 2k
3 ≤ 0, i.e. k ≥ 3

2c, we may conclude by mathematical induction that
T (n) ≤ kn for all n ≥ 1. Again, the elements of an inductive proof are in the preceding
discussion. Again you should try to learn how to read the argument we just finished as a valid
inductive proof. However, we will now present something that looks more like an inductive proof.

We choose k to be the maximum of T (1) and 3c/2 and we choose n0 = 1. To prove by
induction that T (x) ≤ kx we begin by observing that T (1) ≤ k · 1. Next we assume that n > 1
and assume inductively that for m with 1 ≤ m < n we have T (m) ≤ km. Now we may write

T (n) ≤ T (n/3) + cn ≤ kn/3 + cn = kn + (c − 2k/3)n ≤ kn,

because we chose k to be at least as large as 3c/2, making c − 2k/3 negative or zero. Thus by
the principle of mathematical induction we have T (n) ≤ kn for all n ≥ 1 and so T (n) = O(n).

Now let’s analyze Exercise 4.5-3. We won’t dot all the i’s and cross all the t’s here because
there is only one major difference between this exercise and the previous one. We wish to prove
that there are an n0 and a k such that T (n) ≤ kn2 for n > n0. Assuming that we have chosen n0

and k so that the base case holds, we can bound T (n) inductively by assuming that T (m) ≤ km2

for m < n and reasoning as follows:

T (n) ≤ 4T

(
n

2

)
+ cn

≤ 4

(
k

(
n

2

)2
)

+ cn

= 4

(
kn2

4

)
+ cn

= kn2 + cn.

To proceed as before, we would like to choose a value of k so that cn ≤ 0. But we see that
we have a problem because both c and n are always positive! What went wrong? We have a
statement that we know is true, and we have a proof method (induction) that worked nicely for
similar problems.

The usual way to describe the problem we are facing is that, while the statement is true, it
is too weak to be proved by induction. To have a chance of making the inductive proof work,
we will have to make an inductive hypothesis that puts some sort of negative quantity, say a
term like −kn, into the last line of our display above. Let’s see if we can prove something that is
actually stronger than we were originally trying to prove, namely that for some positive constants
k1 and k2, T (n) ≤ k1n

2 − k2n. Now proceeding as before, we get

T (n) ≤ 4T (n/2) + cn

4.5. MORE GENERAL KINDS OF RECURRENCES 167

≤ 4

(
k1

(
n

2

)2

− k2

(
n

2

))
+ cn

= 4

(
k1n

2

4
− k2

(
n

2

))
+ cn

= k1n
2 − 2k2n + cn

= k1n
2 − k2n + (c − k2)n.

Now we have to make (c − k2)n ≤ 0 for the last line to be at most k1n
2 − k2n, and so we just

choose k2 ≥ c (and greater than whatever we need in order to make a base case work). Since
T (n) ≤ k1n

2 − k2n for some constants k1 and k2, then T (n) = O(n2).

At first glance, this approach seems paradoxical: why is it easier to prove a stronger statement
than it is to prove a weaker one? This phenomenon happens often in induction: a stronger
statement is often easier to prove than a weaker one. Think carefully about an inductive proof
where you have assumed that a bound holds for values smaller than n and you are trying to
prove a statement for n. You use the bound you have assumed for smaller values to help prove
the bound for n. Thus if the bound you used for smaller values is actually weak, then that is
hindering you in proving the bound for n. In other words when you want to prove something
about p(n) you are using p(1)∧ . . .∧ p(n− 1). Thus if these are stronger, they will be of greater
help in proving p(n). In the case above, the problem was that the statements, p(1), . . . , p(n− 1)
were too weak, and thus we were not able to prove p(n). By using a stronger p(1), . . . , p(n − 1),
however, we were able to prove a stronger p(n), one that implied the original p(n) we wanted.
When we give an induction proof in this way, we say that we are using a stronger inductive
hypothesis.

Dealing with Functions Other Than nc

Our statement of the Master Theorem involved a recursive term plus an added term that was
Θ(nc). Sometimes algorithmic problems lead us to consider other kinds of functions. The most
common such is example is when that added function involves logarithms. For example, consider
the recurrence:

T (n) =

{
2T (n/2) + n log n if n > 1
1 if n = 1,

where n is a power of 2. Just as before, we can draw a recursion tree; the whole methodology
works, but our sums may be a little more complicated. The tree for this recurrence is shown in
Figure 4.8.

This is similar to the tree for T (n) = 2T (n/2)+n, except that the work on level i is n log
(

n
2i

)

for i ≥ 2, and, for the bottom level, it is n, the number of subproblems, times 1. Thus if we sum
the work per level we get

log n−1∑

i=0

n log
(

n

2i

)
+ n = n




log n−1∑

i=0

log
(

n

2i

)
+ 1





= n




log n−1∑

i=0

(log n − log 2i) + 1





168 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Figure 4.8: The recursion tree for T (n) = 2T (n/2) + n log n if n > 1 and T (1) = 1.

n log n

n/2 log(n/2) + n/2 log(n/2) = n log(n/2)

4(n/4 log(n/4)) = n log(n/4)

8(n/8 log(n/8)) = n log(n/8)

n/2(n/(n/2) log(n/(n/2))) = n

WorkProblem Size

n

n/2

n/4

n/8

2

log n +1
levels

1 n(1) = n

= n




log n−1∑

i=0

log n −
log n−1∑

i=0

i



 + n

= n

(
(log n)(log n) − (log n)(log n − 1)

2

)
+ n

= O(n log2 n) .

A bit of mental arithmetic in the second last line of our equations shows that the log2 n will not
cancel out, so our solution is in fact Θ(n log2 n).

Exercise 4.5-4 Find the best big-O bound you can on the solution to the recurrence

T (n) =

{
T (n/2) + n log n if n > 1
1 if n = 1,

assuming n is a power of 2. Is this bound a big-Θ bound?

The tree for this recurrence is in Figure 4.9

Notice that the work done at the bottom nodes of the tree is determined by the statement
T (1) = 1 in our recurrence; it is not 1 log 1. Summing the work, we get

1 +
log n−1∑

i=0

n

2i
log

(
n

2i

)
= 1 + n




log n−1∑

i=0

1
2i

(log n − log 2i)





= 1 + n




log n−1∑

i=0

(
1
2

)i

(log(n) − i)





≤ 1 + n



log n
log n−1∑

i=0

(
1
2

)i




4.5. MORE GENERAL KINDS OF RECURRENCES 169

Figure 4.9: The recursion tree for the recurrence T (n) = T (n/2) + n log n if n > 1 and T (1) = 1.

Problem Size

n

n/2

n

Work

n/4

n/8

2

log n
levels

n/2 log(n/2)

n/4 log(n/4)

n/8 log(n/8)

2 log 2

≤ 1 + n(log n)(2)
= O(n log n).

Note that the largest term in the sum in our second line of equations is log(n), and none of the
terms in the sum are negative. This means that n times the sum is at least n log n. Therefore,
we have T (n) = Θ(n log n).

Removing Ceilings and Using Powers of b. (Optional)

We showed that in our versions of the master theorem, we could ignore ceilings and assume our
variables were powers of b. It might appear that the two theorems we used do not apply to the
more general functions we have studied in this section any more than the master theorem does.
However, they actually only depend on properties of the powers nc and not the three different
kinds of cases, so it turns out we can extend them.

Notice that (xb)c = bcxc, and this proportionality holds for all values of x with constant
of proportionality bc. Putting this just a bit less precisely, we can write (xb)c = O(xc). This
suggests that we might be able to obtain Big-Θ bounds on T (n) when T satisfies a recurrence of
the form

T (n) = aT (n/b) + f(n)

with f(nb) = Θ(f(n)), and we might be able to obtain Big-O bounds on T when T satisfies a
recurrence of the form

T (n) ≤ aT (n/b) + f(n)

with f(nb) = O(f(n)). But are these conditions satisfied by any functions of practical interest?
Yes. For example if f(x) = log(x), then

f(bx) = log(b) + log(x) = Θ(log(x)).

Exercise 4.5-5 Show that if f(x) = x2 log x, then f(bx) = Θ(f(x)).

170 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Exercise 4.5-6 If f(x) = 3x and b = 2, is f(bx) = Θ(f(x))? Is f(b(x)) = O(f(x))?

For Exercise 4.5-5 if f(x) = x2 log x, then

f(bx) = (bx)2 log bx = b2x2(log b + log x) = Θ(x2 log x).

However, if f(x) = 3x, then
f(2x) = 32x = (3x)2 = 3x · 3x,

and there is no way that this can be less than or equal to a constant multiple of 3x, so it is
neither Θ(3x) nor O(3x). Our exercises suggest the kinds of functions that satisfy the condition
f(bx) = O(f(x)) might include at least some of the kinds of functions of x which arise in the
study of algorithms. They certainly include the power functions and thus polynomial functions
and root functions, or functions bounded by such functions.

There was one other property of power functions nc that we used implicitly in our discussions
of removing floors and ceilings and assuming our variables were powers of b. Namely, if x > y (and
c ≥ 0) then xc ≥ yc. A function f from the real numbers to the real numbers is called (weakly)
increasing if whenever x > y, then f(x) ≥ f(y). Functions like f(x) = log x and f(x) = x log x
are increasing functions. On the other hand, the function defined by

f(x) =

{
x if x is a power of b
x2 otherwise

is not increasing even though it does satisfy the condition f(bx) = Θ(f(x)).

Theorem 4.15 Theorems 4.12 and 4.13 apply to recurrences in which the xc term is replaced
by an increasing function f for which f(bx) = Θ(f(x)).

Proof: We iterate the recurrences in the same way as in the proofs of the original theorems,
and find that the condition f(bx) = Θ(f(x)) applied to an increasing function gives us enough
information to again bound the solution to one kind of recurrence above and below with a multiple
of the solution of the other kind. The details are similar to those in the original proofs so we
omit them.

In fact there are versions of Theorems 4.12 and 4.13 for recurrence inequalities also. The
proofs involve a similar analysis of iterated recurrences or recursion trees, and so we omit them.

Theorem 4.16 Let a and b be positive real numbers with b > 2 and let f : R+ → R+ be an
increasing function such that f(bx) = O(f(x)). Then every solution t(x) to the recurrence

t(x) ≤
{

at(x/b) + f(x) if x ≥ b
c if 1 ≤ x < b,

where a, b, and c are constants, satisfies t(x) = O(h(x)) if and only if every solution T (n) to the
recurrence

T (n) ≤
{

aT (n/b) + f(n) if n > 1
d if n = 1,

where n is restricted to powers of b, satisfies T (n) = O(h(n)).

4.5. MORE GENERAL KINDS OF RECURRENCES 171

Theorem 4.17 Let a and b be positive real numbers with b ≥ 2 and let f : R+ → R+ be an
increasing function such that f(bx) = O(f(x)). Then every solution T (n) to the recurrence

T (n) ≤
{

at(�n/b�) + f(n) if n > 1
d if n = 1,

satisfies T (n) = O(h(n)) if and only if every solution t(x) to the recurrence

t(x) ≤
{

aT (x/b) + f(x) if x ≥ b
d if 1 ≤ x < b,

satisfies t(x) = O(h(x)).

Important Concepts, Formulas, and Theorems

1. Recurrence Inequality. Recurrence inequalities are inequalities that state that T (n) is less
than or equal to some expression involving values of T (m) for m < n. A solution to a
recurrence inequality is a function T that satisfies the inequality.

2. Recursion Trees for Recurrence Inequalities. We can analyze recurrence inequalities via a
recursion tree. The process is virtually identical to our previous use of recursion trees. We
must, however, keep in mind that on each level, we are really computing an upper bound
on the work done on that level.

3. Discovering Necessary Assumptions for an Inductive Proof. If we are trying to prove a
statement that there is a value k such that an inequality of the form f(n) ≤ kg(n) or
some other statement that involves the parameter k is true, we may start an inductive
proof without knowing a value for k and determine conditions on k by assumptions that
we need to make in order for the inductive proof to work. When written properly, such an
explanation is actually a valid proof.

4. Making a Stronger Inductive Hypothesis. If we are trying to prove by induction a statement
of the form p(n) ⇒ q(n) and we have a statement s(n) such that s(n) ⇒ q(n), it is sometimes
useful to try to prove the statement p(n) ⇒ s(n). This process is known as proving a
stronger statement or making a stronger inductive hypothesis. It sometimes works because
it gives us an inductive hypothesis which suffices to prove the stronger statement even
though our original statement q(n) did not give an inductive hypothesis sufficient to prove
the original statement. However we must be careful in our choice of s(n), because we have
to be able to succeed in proving p(n) ⇒ s(n).

5. When the Master Theorem does not Apply. To deal with recurrences of the form

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1

where f(n) is not Θ(nc), recursion trees and iterating the recurrence are appropriate tools
even though the Master Theorem does not apply. The same holds for recurrence inequalities.

6. Increasing function. (Optional.) A function f : R → R is said to be (weakly) increasing if
whenever x > y, f(x) ≥ f(y)

172 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

7. Removing Floors and Ceilings when the Master Theorem does not Apply. (Optional.) To
deal with big-Θ bounds with recurrences of the form

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1

where f(n) is not Θ(nc), we may remove floors and ceilings and replace n by powers of b
if f is increasing and satisfies the condition f(nb) = Θ(f(n)). To deal with big-O bounds
for a similar recurrence inequality we may remove floors and ceilings if f is increasing and
satisfies the condition that f(nb) = O(f(n)).

Problems

1. (a) Find the best big-O upper bound you can to any solution to the recurrence

T (n) =

{
4T (n/2) + n log n if n > 1
1 if n = 1.

(b) Assuming that you were able to guess the result you got in part (a), prove by induction
that your answer is correct.

2. Is the big-O upper bound in the previous problem actually a big-Θ bound?

3. Show by induction that

T (n) =

{
8T (n/2) + n log n if n > 1
d if n = 1

has T (n) = O(n3) for any solution T (n).

4. Is the big-O upper bound in the previous problem actually a big-Θ bound?

5. Show by induction that any solution to a recurrence of the form

T (n) ≤ 2T (n/3) + c log3 n

is O(n log3 n). What happens if you replace 2 by 3 (explain why)? Would it make a
difference if we used a different base for the logarithm (only an intuitive explanation is
needed here)?

6. What happens if you replace the 2 in Problem 5 by 4? (Hint: one way to attack this is
with recursion trees.)

7. Is the big-O upper bound in Problem 5 actually a big Θ bound?

8. (Optional) Give an example (different from any in the text) of a function for which f(bx) =
O(f(x)). Give an example (different from any in the text) of a function for which f(bx) is
not O(f(x)).

9. Give the best big O upper bound you can for the solution to the recurrence T (n) = 2T (n/3−
3) + n, and then prove by induction that your upper bound is correct.

4.5. MORE GENERAL KINDS OF RECURRENCES 173

10. Find the best big-O upper bound you can to any solution to the recurrence defined on
nonnegative integers by

T (n) ≤ 2T (�n/2� + 1) + cn.

Prove by induction that your answer is correct.

174 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

4.6 Recurrences and Selection

The idea of selection

One common problem that arises in algorithms is that of selection. In this problem you are given
n distinct data items from some set which has an underlying order. That is, given any two items
a and b, you can determine whether a < b. (Integers satisfy this property, but colors do not.)
Given these n items, and some value i, 1 ≤ i ≤ n, you wish to find the ith smallest item in the
set. For example in the set

{3, 1, 8, 6, 4, 11, 7}, (4.33)

the first smallest (i = 1) is 1, the third smallest (i = 3) is 4 and the seventh smallest (i = n = 7)
is 11. An important special case is that of finding the median, which is the case of i = �n/2�.
Another important special case is finding percentiles; for example the 90th percentile is the case
i = �.9n�. As this suggests, i is frequently given as some fraction of n.

Exercise 4.6-1 How do you find the minimum (i = 1) or maximum (i = n) in a set?
What is the running time? How do you find the second smallest element? Does this
approach extend to finding the ith smallest? What is the running time?

Exercise 4.6-2 Give the fastest algorithm you can to find the median (i = �n/2�).

In Exercise 4.6-1, the simple O(n) algorithm of going through the list and keeping track of
the minimum value seen so far will suffice to find the minimum. Similarly, if we want to find the
second smallest, we can go through the list once, find the smallest, remove it and then find the
smallest in the new list. This also takes O(n + n − 1) = O(n) time. If we extend this to finding
the ith smallest, the algorithm will take O(in) time. Thus for finding the median, this method
takes O(n2) time.

A better idea for finding the median is to first sort the items, and then take the item in
position n/2. Since we can sort in O(n log n) time, this algorithm will take O(n log n) time. Thus
if i = O(log n) we might want to run the algorithm of the previous paragraph, and otherwise run
this algorithm.4

All these approaches, when applied to the median, take at least some multiple of (n log n)
units of time.5 The best sorting algorithms take O(n log n) time also, and one can prove every
comparison-based sorting algorithm takes Ω(n log n) time. This raises the natural question of
whether it is possible to do selection any faster than sorting. In other words, is the problem of
finding the median element, or of finding the ith smallest element of a set, significantly easier
than the problem of ordering (sorting) the whole set?

A recursive selection algorithm

Suppose for a minute that we magically knew how to find the median in O(n) time. That is, we
have a routine MagicMedian, that given as input a set A, returns the median. We could then
use this in a divide and conquer algorithm for Select as follows:

4We also note that the running time can be improved to O(n + i log n) by first creating a heap, which takes
O(n) time, and then performing a Delete-Min operation i times.

5An alternate notation for f(x) = O(g(x)) is g(x) = Ω(f(x)). Notice the change in roles of f and g. In this
notation, we say that all of these algorithms take Ω(n log n) time.

4.6. RECURRENCES AND SELECTION 175

Select(A, i, n)
(selects the ith smallest element in set A, where n = |A|)
(1) if (n = 1)
(2) return the one item in A
(3) else
(4) p = MagicMedian(A)
(5) Let H be the set of elements greater than p
(6) Let L be the set of elements less than or equal to p
(7) if (i ≤ |L|)
(8) Return Select(L, i, |L|)
(9) else
(10) Return Select(H, i − |L|, |H|).

By H we do not mean the elements that come after p in the list, but the elements of the
list which are larger than p in the underlying ordering of our set. This algorithm is based on
the following simple observation. If we could divide the set A up into a “lower half” (L) and an
“upper” half (H), then we know in which of these two sets the ith smallest element in A will be.
Namely, if i ≤ �n/2�, it will be in L, and otherwise it will be in H. Thus, we can recursively look
in one or the other set. We can easily partition the data into two sets by making two passes,
in the first we copy the numbers smaller than p into L, and in the second we copy the numbers
larger than p into H.6

The only additional detail is that if we look in H, then instead of looking for the ith smallest,
we look for the i − �n/2�th smallest, as H is formed by removing the �n/2� smallest elements
from A.

For example, if the input is the set given in 4.33, and p is 6, the set L would be {3, 1, 6, 4},
and H would be {8, 11, 7}. If i were 2, we would recurse on the set L, with i = 2. On the other
hand, if i were 6, we would recurse on the set H, with i = 6 − 4 = 2. Observe that the second
smallest element in H is 8, as is the sixth smallest element in the original set.

We can express the running time of Select by the following recurrence:

T (n) ≤ T (n/2) + cn . (4.34)

From the master theorem, we know any function which satisfies this recurrence has T (n) = O(n).

So we can conclude that if we already know how to find the median in linear time, we
can design a divide and conquer algorithm that will solve the selection problem in linear time.
However, this is nothing to write home about (yet)!

Selection without knowing the median in advance

Sometimes a knowledge of solving recurrences can help us design algorithms. What kinds of
recurrences do we know about that have solutions T (n) with T (n) = O(n)? In particular,
consider recurrences of the form T (n) ≤ T (n/b) + cn, and ask when they have solutions with
T (n) = O(n). Using the master theorem, we see that as long as logb 1 < 1 (and since logb 1 = 0

6We can do this more efficiently, and “in place”, using the partition algorithm of quicksort.

176 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

for any b, then any b allowed by the master theorem works; that is, any b > 1 will work), all
solutions to this recurrence will have T (n) = O(n). (Note that b does not have to be an integer.)
If we let b′ = 1/b, we can say equivalently that as long as we can solve a problem of size n by
solving (recursively) a problem of size b′n, for some b′ < 1, and also doing O(n) additional work,
our algorithm will run in O(n) time. Interpreting this in the selection problem, it says that as
long as we can, in O(n) time, choose p to ensure that both L and H have size at most b′n, we
will have a linear time algorithm. (You might ask “What about actually dividing our set into L
and H, doesn’t that take some time too?” The answer is yes it does, but we already know we
can do the division into H and L in time O(n), so if we can find p in time O(n) also, then we
can do both these things in time O(n).)

In particular, suppose that, in O(n) time, we can choose p to ensure that both L and H have
size at most (3/4)n. Then the running time is described by the recurrence T (n) = T (3n/4)+O(n)
and we will be able to solve the selection problem in linear time.

To see why (3/4)n is relevant, suppose instead of the “black box” MagicMedian, we have a
much weaker magic black box, one which only guarantees that it will return some number in
the middle half of our set in time O(n). That is, it will return a number that is guaranteed to
be somewhere between the n/4th smallest number and the 3n/4th smallest number. If we use
the number given by this magic box to divide our set into H and L, then neither will have size
more than 3n/4. We will call this black box a MagicMiddle box, and can use it in the following
algorithm:

Select1(A,i,n)
(selects the ith smallest element in set A, where n = |A|)
(1) if (n = 1)
(2) return the one item in A
(3) else
(4) p = MagicMiddle(A)
(5) Let H be the set of elements greater than p
(6) Let L be the set of elements less than or equal to p
(7) if (i ≤ |L|)
(8) Return Select1(L, i, |L|)
(9) else
(10) Return Select1(H, i − |L|, |H|).

The algorithm Select1 is similar to Select. The only difference is that p is now only guaranteed
to be in the middle half. Now, when we recurse, we decide whether to recruse on L or H based
on whether i is less than or equal to |L|. The element p is called a partition element, because it
is used to partition our set A into the two sets L and H.

This is progress, as we now don’t need to assume that we can find the median in order to
have a linear time algorithm, we only need to assume that we can find one number in the middle
half of the set. This problem seems simpler than the original problem, and in fact it is. Thus our
knowledge of which recurrences have solutions which are O(n) led us toward a more plausible
algorithm.

It takes a clever algorithm to find an item in the middle half of our set. We now describe
such an algorithm in which we first choose a subset of the numbers and then recursively find the
median of that subset.

4.6. RECURRENCES AND SELECTION 177

An algorithm to find an element in the middle half

More precisely, consider the following algorithm in which we assume that |A| is a multiple of 5.
(The condition that n < 60 in line 2 is a technical condition that will be justified later.)

MagicMiddle(A)
(1) Let n = |A|
(2) if (n < 60)
(3) use sorting to return the median of A
(4) else
(5) Break A into k = n/5 groups of size 5, G1, . . . , Gk

(6) for i = 1 to k
(7) find mi, the median of Gi (by sorting)
(8) Let M = {m1, . . . , mk}
(9) return Select1 (M, �k/2�, k).

In this algorithm, we break A into n/5 sets of size 5, and then find the median of each set.
We then (using Select1 recursively) find the median of medians and return this as our p.

Lemma 4.18 The value returned by MagicMiddle(A) is in the middle half of A.

Proof: Consider arranging the elements as follows. List each set of 5 vertically in sorted
order, with the smallest element on top. Then line up all n/5 of these lists, ordered by their
medians, smallest on the left. We get the picture in Figure 4.10. In this picture, the medians

Figure 4.10: Dividing a set into n/5 parts of size 5, finding the median of each part and the
median of the medians.

are in white, the median of medians is cross-hatched, and we have put in all the inequalities that
we know from the ordering information that we have. Now, consider how many items are less
than or equal to the median of medians. Every smaller median is clearly less than the median

178 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

of medians and, in its 5 element set, the elements smaller than the median are also smaller than
the median of medians. Now in Figure 4.11 we circle a set of elements that is guaranteed to be
smaller than the median of medians. In one fewer (or in the case of an odd number of columns

Figure 4.11: The circled elements are less than the median of the medians.

as in Figure 4.11, one half fewer) than half the columns, we have circled 3 elements and in one
column we have circled 2 elements. Therefore, we have circled at least7

(
1
2

(
n

5

)
− 1

)
3 + 2 =

3n

10
− 1

elements.

So far we have assumed n is an exact multiple of 5, but we will be using this idea in cir-
cumstances when it is not. If it is not an exact multiple of 5, we will have �n/5� columns (in
particular more than n/5 columns), but in one of them we might have only one element. It is
possible that this column is one of the ones we counted on for 3 elements, so our estimate could
be two elements too large.8 Thus we have circled at least

3n

10
− 1 − 2 =

3n

10
− 3

elements. It is a straightforward argument with inequalities that as long as n ≥ 60, this quantity
is at least n/4. So if at least n/4 items are guaranteed to be less than the median, then at most
3n/4 items can be greater than the median, and hence |H| ≤ 3n/4.

A set of elements that is guaranteed to be larger than the median of medians is circled in the
Figure 4.12. We can make the same argument about the number of larger elements circled when
the number of columns is odd; when the number of columns is even, a similar argument shows
that we circle even more elements. By the same argument as we used with |H|, this shows that
the size of L is at most 3n/4.

7We say “at least” because our argument applies exactly when n is even, but underestimates the number of
circled elements when n is odd.

8A bit less than 2 because we have more than n/5 columns.

4.6. RECURRENCES AND SELECTION 179

Figure 4.12: The circled elements are greater than the median of the medians.

Note that we don’t actually identify all the nodes that are guaranteed to be, say, less than
the median of medians, we are just guaranteed that the proper number exists.

Since we only have the guarantee that MagicMiddle gives us an element in the middle half of
the set if the set has at least sixty elements, we modify Select1 to start out by checking to see if
n < 60, and sorting the set to find the element in position i if n < 60. Since 60 is a constant,
sorting and finding the desired element takes at most a constant amount of time.

An analysis of the revised selection algorithm

Exercise 4.6-3 Let T (n) be the running time of the modified Select1 on n items. How
can you express the running time of Magic Middle in terms of T (n)?

Exercise 4.6-4 What is a recurrence for the running time of Select1? Hint: how could
Exercise 4.6-3 help you?

Exercise 4.6-5 Can you prove by induction that each solution to the recurrence for Select1
is O(n)?

For Exercise 4.6-3, we have the following steps.

• The first step of MagicMiddle is to divide the items into sets of five; this takes O(n) time.

• We then have to find the median of each five-element set. (We can find this median by any
straightforward method we choose and still only take at most a constant amount of time;
we don’t use recursion here.) There are n/5 sets and we spend no more than some constant
time per set, so the total time is O(n).

• Next we recursively call Select1 to find the median of medians; this takes T (n/5) time.

• Finally, we partition A into those elements less than or equal to the “magic middle” and
those that are not, which takes O(n) time.

180 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Thus the total running time is T (n/5)+O(n), which implies that for some n0 there is a constant
c0 > 0 such that, for all n > n0, the running time is no more than c0n. Even if n0 > 60, there
are only finitely many cases between 60 and n0 so there is a constant c such that for n ≥ 60, the
running time of Magic Middle is no more than T (n/5) + cn.

We now get a recurrence for the running time of Select1. Note that for n ≥ 60 Select1 has to
call Magic Middle and then recurse on either L or H, each of which has size at most 3n/4. For
n < 60, note that it takes time no more than some constant amount d of time to find the median
by sorting. Therefore we get the following recurrence for the running time of Select1:

T (n) ≤
{

T (3n/4) + T (n/5) + c′n if n ≥ 60
d if n < 60.

(4.35)

This answers Exercise 4.6-4.

As Exercise 4.6-5 requests, we can now verify by induction that T (n) = O(n). What we want
to prove is that there is a constant k such that T (n) ≤ kn. What the recurrence tells us is that
there are constants c and d such that T (n) ≤ T (3n/4) + T (n/5) + cn if n ≥ 60, and otherwise
T (n) ≤ d. For the base case we have T (n) ≤ d ≤ dn for n < 60, so we choose k to be at least d
and then T (n) ≤ kn for n < 60. We now assume that n ≥ 60 and T (m) ≤ km for values m < n,
and get

T (n) ≤ T (3n/4) + T (n/5) + cn

≤ 3kn/4 + kn/5 + cn

= 19/20kn + cn

= kn + (c − k/20)n .

As long as k ≥ 20c, this is at most kn; so we simply choose k this big and by the principle of
mathematical induction, we have T (n) < kn for all positive integers n.

Uneven Divisions

The kind of recurrence we found for the running time of Select1 is actually an instance of a more
general class which we will now explore.

Exercise 4.6-6 We already know that when g(n) = O(n), then every solution of T (n) =
T (n/2) + g(n) satisfies T (n) = O(n). Use the master theorem to find a Big-O bound
to the solution of T (n) = T (cn) + g(n) for any constant c < 1, assuming that g(n) =
O(n).

Exercise 4.6-7 Use the master theorem to find Big-O bounds to all solutions of T (n) =
2T (cn) + g(n) for any constant c < 1/2, assuming that g(n) = O(n).

Exercise 4.6-8 Suppose g(n) = O(n) and you have a recurrence of the form T (n) =
T (an) + T (bn) + g(n) for some constants a and b. What conditions on a and b
guarantee that all solutions to this recurrence have T (n) = O(n)?

Using the master theorem for Exercise 4.6-6, we get T (n) = O(n), since log1/c 1 < 1. We also
get T (n) = O(n) for Exercise 4.6-7, since log1/c 2 < 1 for c < 1/2. You might now guess that as

4.6. RECURRENCES AND SELECTION 181

long as a + b < 1, any solution to the recurrence T (n) ≤ T (an) + T (bn) + cn has T (n) = O(n).
We will now see why this is the case.

First, let’s return to the recurrence we had, T (n) = T (3/4n)+T (n/5)+g(n), were g(n) = O(n)
and let’s try to draw a recursion tree. This recurrence doesn’t quite fit our model for recursion
trees, as the two subproblems have unequal size (thus we can’t even write down the problem size
on the left), but we will try to draw a recursion tree anyway and see what happens. As we draw

Figure 4.13: Attempting a recursion tree for T (n) = T (3/4n) + T (n/5) + g(n).

n

3/4 n 1/5 n

(3/4)(1/5)n (1/5)(3/4)n (1/5)(1/5)n(3/4)(3/4)n

Work

n

(3/4+1/5)n

((3/4)(3/4)
+ (3/4)(1/5)
+(1/5)(3/4)
+(1/5)(1/5)) n

levels one and two, we see that at level one, we have (3/4 + 1/5)n work. At level two we have
((3/4)2 +2(3/4)(1/5)+(1/5)2)n work. Were we to work out the third level we would see that we
have ((3/4)3 + 3(3/4)2(1/5) + 3(3/4)(1/5)2 + (1/5)3)n. Thus we can see a pattern emerging. At
level one we have (3/4+1/5)n work. At level 2 we have, by the binomial theorem, (3/4+1/5)2n
work. At level 3 we have, by the binomial theorem, (3/4 + 1/5)3n work. And, similarly, at level

i of the tree, we have
(

3
4 + 1

5

)i
n =

(
19
20

)i
n work. Thus summing over all the levels, the total

amount of work is
O(log n)∑

i=0

(
19
20

)i

n ≤
(

1
1 − 19/20

)
n = 20n.

We have actually ignored one detail here. In contrast to a recursion tree in which all subproblems
at a level have equal size, the “bottom” of the tree is more complicated. Different branches of
the tree will reach problems of size 1 and terminate at different levels. For example, the branch
that follows all 3/4’s will bottom out after log4/3 n levels, while the one that follows all 1/5’s will
bottom out after log5 n levels. However, the analysis above overestimates the work. That is, it
assumes that nothing bottoms out until everything bottoms out, i.e. at log20/19 n levels. In fact,
the upper bound we gave on the sum “assumes” that the recurrence never bottoms out.

We see here something general happening. It seems as if to understand a recurrence of the
form T (n) = T (an) + T (bn) + g(n), with g(n) = O(n), we can study the simpler recurrence
T (n) = T ((a + b)n) + g(n) instead. This simplifies things (in particular, it lets us use the
Master Theorem) and allows us to analyze a larger class of recurrences. Turning to the median
algorithm, it tells us that the important thing that happened there was that the sizes of the two
recursive calls, namely 3/4n and n/5, summed to less than 1. As long as that is the case for an

182 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

algorithm with two recursive calls and an O(n) additional work term, whose recurrence has the
form T (n) = T (an) + T (bn) + g(n), with g(n) = O(n), the algorithm will work in O(n) time.

Important Concepts, Formulas, and Theorems

1. Median. The median of a set (with an underlying order) of n elements is the element that
would be in position �n/2� if the set were sorted into a list in order.

2. Percentile. The pth percentile of a set (with an underlying order) is the element that would
be in position � p

100n� if the set were sorted into a list in order.

3. Selection. Given an n-element set with some underlying order, the problem of selection of
the ith smallest element is that of finding the element that would be in the ith position if
the set were sorted into a list in order. Note that often i is expressed as a fraction of n.

4. Partition Element. A partition element in an algorithm is an element of a set (with an
underlying order) which is used to divide the set into two parts, those that come before
or are equal to the element (in the underlying order), and the remaining elements. Notice
that the set as given to the algorithm is not necessarily (in fact not usually) given in the
underlying order.

5. Linear Time Algorithms. If the running time of an algorithm satisfies a recurrence of the
form T (n) ≤ T (an) + cn with 0 ≤ a < 1, or a recurrence of the form T (n) ≤ T (an) +
T (bn) + cn with a and b nonnegative and a + b < 1, then T (n) = O(n).

6. Finding a Good Partition Element. If a set (with an underlying order) has sixty or more
elements, then the procedure of breaking the set into pieces of size 5 (plus one leftover piece
if necessary), finding the median of each piece and then finding the median of the medians
gives an element guaranteed to be in the middle half of the set.

7. Selection algorithm. The Selection algorithm that runs in linear time sorts a set of size less
than sixty to find the element in the ith position; otherwise

• it recursively uses the median of medians of five to find a partition element,

• it uses that partition element to divide the set into two pieces and

• then it looks for the appropriate element in the appropriate piece recursively.

Problems

1. In the MagicMiddle algorithm, suppose we broke our data up into n/3 sets of size 3. What
would the running time of Select1 be?

2. In the MagicMiddle algorithm, suppose we broke our data up into n/7 sets of size 7. What
would the running time of Select1 be?

3. Let

T (n) =

{
T (n/3) + T (n/2) + n if n ≥ 6
1 otherwise,

4.6. RECURRENCES AND SELECTION 183

and let

S(n) =

{
S(5n/6) + n if n ≥ 6
1 otherwise.

Draw recursion trees for T and S. What are the big-O bounds we get on solutions to the
recurrences? Use the recursion trees to argue that, for all n, T (n) ≤ S(n).

4. Find a (big-O) upper bound (the best you know how to get) on solutions to the recurrence
T (n) = T (n/3) + T (n/6) + T (n/4) + n.

5. Find a (big-O) upper bound (the best you know how to get) on solutions the recurrence
T (n) = T (n/4) + T (n/2) + n2.

6. Note that we have chosen the median of an n-element set to be the element in position
�n/2�. We have also chosen to put the median of the medians into the set L of algorithm
Select1. Show that this lets us prove that T (n) ≤ T (3n/4) + T (n/5) + cn for n ≥ 40 rather
than n ≥ 60. (You will need to analyze the case where �n/5� is even and the case where it
is odd separately.) Is 40 the least value possible?

184 CHAPTER 4. INDUCTION, RECURSION, AND RECURRENCES

Chapter 5

Probability

5.1 Introduction to Probability

Why do we study probability?

You have likely studied hashing as a way to store data (or keys to find data) in a way that makes
it possible to access that data quickly. Recall that we have a table in which we want to store
keys, and we compute a function h of our key to tell us which location (also known as a “slot”
or a “bucket”) in the table to use for the key. Such a function is chosen with the hope that it
will tell us to put different keys in different places, but with the realization that it might not. If
the function tells us to put two keys in the same place, we might put them into a linked list that
starts at the appropriate place in the table, or we might have some strategy for putting them into
some other place in the table itself. If we have a table with a hundred places and fifty keys to
put in those places, there is no reason in advance why all fifty of those keys couldn’t be assigned
(hashed) to the same place in the table. However someone who is experienced with using hash
functions and looking at the results will tell you you’d never see this in a million years. On
the other hand that same person would also tell you that you’d never see all the keys hash into
different locations in a million years either. In fact, it is far less likely that all fifty keys would
hash into one place than that all fifty keys would hash into different places, but both events are
quite unlikely. Being able to understand just how likely or unlikely such events are is our reason
for taking up the study of probability.

In order to assign probabilities to events, we need to have a clear picture of what these events
are. Thus we present a model of the kinds of situations in which it is reasonable to assign
probabilities, and then recast our questions about probabilities into questions about this model.
We use the phrase sample space to refer to the set of possible outcomes of a process. For now,
we will deal with processes that have finite sample spaces. The process might be a game of
cards, a sequence of hashes into a hash table, a sequence of tests on a number to see if it fails
to be a prime, a roll of a die, a series of coin flips, a laboratory experiment, a survey, or any of
many other possibilities. A set of elements in a sample space is called an event. For example,
if a professor starts each class with a 3 question true-false quiz the sample space of all possible
patterns of correct answers is

{TTT, TTF, TFT, FTT, TFF, FTF, FFT, FFF}.

185

186 CHAPTER 5. PROBABILITY

The event of the first two answers being true is {TTT, TTF}. In order to compute probabilities we
assign a probability weight p(x) to each element of the sample space so that the weight represents
what we believe to be the relative likelihood of that outcome. There are two rules we must follow
in assigning weights. First the weights must be nonnegative numbers, and second the sum of the
weights of all the elements in a sample space must be one. We define the probability P (E) of the
event E to be the sum of the weights of the elements of E. Algebraically we can write

P (E) =
∑

x:x∈E

p(x). (5.1)

We read this as p(E) equals the sum, over all x such that x is in E, of p(x).

Notice that a probability function P on a sample space S satisfies the rules1

1. P (A) ≥ 0 for any A ⊆ S.

2. P (S) = 1.

3. P (A ∪ B) = P (A) + P (B) for any two disjoint events A and B.

The first two rules reflect our rules for assigning weights above. We say that two events are
disjoint if A ∩ B = ∅. The third rule follows directly from the definition of disjoint and our
definition of the probability of an event. A function P satisfying these rules is called a probability
distribution or a probability measure.

In the case of the professor’s three question quiz, it is natural to expect each sequence of trues
and falses to be equally likely. (A professor who showed any pattern of preferences would end
up rewarding a student who observed this pattern and used it in educated guessing.) Thus it is
natural to assign equal weight 1/8 to each of the eight elements of our quiz sample space. Then
the probability of an event E, which we denote by P (E), is the sum of the weights of its elements.
Thus the probability of the event “the first answer is T” is 1

8 + 1
8 + 1

8 + 1
8 = 1

2 . The event “There
is at exactly one True” is {TFF, FTF, FFT}, so P (there is exactly one True) is 3/8.

Some examples of probability computations

Exercise 5.1-1 Try flipping a coin five times. Did you get at least one head? Repeat five
coin flips a few more times! What is the probability of getting at least one head in
five flips of a coin? What is the probability of no heads?

Exercise 5.1-2 Find a good sample space for rolling two dice. What weights are appro-
priate for the members of your sample space? What is the probability of getting a
6 or 7 total on the two dice? Assume the dice are of different colors. What is the
probability of getting less than 3 on the red one and more than 3 on the green one?

Exercise 5.1-3 Suppose you hash a list of n keys into a hash table with 20 locations.
What is an appropriate sample space, and what is an appropriate weight function?
(Assume the keys and the hash function are not in any special relationship to the

1These rules are often called “the axioms of probability.” For a finite sample space, we could show that if we
started with these axioms, our definition of probability in terms of the weights of individual elements of S is the
only definition possible. That is, for any other definition, the probabilities we would compute would still be the
same if we take w(x) = P ({x}).

5.1. INTRODUCTION TO PROBABILITY 187

number 20.) If n is three, what is the probability that all three keys hash to different
locations? If you hash ten keys into the table, what is the probability that at least
two keys have hashed to the same location? We say two keys collide if they hash to
the same location. How big does n have to be to insure that the probability is at least
one half that has been at least one collision?

In Exercise 5.1-1 a good sample space is the set of all 5-tuples of Hs and T s. There are 32
elements in the sample space, and no element has any reason to be more likely than any other, so
a natural weight to use is 1

32 for each element of the sample space. Then the event of at least one
head is the set of all elements but TTTTT . Since there are 31 elements in this set, its probability
is 31

32 . This suggests that you should have observed at least one head pretty often!

Complementary probabilities

The probability of no heads is the weight of the set {TTTTT}, which is 1
32 . Notice that the

probabilities of the event of “no heads” and the opposite event of “at least one head” add to
one. This observation suggests a theorem. The complement of an event E in a sample space S,
denoted by S−E, is the set of all outcomes in S but not E. The theorem tells us how to compute
the probability of the complement of an event from the probability of the event.

Theorem 5.1 If two events E and F are complementary, that is they have nothing in common
(E ∩ F = ∅) and their union is the whole sample space (E ∪ F = S), then

P (E) = 1 − P (F).

Proof: The sum of all the probabilities of all the elements of the sample space is one, and
since we can break this sum into the sum of the probabilities of the elements of E plus the sum
of the probabilities of the elements of F , we have

P (E) + P (F) = 1,

which gives us P (E) = 1 − P (F).

For Exercise 5.1-2 a good sample space would be pairs of numbers (a, b) where (1 ≤ a, b ≤ 6).
By the product principle2, the size of this sample space is 6 · 6 = 36. Thus a natural weight for
each ordered pair is 1

36 . How do we compute the probability of getting a sum of six or seven?
There are 5 ways to roll a six and 6 ways to roll a seven, so our event has eleven elements each of
weight 1/36. Thus the probability of our event is is 11/36. For the question about the red and
green dice, there are two ways for the red one to turn up less than 3, and three ways for the green
one to turn up more than 3. Thus, the event of getting less than 3 on the red one and greater
than 3 on the green one is a set of size 2 · 3 = 6 by the product principle. Since each element of
the event has weight 1/36, the event has probability 6/36 or 1/6.

2From Section 1.1.

188 CHAPTER 5. PROBABILITY

Probability and hashing

In Exercise 5.1-3 an appropriate sample space is the set of n-tuples of numbers between 1 and
20. The first entry in an n-tuple is the position our first key hashes to, the second entry is
the position our second key hashes to, and so on. Thus each n tuple represents a possible hash
function, and each hash function, applied to our keys, would give us one n-tuple. The size of
the sample space is 20n (why?), so an appropriate weight for an n-tuple is 1/20n. To compute
the probability of a collision, we will first compute the probability that all keys hash to different
locations and then apply Theorem 5.1 which tells us to subtract this probability from 1 to get
the probability of collision.

To compute the probability that all keys hash to different locations we consider the event that
all keys hash to different locations. This is the set of n tuples in which all the entries are different.
(In the terminology of functions, these n-tuples correspond to one-to-one hash functions). There
are 20 choices for the first entry of an n-tuple in our event. Since the second entry has to be
different, there are 19 choices for the second entry of this n-tuple. Similarly there are 18 choices
for the third entry (it has to be different from the first two), 17 for the fourth, and in general
20 − i + 1 possibilities for the ith entry of the n-tuple. Thus we have

20 · 19 · 18 · · · · · (20 − n + 1) = 20n

elements of our event.3 Since each element of this event has weight 1/20n, the probability that
all the keys hash to different locations is

20 · 19 · 18 · · · · · (20 − n + 1)
20n

=
20n

20n.

In particular if n is 3 the probability is (20 · 19 · 18)/203 = .855.

We show the values of this function for n between 0 and 20 in Table 5.1. Note how quickly
the probability of getting a collision grows. As you can see with n = 10, the probability that
there have been no collisions is about .065, so the probability of at least one collision is .935.

If n = 5 this number is about .58, and if n = 6 this number is about .43. By Theorem 5.1 the
probability of a collision is one minus the probability that all the keys hash to different locations.
Thus if we hash six items into our table, the probability of a collision is more than 1/2. Our
first intuition might well have been that we would need to hash ten items into our table to have
probability 1/2 of a collision. This example shows the importance of supplementing intuition
with careful computation!

The technique of computing the probability of an event of interest by first computing the
probability of its complementary event and then subtracting from 1 is very useful. You will see
many opportunities to use it, perhaps because about half the time it is easier to compute directly
the probability that an event doesn’t occur than the probability that it does. We stated Theorem
5.1 as a theorem to emphasize the importance of this technique.

The Uniform Probability Distribution

In all three of our exercises it was appropriate to assign the same weight to all members of our
sample space. We say P is the uniform probability measure or uniform probability distribution

3Using the notation for falling factorial powers that we introduced in Section 1.2.

5.1. INTRODUCTION TO PROBABILITY 189

n Prob of empty slot Prob of no collisions
1 1 1
2 0.95 0.95
3 0.9 0.855
4 0.85 0.72675
5 0.8 0.5814
6 0.75 0.43605
7 0.7 0.305235
8 0.65 0.19840275
9 0.6 0.11904165
10 0.55 0.065472908
11 0.5 0.032736454
12 0.45 0.014731404
13 0.4 0.005892562
14 0.35 0.002062397
15 0.3 0.000618719
16 0.25 0.00015468
17 0.2 3.09359E-05
18 0.15 4.64039E-06
19 0.1 4.64039E-07
20 0.05 2.3202E-08

Table 5.1: The probabilities that all elements of a set hash to different entries of a hash table of
size 20.

when we assign the same probability to all members of our sample space. The computations in
the exercises suggest another useful theorem.

Theorem 5.2 Suppose P is the uniform probability measure defined on a sample space S. Then
for any event E,

P (E) = |E|/|S|,
the size of E divided by the size of S.

Proof: Let S = {x1, x2, . . . , x|S|}. Since P is the uniform probability measure, there must be
some value p such that for each xi ∈ S, P (xi) = p. Combining this fact with the second and third
probability rules, we obtain

1 = P (S)
= P (x1 ∪ x2 ∪ · · · ∪ x|S|)
= P (x1) + P (x2) + . . . + P (x|S|)
= p|S| .

Equivalently

p =
1
|S| . (5.2)

E is a subset of S with |E| elements and therefore

P (E) =
∑

xi∈E

p(xi) = |E|p . (5.3)

190 CHAPTER 5. PROBABILITY

Combining equations 5.2 and 5.3 gives that P (E) = |E|p = |E|(1/|S|) = |E|/|S| .

Exercise 5.1-4 What is the probability of an odd number of heads in three tosses of a
coin? Use Theorem 5.2.

Using a sample space similar to that of first example (with “T” and “F” replaced by “H”
and “T”), we see there are three sequences with one H and there is one sequence with three H’s.
Thus we have four sequences in the event of “an odd number of heads come up.” There are eight
sequences in the sample space, so the probability is 4

8 = 1
2 .

It is comforting that we got one half because of a symmetry inherent in this problem. In
flipping coins, heads and tails are equally likely. Further if we are flipping 3 coins, an odd
number of heads implies an even number of tails. Therefore, the probability of an odd number
of heads, even number of heads, odd number of tails and even number of tails must all be the
same. Applying Theorem 5.1 we see that the probability must be 1/2.

A word of caution is appropriate here. Theorem 5.2 applies only to probabilities that come
from the equiprobable weighting function. The next example shows that it does not apply in
general.

Exercise 5.1-5 A sample space consists of the numbers 0, 1, 2 and 3. We assign weight
1
8 to 0, 3

8 to 1, 3
8 to 2, and 1

8 to 3. What is the probability that an element of the
sample space is positive? Show that this is not the result we would obtain by using
the formula of Theorem 5.2.

The event “x is positive” is the set E = {1, 2, 3}. The probability of E is

P (E) = P (1) + P (2) + P (3) =
3
8

+
3
8

+
1
8

=
7
8

.

However, |E|
|S| = 3

4 .

The previous exercise may seem to be “cooked up” in an unusual way just to prove a point.
In fact that sample space and that probability measure could easily arise in studying something
as simple as coin flipping.

Exercise 5.1-6 Use the set {0, 1, 2, 3} as a sample space for the process of flipping a coin
three times and counting the number of heads. Determine the appropriate probability
weights P (0), P (1), P (2), and P (3).

There is one way to get the outcome 0, namely tails on each flip. There are, however, three
ways to get 1 head and three ways to get two heads. Thus P (1) and P (2) should each be three
times P (0). There is one way to get the outcome 3—heads on each flip. Thus P (3) should equal
P (0). In equations this gives P (1) = 3P (0), P (2) = 3P (0), and P (3) = P (0). We also have the
equation saying all the weights add to one, P (0) + P (1) + P (2) + P (3) = 1. There is one and
only one solution to these equations, namely P (0) = 1

8 , P (1) = 3
8 , P (2) = 3

8 , and P (3) = 1
8 . Do

you notice a relationship between P (x) and the binomial coefficient
(3
x

)
here? Can you predict

the probabilities of 0, 1, 2, 3, and 4 heads in four flips of a coin?

Together, the last two exercises demonstrate that we must be careful not to apply Theorem
5.2 unless we are using the uniform probability measure.

5.1. INTRODUCTION TO PROBABILITY 191

Important Concepts, Formulas, and Theorems

1. Sample Space. We use the phrase sample space to refer to the set of possible outcomes of
a process.

2. Event. A set of elements in a sample space is called an event.

3. Probability. In order to compute probabilities we assign a weight to each element of the
sample space so that the weight represents what we believe to be the relative likelihood of
that outcome. There are two rules we must follow in assigning weights. First the weights
must be nonnegative numbers, and second the sum of the weights of all the elements in a
sample space must be one. We define the probability P (E) of the event E to be the sum of
the weights of the elements of E.

4. The axioms of Probability. Three rules that a probability measure on a finite sample space
must satisfy could actually be used to define what we mean by probability.

(a) P (A) ≥ 0 for any A ⊆ S.

(b) P (S) = 1.

(c) P (A ∪ B) = P (A) + P (B) for any two disjoint events A and B.

5. Probability Distribution. A function which assigns a probability to each member of a sample
space is called a (discrete) probability distribution.

6. Complement. The complement of an event E in a sample space S, denoted by S−E, is the
set of all outcomes in S but not E.

7. The Probabilities of Complementary Events. If two events E and F are complementary,
that is they have nothing in common (E ∩ F = ∅), and their union is the whole sample
space (E ∪ F = S), then

P (E) = 1 − P (F).

8. Collision, Collide (in Hashing). We say two keys collide if they hash to the same location.

9. Uniform Probability Distribution. We say P is the uniform probability measure or uniform
probability distribution when we assign the same probability to all members of our sample
space.

10. Computing Probabilities with the Uniform Distribution. Suppose P is the uniform proba-
bility measure defined on a sample space S. Then for any event E,

P (E) = |E|/|S|,

the size of E divided by the size of S. This does not apply to general probability distribu-
tions.

192 CHAPTER 5. PROBABILITY

Problems

1. What is the probability of exactly three heads when you flip a coin five times? What is the
probability of three or more heads when you flip a coin five times?

2. When we roll two dice, what is the probability of getting a sum of 4 or less on the tops?

3. If we hash 3 keys into a hash table with ten slots, what is the probability that all three
keys hash to different slots? How big does n have to be so that if we hash n keys to a hash
table with 10 slots, the probability is at least a half that some slot has at least two keys
hash to it? How many keys do we need to have probability at least two thirds that some
slot has at least two keys hash to it?

4. What is the probability of an odd sum when we roll three dice?

5. Suppose we use the numbers 2 through 12 as our sample space for rolling two dice and
adding the numbers on top. What would we get for the probability of a sum of 2, 3, or 4,
if we used the equiprobable measure on this sample space. Would this make sense?

6. Two pennies, a nickel and a dime are placed in a cup and a first coin and a second coin are
drawn.

(a) Assuming we are sampling without replacement (that is, we don’t replace the first coin
before taking the second) write down the sample space of all ordered pairs of letters
P , N , and D that represent the outcomes. What would you say are the appropriate
weights for the elements of the sample space?

(b) What is the probability of getting eleven cents?

7. Why is the probability of five heads in ten flips of a coin equal to 63
256?

8. Using 5-element sets as a sample space, determine the probability that a “hand” of 5 cards
chosen from an ordinary deck of 52 cards will consist of cards of the same suit.

9. Using 5 element permutations as a sample space, determine the probability that a “hand”
of 5 cards chosen from an ordinary deck of 52 cards will have all the cards from the same
suit

10. How many five-card hands chosen from a standard deck of playing cards consist of five cards
in a row (such as the nine of diamonds, the ten of clubs, jack of clubs, queen of hearts, and
king of spades)? Such a hand is called a straight. What is the probability that a five-card
hand is a straight? Explore whether you get the same answer by using five element sets as
your model of hands or five element permutations as your model of hands.

11. A student taking a ten-question, true-false diagnostic test knows none of the answers and
must guess at each one. Compute the probability that the student gets a score of 80 or
higher. What is the probability that the grade is 70 or lower?

12. A die is made of a cube with a square painted on one side, a circle on two sides, and a
triangle on three sides. If the die is rolled twice, what is the probability that the two shapes
we see on top are the same?

5.1. INTRODUCTION TO PROBABILITY 193

13. Are the following two events equally likely? Event 1 consists of drawing an ace and a king
when you draw two cards from among the thirteen spades in a deck of cards and event 2
consists of drawing an ace and a king when you draw two cards from the whole deck.

14. There is a retired professor who used to love to go into a probability class of thirty or
more students and announce “I will give even money odds that there are two people in
this classroom with the same birthday.” With thirty students in the room, what is the
probability that all have different birthdays? What is the minimum number of students
that must be in the room so that the professor has at least probability one half of winning
the bet? What is the probability that he wins his bet if there are 50 students in the room.
Does this probability make sense to you? (There is no wrong answer to that question!)
Explain why or why not.

194 CHAPTER 5. PROBABILITY

5.2 Unions and Intersections

The probability of a union of events

Exercise 5.2-1 If you roll two dice, what is the probability of an even sum or a sum of 8
or more?

Exercise 5.2-2 In Exercise 5.2-1, let E be the event “even sum” and let F be the event
“8 or more.” We found the probability of the union of the events E and F. Why isn’t
it the case that P (E ∪ F) = P (E) + P (F)? What weights appear twice in the sum
P (E) + P (F)? Find a formula for P (E ∪ F) in terms of the probabilities of E, F ,
and E ∩F . Apply this formula to Exercise 5.2-1. What is the value of expressing one
probability in terms of three?

Exercise 5.2-3 What is P (E ∪F ∪G) in terms of probabilities of the events E, F , and G
and their intersections?

In the sum P (E) + P (F) the weights of elements of E ∩ F each appear twice, while the
weights of all other elements of E ∪F each appear once. We can see this by looking at a diagram
called a Venn Diagram, as in Figure 5.1. In a Venn diagram, the rectangle represents the sample
space, and the circles represent the events. If we were to shade both E and F , we would wind

Figure 5.1: A Venn diagram for two events.

E E ∩ F F

up shading the region E ∩ F twice. In Figure 5.2, we represent that by putting numbers in the
regions, representing how many times they are shaded. This illustrates why the sum P (E)+P (F)
includes the probability weight of each element of E ∩ F twice. Thus to get a sum that includes
the probability weight of each element of E ∪ F exactly once, we have to subtract the weight of
E ∩ F from the sum P (E) + P (F). This is why

P (E ∪ F) = P (E) + P (F) − P (E ∩ F) (5.4)

.

We can now apply this to Exercise 5.2-1 by noting that the probability of an even sum is 1/2,
while the probability of a sum of 8 or more is

1
36

+
2
36

+
3
36

+
4
36

+
5
36

=
15
36

.

5.2. UNIONS AND INTERSECTIONS 195

Figure 5.2: If we shade each of E and F once, then we shade E ∩ F twice

E E ∩ F F

1 2 1

From a similar sum, the probability of an even sum of 8 or more is 9/36, so the probability of a
sum that is even or is 8 or more is

1
2

+
15
36

− 9
36

=
2
3
.

(In this case our computation merely illustrates the formula; with less work one could add the
probability of an even sum to the probability of a sum of 9 or 11.) In many cases, however,
probabilities of individual events and their intersections are more straightforward to compute
than probabilities of unions (we will see such examples later in this section), and in such cases
our formula is quite useful.

Now let’s consider the case for three events and draw a Venn diagram and fill in the numbers
for shading all E, F , and G. So as not to crowd the figure we use EF to label the region
corresponding to E ∩ F , and similarly label other regions. Doing so we get Figure 5.3. Thus we

Figure 5.3: The number of ways the intersections are shaded when we shade E, F , and G.

E
EF

F

EFG

EG FG

G

3

11
2

1

2 2

have to figure out a way to subtract from P (E) + P (F) + P (G) the weights of elements in the
regions labeled EF , FG and EG once, and the the weight of elements in the region labeled EFG
twice. If we subtract out the weights of elements of each of E ∩ F , F ∩ G, and E ∩ G, this does
more than we wanted to do, as we subtract the weights of elements in EF , FG and EG once

196 CHAPTER 5. PROBABILITY

but the weights of elements in of EFG three times, leaving us with Figure 5.4. We then see that

Figure 5.4: The result of removing the weights of each intersection of two sets.

E
EF

F

EFG

EG FG

G

0

11
1

1

1 1

all that is left to do is to add weights of elements in the E ∩ F ∩ G back into our sum. Thus we
have that

P (E ∪ F ∪ G) = P (E) + P (F) + P (G) − P (E ∩ F) − P (E ∩ G) − P (F ∩ G) + P (E ∩ F ∩ G).

Principle of inclusion and exclusion for probability

From the last two exercises, it is natural to guess the formula

P (
n⋃

i=1

Ei) =
n∑

i=1

P (Ei) −
n−1∑

i=1

n∑

j=i+1

P (Ei ∩ Ej) +
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

P (Ei ∩ Ej ∩ Ek) − (5.5)

All the sum signs in this notation suggest that we need some new notation to describe sums.
We are now going to make a (hopefully small) leap of abstraction in our notation and introduce
notation capable of compactly describing the sum described in the previous paragraph. This
notation is an extension of the one we introduced in Equation 5.1. We use

∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · ·Eik) (5.6)

to stand for the sum, over all sequences i1, i2, . . . ik of integers between 1 and n of the probabil-
ities of the sets Ei1 ∩ Ei2 . . . ∩ Eik . More generally,

∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

f(i1, i2, . . . , ik) is the sum of

f(i1, i2, . . . , ik) over all increasing sequences of k numbers between 1 and n.

Exercise 5.2-4 To practice with notation, what is
∑

i1,i2,i3:
1≤i1<i2<i3≤4

i1 + i2 + i3?

5.2. UNIONS AND INTERSECTIONS 197

The sum in Exercise 5.2-4 is 1+2+3+1+2+4+1+3+4+2+3+4 = 3(1+2+3+4) = 30.

With this understanding of the notation in hand, we can now write down a formula that
captures the idea in Equation 5.5 more concisely. Notice that in Equation 5.5 we include prob-
abilities of single sets with a plus sign, probabilities of intersections of two sets with a minus
sign, and in general, probabilities of intersections of any even number of sets with a minus sign
and probabilities of intersections of any odd number of sets (including the odd number one) with
a plus sign. Thus if we are intersecting k sets, the proper coefficient for the probability of the
intersection of these sets is (−1)k+1 (it would be equally good to use (−1)k−1, and correct but
silly to use (−1)k+3). This lets us translate the formula of Equation 5.5 to Equation 5.7 in the
theorem, called the Principle of Inclusion and Exclusion for Probability, that follows. We will
give two completely different proofs of the theorem, one of which is a nice counting argument but
is a bit on the abstract side, and one of which is straightforward induction, but is complicated
by the fact that it takes a lot of notation to say what is going on.

Theorem 5.3 (Principle of Inclusion and Exclusion for Probability) The probability of
the union E1 ∪ E2 ∪ · · · ∪ En of events in a sample space S is given by

P

(
n⋃

i=1

Ei

)
=

n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) . (5.7)

First Proof: Consider an element x of
⋃n

i=1 Ei. Let Ei1 , Ei2 , . . . Eik be the set of all events
Ei of which x is a member. Let K = {i1, i2, . . . , ik}. Then x is in the event Ej1 ∩Ej2 ∩ · · · ∩Ejm

if and only if {j1, j2 . . . jm} ⊆ K. Why is this? If there is a jr that is not in K, then x �∈ Ej and
thus x �∈ Ej1 ∩ Ej2 ∩ · · · ∩ Ejm . Notice that every x in

⋃n
i=1 Ei is in at least one Ei, so it is in at

least one of the sets Ei1 ∩ Ei2 ∩ · · · ∩ Eik .

Recall that we define P (Ej1 ∩ Ej2 ∩ · · · ∩ Ejm) to be the sum of the probability weights
p(x) for x ∈ Ej1 ∩ Ej2 ∩ · · · ∩ Ejm . Suppose we substitute this sum of probability weights
for P (Ej1 ∩ Ej2 ∩ · · · ∩ Ejm) on the right hand side of Equation 5.7. Then the right hand side
becomes a sum of terms, each of which is plus or minus a probability weight. The sum of all the
terms involving p(x) on the right hand side of Equation 5.7 includes a term involving p(x) for
each nonempty subset {j1, j2, . . . , jm} of K, and no other terms involving p(x). The coefficient
of the probability weight p(x) in the term for the subset {j1, j2, . . . , jm} is (−1)m+1. Since there
are

(k
m

)
subsets of K of size m, the sum of the terms involving p(x) will therefore be

k∑

m=1

(−1)m+1

(
k

m

)
p(x) =

(
−

k∑

m=0

(−1)m

(
k

m

)
p(x)

)
+ p(x) = 0 · p(x) + p(x) = p(x),

because k ≥ 1 and thus by the binomial theorem,
∑k

j=0

(k
j

)
(−1)j = (1 − 1)k = 0. This proves

that for each x, the sum of all the terms involving p(x) after we substitute the sum of probability
weights into Equation 5.7 is exactly p(x). We noted above that for every x in ∪n

i=1Ei appears in
at least one of the sets Ei1 ∩Ei2 ∩ · · · ∩Eik . Thus the right hand side of Equation 5.7 is the sum
of every p(x) such that x is in ∪n

i=1Ei. By definition, this is the left-hand side of Equation 5.7.

Second Proof: The proof is simply an application of mathematical induction using Equation
5.4. When n = 1 the formula is true because it says P (E1) = P (E1). Now suppose inductively

198 CHAPTER 5. PROBABILITY

that for any family of n − 1 sets F1, F2, . . . , Fn−1

P

(
n−1⋃

i=1

Fi

)
=

n−1∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n−1

P (Fi1 ∩ Fi2 ∩ . . . ∩ Fik) (5.8)

If in Equation 5.4 we let E = E1 ∪ . . . ∪ En−1 and F = Em, we may apply Equation 5.4 to to
compute P (∪n

i=1Ei) as follows:

P

(
n⋃

i=1

Ei

)
= P

(
n−1⋃

i=1

Ei

)
+ P (En) − P

((
n−1⋃

i=1

Ei

)
∩ En

)
. (5.9)

By the distributive law, (
n−1⋃

i=1

Ei

)
∩ En =

n−1⋃

i=1

(Ei ∩ En) ,

and substituting this into Equation 5.9 gives

P

(
n⋃

i=1

Ei

)
= P

(
n−1⋃

i=1

Ei

)
+ P (En) − P

(
n−1⋃

i=1

(Ei ∩ En)

)
.

Now we use the inductive hypothesis (Equation 5.8) in two places to get

P

(
n⋃

i=1

Ei

)
=

n−1∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n−1

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik)

+ P (En)

−
n−1∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n−1

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik ∩ En).

The first summation on the right hand side sums (−1)k+1P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) over all lists
i1, i2, . . . , ik that do not contain n, while the P (En) and the second summation work together to
sum (−1)k+1P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) over all lists i1, i2, . . . , ik that do contain n. Therefore,

P

(
n⋃

i=1

Ei

)
=

n∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik).

Thus by the principle of mathematical induction, this formula holds for all integers n > 0.

Exercise 5.2-5 At a fancy restaurant n students check their backpacks. They are the only
ones to check backpacks. A child visits the checkroom and plays with the check tickets
for the backpacks so they are all mixed up. If there are 5 students named Judy, Sam,
Pat, Jill, and Jo, in how many ways may the backpacks be returned so that Judy gets
her own backpack (and maybe some other students do, too)? What is the probability
that this happens? What is the probability that Sam gets his backpack (and maybe
some other students do, too)? What is the probability that Judy and Sam both get
their own backpacks (and maybe some other students do, too)? For any particular

5.2. UNIONS AND INTERSECTIONS 199

two element set of students, what is the probability that these two students get their
own backpacks (and maybe some other students do, too)? What is the probability
that at least one student gets his or her own backpack? What is the probability that
no students get their own backpacks? What do you expect the answer will be for
the last two questions for n students? This classic problem is often stated using hats
rather than backpacks (quaint, isn’t it?), so it is called the hatcheck problem. It is
also known as the derangement problem; a derangement of a set being a one-to-one
function from a set onto itself (i.e., a bijection) that sends each element to something
not equal to it.

For Exercise 5.2-5, let Ei be the event that person i on our list gets the right backpack. Thus
E1 is the event that Judy gets the correct backpack and E2 is the event that Sam gets the correct
backpack. The event E1∩E2 is the event that Judy and Sam get the correct backpacks (and maybe
some other people do). In Exercise 5.2-5, there are 4! ways to pass back the backpacks so that
Judy gets her own, as there are for Sam or any other single student. Thus P (E1) = P (Ei) = 4!

5! .
For any particular two element subset, such as Judy and Sam, there are 3! ways that these two
people may get their backpacks back. Thus, for each i and j, P (Ei ∩ Ej) = 3!

5! . For a particular
group of k students the probability that each one of these k students gets his or her own backpack
back is (5 − k)!/5!. If Ei is the event that student i gets his or her own backpack back, then the
probability of an intersection of k of these events is (5− k)!/5!. The probability that at least one
person gets his or her own backpack back is the probability of E1 ∪E2 ∪E3 ∪E4 ∪E5. Then by
the principle of inclusion and exclusion, the probability that at least one person gets his or her
own backpack back is

P (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) =
5∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤5

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik). (5.10)

As we argued above, for a set of k people, the probability that all k people get their backpacks
back is (5 − k)!/5!. In symbols, P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) = (5−k)!

5! . Recall that there are
(5
k

)

sets of k people chosen from our five students. That is, there are
(5
k

)
lists i1, i2, . . . ik with

1 < i1 < i2 < · · · < ik ≤ 5. Thus, we can rewrite the right hand side of the Equation 5.10 as

5∑

k=1

(−1)k+1

(
5
k

)
(5 − k)!

5!
.

This gives us

P (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) =
5∑

k=1

(−1)k−1

(
5
k

)
(5 − k)!

5!

=
5∑

k=1

(−1)k−1 5!
k!(5 − k)!

(5 − k)!
5!

=
5∑

k=1

(−1)k−1 1
k!

= 1 − 1
2

+
1
3!

− 1
4!

+
1
5!

.

200 CHAPTER 5. PROBABILITY

The probability that nobody gets his or her own backpack is 1 minus the probability that
someone does, or

1
2
− 1

3!
+

1
4!

− 1
5!

.

To do the general case of n students, we simply substitute n for 5 and get that the probability
that at least one person gets his or her own backpack is

n∑

i=1

(−1)i−1 1
i!

= 1 − 1
2

+
1
3!

− · · · + (−1)n−1

n!

and the probability that nobody gets his or her own backpack is 1 minus the probability above,
or

n∑

i=2

(−1)i 1
i!

=
1
2
− 1

3!
+ · · · + (−1)n

n!
. (5.11)

Those who have had power series in calculus may recall the power series representation of ex,
namely

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑

i=0

xi

i!
.

Thus the expression in Equation 5.11 is the approximation to e−1 we get by substituting −1 for x
in the power series and stopping the series at i = n. Note that the result depends very “lightly”
on n; so long as we have at least four or five people, then, no matter how many people we have,
the probability that no one gets their hat back remains at roughly e−1. Our intuition might
have suggested that as the number of students increases, the probability that someone gets his
or her own backpack back approaches 1 rather than 1 − e−1. Here is another example of why it
is important to use computations with the rules of probability instead of intuition!

The principle of inclusion and exclusion for counting

Exercise 5.2-6 How many functions are there from an n-element set N to a k-element set
K = {y1, y2, . . . yk} that map nothing to y1? Another way to say this is if I have n
distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I pass out
the candy bars so that Sam doesn’t get any candy (and maybe some other children
don’t either)?

Exercise 5.2-7 How many functions map nothing to a j-element subset J of K? Another
way to say this is if I have n distinct candy bars and k children Sam, Mary, Pat, etc.,
in how ways may I pass out the candy bars so that some particular j-element subset
of the children don’t get any (and maybe some other children don’t either)?

Exercise 5.2-8 What is the number of functions from an n-element set N to a k element
set K that map nothing to at least one element of K? Another way to say this is if
I have n distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I
pass out the candy bars so that some child doesn’t get any (and maybe some other
children don’t either)?

Exercise 5.2-9 On the basis of the previous exercises, how many functions are there from
an n-element set onto a k element set?

5.2. UNIONS AND INTERSECTIONS 201

The number of functions from an n-element set to a k-element set K = {y1, y2, . . . yk} that
map nothing to y1 is simply (k−1)n because we have k−1 choices of where to map each of our n
elements. Similarly the number of functions that map nothing to a particular set J of j elements
will be (k − j)n. This warms us up for Exercise 5.2-8.

In Exercise 5.2-8 we need an analog of the principle of inclusion and exclusion for the size of
a union of k sets (set i being the set of functions that map nothing to element i of the set K).
Because we can make the same argument about the size of the union of two or three sets that
we made about probabilities of unions of two or three sets, we have a very natural analog. That
analog is the Principle of Inclusion and Exclusion for Counting

∣∣∣∣∣

n⋃

i=1

Ei

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

|Ei1 ∩ Ei2 ∩ · · · ∩ Eik | . (5.12)

In fact, this formula is proved by induction or a counting argument in virtually the same way.
Applying this formula to the number of functions from N that map nothing to at least one
element of K gives us

|
k⋃

i=1

Ei| =
n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

|Ei1 ∩ Ei2 ∩ · · · ∩ Eik | =
k∑

j=1

(−1)j−1

(
k

j

)
(k − j)n.

This is the number of functions from N that map nothing to at least one element of K. The
total number of functions from N to K is kn. Thus the number of onto functions is

kn −
k∑

j=1

(−1)j−1

(
k

j

)
(k − j)n =

k∑

j=0

(−1)j

(
k

j

)
(k − j)n,

where the second equality results because
(k
0

)
is 1 and (k − 0)n is kn.

Important Concepts, Formulas, and Theorems

1. Venn Diagram. To draw a Venn diagram, for two or three sets, we draw a rectangle that
represents the sample space, and two or three mutually overlapping circles to represent the
events.

2. Probability of a Union of Two Events. P (E ∪ F) = P (E) + P (F) − P (E ∩ F)

3. Probability of a Union of Three Events. P (E ∪ F ∪ G) = P (E) + P (F) + P (G) − P (E ∩
F) − P (E ∩ G) − P (F ∩ G) + P (E ∩ F ∩ G).

4. A Summation Notation.
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

f(i1, i2, . . . , ik) is the sum of f(i1, i2, . . . , ik) over all

increasing sequences of k numbers between 1 and n.

5. Principle of Inclusion and Exclusion for Probability. The probability of the union E1∪E2∪
· · · ∪ En of events in a sample space S is given by

P

(
n⋃

i=1

Ei

)
=

n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) .

202 CHAPTER 5. PROBABILITY

6. Hatcheck Problem. The hatcheck problem or derangement problem asks for the probability
that a bijection of an n element set maps no element to itself. The answer is

n∑

i=2

(−1)i 1
i!

=
1
2
− 1

3!
+ · · · + (−1)n

n!
,

the result of truncating the power series expansion of e−1 at the (−1)n

n! . Thus the result is
very close to 1

e , even for relatively small values of n.

7. Principle of Inclusion and Exclusion for Counting. The Principle of inclusion and exclusion
for counting says that

∣∣∣∣∣

n⋃

i=1

Ei

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

|Ei1 ∩ Ei2 ∩ · · · ∩ Eik | .

Problems

1. Compute the probability that in three flips of a coin the coin comes heads on the first flip
or on the last flip.

2. The eight kings and queens are removed from a deck of cards and then two of these cards
are selected. What is the probability that the king or queen of spades is among the cards
selected?

3. Two dice are rolled. What is the probability that we see a die with six dots on top?

4. A bowl contains two red, two white and two blue balls. We remove two balls. What is the
probability that at least one is red or white? Compute the probability that at least one is
red.

5. From an ordinary deck of cards, we remove one card. What is the probability that it is an
Ace, is a diamond, or is black?

6. Give a formula for the probability of P (E∪F ∪G∪H) in terms of the probabilities of E,F ,
G, and H, and their intersections.

7. What is ∑

i1,i2,i3:
1≤i1<i2<i3≤4

i1i2i3 ?

8. What is ∑

i1,i2,i3:
1≤i1<i2<i3≤5

i1 + i2 + i3 ?

9. The boss asks the secretary to stuff n letters into envelopes forgetting to mention that he
has been adding notes to the letters and in the process has rearranged the letters but not
the envelopes. In how many ways can the letters be stuffed into the envelopes so that
nobody gets the letter intended for him or her? What is the probability that nobody gets
the letter intended for him or her?

5.2. UNIONS AND INTERSECTIONS 203

10. If we are hashing n keys into a hash table with k locations, what is the probability that
every location gets at least one key?

11. From the formula for the number of onto functions, find a formula for S(n, k) which is
defined in Problem 12 of Section 1.4. These numbers are called Stirling numbers (of the
second kind).

12. If we roll 8 dice, what is the probability that each of the numbers 1 through 6 appear on
top at least once? What about with 9 dice?

13. Explain why the number of ways of distributing k identical apples to n children is
(n+k−1

k

)
.

In how many ways may you distribute the apples to the children so that Sam gets more
than m? In how many ways may you distribute the apples to the children so that no child
gets more than m?

14. A group of n married couples sits a round a circular table for a group discussion of marital
problems. The counselor assigns each person to a seat at random. What is the probability
that no husband and wife are side by side?

15. Suppose we have a collection of m objects and a set P of p “properties,” an undefined term,
that the objects may or may not have. For each subset S of the set P of all properties,
define Na(S) (a is for “at least”) to be the number of objects in the collection that have at
least the properties in S. Thus, for example, Na(∅) = m. In a typical application, formulas
for Na(S) for other sets S ⊆ P are not difficult to figure out. Define Ne(S) to be the
number of objects in our collection that have exactly the properties in S. Show that

Ne(∅) =
∑

K:K⊆P

(−1)|K|Na(K).

Explain how this formula could be used for computing the number of onto functions in
a more direct way than we did it using unions of sets. How would this formula apply to
Problem 9 in this section?

16. In Problem 14 of this section we allow two people of the same sex to sit side by side. If we
require in addition to the condition that no husband and wife are side by side the condition
that no two people of the same sex are side by side, we obtain a famous problem known as
the mènage problem. Solve this problem.

17. In how many ways may we place n distinct books on j shelves so that shelf one gets at
least m books? (See Problem 7 in Section 1.4.) In how many ways may we place n distinct
books on j shelves so that no shelf gets more than m books?

18. In Problem 15 in this section, what is the probability that an object has none of the
properties, assuming all objects to be equally likely? How would this apply Problem 10 in
this section?

204 CHAPTER 5. PROBABILITY

5.3 Conditional Probability and Independence

Conditional Probability

Two cubical dice each have a triangle painted on one side, a circle painted on two sides and
a square painted on three sides. Applying the principal of inclusion and exclusion, we can
compute that the probability that we see a circle on at least one top when we roll them is
1/3 + 1/3 − 1/9 = 5/9. We are experimenting to see if reality agrees with our computation. We
throw the dice onto the floor and they bounce a few times before landing in the next room.

Exercise 5.3-1 Our friend in the next room tells us both top sides are the same. Now
what is the probability that our friend sees a circle on at least one top?

Intuitively, it may seem as if the chance of getting circles ought to be four times the chance
of getting triangles, and the chance of getting squares ought to be nine times as much as the
chance of getting triangles. We could turn this into the algebraic statements that P (circles)
= 4P (triangles) and P (squares) = 9P (triangles). These two equations and the fact that the
probabilities sum to 1 would give us enough equations to conclude that the probability that our
friend saw two circles is now 2/7. But does this analysis make sense? To convince ourselves,
let us start with a sample space for the original experiment and see what natural assumptions
about probability we can make to determine the new probabilities. In the process, we will be
able to replace intuitive calculations with a formula we can use in similar situations. This is a
good thing, because we have already seen situations where our intuitive idea of probability might
not always agree with what the rules of probability give us.

Let us take as our sample space for this experiment the ordered pairs shown in Table 5.2
along with their probabilities.

Table 5.2: Rolling two unusual dice

TT TC TS CT CC CS ST SC SS
1
36

1
18

1
12

1
18

1
9

1
6

1
12

1
6

1
4

We know that the event {TT, CC, SS} happened. Thus we would say while it used to have
probability

1
36

+
1
9

+
1
4

=
14
36

=
7
18

(5.13)

this event now has probability 1. Given that, what probability would we now assign to the event
of seeing a circle? Notice that the event of seeing a circle now has become the event CC. Should
we expect CC to become more or less likely in comparison than TT or SS just because we know
now that one of these three outcomes has occurred? Nothing has happened to make us expect
that, so whatever new probabilities we assign to these two events, they should have the same
ratios as the old probabilities.

Multiplying all three old probabilities by 18
7 to get our new probabilities will preserve the

ratios and make the three new probabilities add to 1. (Is there any other way to get the three
new probabilities to add to one and make the new ratios the same as the old ones?) This gives

5.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 205

us that the probability of two circles is 1
9 · 18

7 = 2
7 . Notice that nothing we have learned about

probability so far told us what to do; we just made a decision based on common sense. When
faced with similar situations in the future, it would make sense to use our common sense in the
same way. However, do we really need to go through the process of constructing a new sample
space and reasoning about its probabilities again? Fortunately, our entire reasoning process can
be captured in a formula. We wanted the probability of an event E given that the event F
happened. We figured out what the event E ∩ F was, and then multiplied its probability by
1/P (F). We summarize this process in a definition.

We define the conditional probability of E given F , denoted by P (E|F) and read as “the
probability of E given F” by

P (E|F) =
P (E ∩ F)

P (F)
. (5.14)

Then whenever we want the probability of E knowing that F has happened, we compute P (E|F).
(If P (F) = 0, then we cannot divide by P (F), but F gives us no new information about our
situation. For example if the student in the next room says “A pentagon is on top,” we have no
information except that the student isn’t looking at the dice we rolled! Thus we have no reason to
change our sample space or the probability weights of its elements, so we define P (E|F) = P (E)
when P (F) = 0.)

Notice that we did not prove that the probability of E given F is what we said it is; we
simply defined it in this way. That is because in the process of making the derivation we made
an additional assumption that the relative probabilities of the outcomes in the event F don’t
change when F happens. This assumption led us to Equation 5.14. Then we chose that equation
as our definition of the new concept of the conditional probability of E given F .4

In the example above, we can let E be the event that there is more than one circle and F be
the event that both dice are the same. Then E ∩ F is the event that both dice are circles, and
P (E ∩ F) is, from the table above, 1

9 . P (F) is, from Equation 5.13, 7
18 . Dividing, we get the

probability of P (E|F), which is 1
9/ 7

18 = 2
7 .

Exercise 5.3-2 When we roll two ordinary dice, what is the probability that the sum of
the tops comes out even, given that the sum is greater than or equal to 10? Use the
definition of conditional probability in solving the problem.

Exercise 5.3-3 We say E is independent of F if P (E|F) = P (E). Show that when we roll
two dice, one red and one green, the event “The total number of dots on top is odd”
is independent of the event “The red die has an odd number of dots on top.”

Exercise 5.3-4 Sometimes information about conditional probabilities is given to us in-
directly in the statement of a problem, and we have to derive information about
other probabilities or conditional probabilities. Here is such an example. If a student
knows 80% of the material in a course, what do you expect her grade to be on a (well-
balanced) 100 question short-answer test about the course? What is the probability
that she answers a question correctly on a 100 question true-false test if she guesses
at each question she does not know the answer to? (We assume that she knows what

4For those who like to think in terms of axioms of probability, we could give an axiomatic definition of conditional
probability, and one of our axioms might be that for events E1 and E2 that are subsets of F , the ratio of the
conditional probabilities P (E1|F) and P (E2|F) is the same as the ratio of P (E1) and P (E2).

206 CHAPTER 5. PROBABILITY

she knows, that is, if she thinks that she knows the answer, then she really does.)
What do you expect her grade to be on a 100 question True-False test to be?

For Exercise 5.3-2 let’s let E be the event that the sum is even and F be the event that
the sum is greater than or equal to 10. Thus referring to our sample space in Exercise 5.3-2,
P (F) = 1/6 and P (E ∩ F) = 1/9, since it is the probability that the roll is either 10 or 12.
Dividing these two we get 2/3.

In Exercise 5.3-3, the event that the total number of dots is odd has probability 1/2. Similarly,
given that the red die has an odd number of dots, the probability of an odd sum is 1/2 since
this event corresponds exactly to getting an even roll on the green die. Thus, by the definition
of independence, the event of an odd number of dots on the red die and the event that the total
number of dots is odd are independent.

In Exercise 5.3-4, if a student knows 80% of the material in a course, we would hope that
her grade on a well-designed test of the course would be around 80%. But what if the test is
a True-False test? Let R be the event that she gets the right answer, K be the event that she
knows that right answer and K be the event that she guesses. Then R = P (R∩K) + P (R∩K).
Since R is a union of two disjoint events, its probability would be the sum of the probabilities
of these two events. How do we get the probabilities of these two events? The statement of
the problem gives us implicitly the conditional probability that she gets the right answer given
that she knows the answer, namely one, and the probability that she gets the right answer if she
doesn’t know the answer, namely 1/2. Using Equation 5.14, we see that we use the equation

P (E ∩ F) = P (E|F)P (F) (5.15)

to compute P (R ∩ K) and P (R ∩ K), since the problem tells us directly that P (K) = .8 and
P (K) = .2. In symbols,

P (R) = P (R ∩ K) + P (R ∩ K)
= P (R|K)P (K) + P (R|K)P (K)
= 1 · .8 + .5 · .2 = .9.

We have shown that the probability that she gets the right answer is .9. Thus we would expect
her to get a grade of 90%.

Independence

We said in Exercise 5.3-3 that E is independent of F if P (E|F) = P (E). The product principle
for independent probabilities (Theorem 5.4) gives another test for independence.

Theorem 5.4 Suppose E and F are events in a sample space. Then E is independent of F if
and only if P (E ∩ F) = P (E)P (F).

Proof: First consider the case when F is non-empty. Then, from our definition in Exercise
5.3-3

E is independent of F ⇔ P (E|F) = P (E).

5.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 207

(Even though the definition only has an “if”, recall the convention of using “if” in definitions,
even though “if and only if” is meant.) Using the definition of P (E|F) in Equation 5.14, in the
right side of the above equation we get

P (E|F) = P (E)

⇔ P (E ∩ F)
P (F)

= P (E)

⇔ P (E ∩ F) = P (E)P (F).

Since every step in this proof was an if and only if statement we have completed the proof for
the case when F is non-empty.

If F is empty, then E is independent of F and both P (E)P (F) and P (E ∩F) are zero. Thus
in this case as well, E is independent of F if and only if P (E ∩ F) = P (E)P (F).

Corollary 5.5 E is independent of F if and only if F is independent of E.

When we flip a coin twice, we think of the second outcome as being independent of the
first. It would be a sorry state of affairs if our definition of independence did not capture this
intuitive idea! Let’s compute the relevant probabilities to see if it does. For flipping a coin
twice our sample space is {HH, HT, TH, TT} and we weight each of these outcomes 1/4. To
say the second outcome is independent of the first, we must mean that getting an H second is
independent of whether we get an H or a T first, and same for getting a T second. This gives us
that P (H first) = 1/4+1/4 = 1/2 and P (H second) = 1/2, while P (H first and H second) = 1/4.
Note that

P (H first)P (H second) =
1
2
· 1
2

=
1
4

= P (H first and H second).

By Theorem 5.4, this means that the event “H second” is independent of the event“H first.” We
can make a similar computation for each possible combination of outcomes for the first and second
flip, and so we see that our definition of independence captures our intuitive idea of independence
in this case. Clearly the same sort of computation applies to rolling dice as well.

Exercise 5.3-5 What sample space and probabilities have we been using when discussing
hashing? Using these, show that the event “key i hashes to position p” and the event
“key j hashes to position q” are independent when i �= j. Are they independent if
i = j?

In Exercise 5.3-5 if we have a list of n keys to hash into a table of size k, our sample space
consists of all n-tuples of numbers between 1 and k. The event that key i hashes to some number

p consists of all n-tuples with p in the ith position, so its probability is
(

1
k

)n−1
/

(
1
k

)n
= 1

k . The

probability that key j hashes to some number q is also 1
k . If i �= j, then the event that key i

hashes to p and key j hashes to q has probability
(

1
k

)n−2
/

(
1
k

)n
=

(
1
k

)2
, which is the product of

the probabilities that key i hashes to p and key j hashes to q, so these two events are independent.
However if i = j the probability of key i hashing to p and key j hashing to q is zero unless p = q,
in which case it is 1. Thus if i = j, these events are not independent.

208 CHAPTER 5. PROBABILITY

Independent Trials Processes

Coin flipping and hashing are examples of what are called “independent trials processes.” Suppose
we have a process that occurs in stages. (For example, we might flip a coin n times.) Let us use
xi to denote the outcome at stage i. (For flipping a coin n times, xi = H means that the outcome
of the ith flip is a head.) We let Si stand for the set of possible outcomes of stage i. (Thus if
we flip a coin n times, Si = {H, T}.) A process that occurs in stages is called an independent
trials process if for each sequence a1, a2, . . . , an with ai ∈ Si,

P (xi = ai|x1 = a1, . . . , xi−1 = ai−1) = P (xi = ai).

In other words, if we let Ei be the event that xi = ai, then

P (Ei|E1 ∩ E2 ∩ · · · ∩ Ei−1) = P (Ei).

By our product principle for independent probabilities, this implies that

P (E1 ∩ E2 ∩ · · ·Ei−1 ∩ Ei) = P (E1 ∩ E2 ∩ · · ·Ei−1)P (Ei). (5.16)

Theorem 5.6 In an independent trials process the probability of a sequence a1, a2, . . . , an of
outcomes is P ({a1})P ({a2}) · · ·P ({an}).

Proof: We apply mathematical induction and Equation 5.16.

How do independent trials relate to coin flipping? Here our sample space consists of sequences
of n Hs and T s, and the event that we have an H (or T) on the ith flip is independent of the
event that we have an H (or T) on each of the first i−1 flips. In particular, the probability of an
H on the ith flip is 2n−1/2n = .5, and the probability of an H on the ith flip, given a particular
sequence on the first i − 1 flips is 2n−i−1/2n−i = .5.

How do independent trials relate to hashing a list of keys? As in Exercise 5.3-5 if we have a
list of n keys to hash into a table of size k, our sample space consists of all n-tuples of numbers
between 1 and k. The probability that key i hashes to p and keys 1 through i − 1 hash to q1,

q2,. . . qi−1 is
(

1
k

)n−i
/

(
1
k

)n
and the probability that keys 1 through i − 1 hash to q1, q2,. . . qi−1

is
(

1
k

)n−i+1
/

(
1
k

)n
. Therefore

P (key i hashes to p|keys 1 through i − 1 hash to q1, q2,. . . qi−1) =

(
1
k

)n−i
/

(
1
k

)n

(
1
k

)n−i+1
/

(
1
k

)n =
1
k
.

Therefore, the event that key i hashes to some number p is independent of the event that the first
i − 1 keys hash to some numbers q1, q2,. . . qi−1. Thus our model of hashing is an independent
trials process.

Exercise 5.3-6 Suppose we draw a card from a standard deck of 52 cards, replace it,
draw another card, and continue for a total of ten draws. Is this an independent
trials process?

Exercise 5.3-7 Suppose we draw a card from a standard deck of 52 cards, discard it (i.e.
we do not replace it), draw another card and continue for a total of ten draws. Is this
an independent trials process?

5.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 209

In Exercise 5.3-6 we have an independent trials process, because the probability that we
draw a given card at one stage does not depend on what cards we have drawn in earlier stages.
However, in Exercise 5.3-7, we don’t have an independent trials process. In the first draw, we
have 52 cards to draw from, while in the second draw we have 51. In particular, we do not have
the same cards to draw from on the second draw as the first, so the probabilities for each possible
outcome on the second draw depend on whether that outcome was the result of the first draw.

Tree diagrams

When we have a sample space that consists of sequences of outcomes, it is often helpful to visualize
the outcomes by a tree diagram. We will explain what we mean by giving a tree diagram of the
following experiment. We have one nickel, two dimes, and two quarters in a cup. We draw a first
and second coin. In Figure 5.3 you see our diagram for this process. Notice that in probability
theory it is standard to have trees open to the right, rather than opening up or down.

Figure 5.5: A tree diagram illustrating a two-stage process.

N

D

Q

D

Q

N

D

Q

N

D

Q

.2

.4

.4

.5

.5

.5

.25

.25

.25

.25

.5

.1

.1

.1

.1

.2

.1

.2

.1

Each level of the tree corresponds to one stage of the process of generating a sequence in our
sample space. Each vertex is labeled by one of the possible outcomes at the stage it represents.
Each edge is labeled with a conditional probability, the probability of getting the outcome at
its right end given the sequence of outcomes that have occurred so far. Since no outcomes
have occurred at stage 0, we label the edges from the root to the first stage vertices with the
probabilities of the outcomes at the first stage. Each path from the root to the far right of the
tree represents a possible sequence of outcomes of our process. We label each leaf node with the
probability of the sequence that corresponds to the path from the root to that node. By the
definition of conditional probabilities, the probability of a path is the product of the probabilities
along its edges. We draw a probability tree for any (finite) sequence of successive trials in this
way.

Sometimes a probability tree provides a very effective way of answering questions about a

210 CHAPTER 5. PROBABILITY

process. For example, what is the probability of having a nickel in our coin experiment? We see
there are four paths containing an N , and the sum of their weights is .4, so the probability that
one of our two coins is a nickel is .4.

Exercise 5.3-8 How can we recognize from a probability tree whether it is the probability
tree of an independent trials process?

Exercise 5.3-9 In Exercise 5.3-4 we asked (among other things), if a student knows 80% of
the material in a course, what is the probability that she answers a question correctly
on a 100 question True-False test (assuming that she guesses on any question she does
not know the answer to)? (We assume that she knows what she knows, that is, if
she thinks that she knows the answer, then she really does.) Show how we can use a
probability tree to answer this question.

Exercise 5.3-10 A test for a disease that affects 0.1% of the population is 99% effective on
people with the disease (that is, it says they have it with probability 0.99). The test
gives a false reading (saying that a person who does not have the disease is affected
with it) for 2% of the population without the disease. We can think of choosing
someone and testing them for the disease as a two stage process. In stage 1, we either
choose someone with the disease or we don’t. In stage two, the test is either positive
or it isn’t. Give a probability tree for this process. What is the probability that
someone selected at random and given a test for the disease will have a positive test?
What is the probability that someone who has positive test results in fact has the
disease?

A tree for an independent trials process has the property that at each level, for each node
at that level, the (labeled) tree consisting of that node and all its children is identical to each
labeled tree consisting of another node at that level and all its children. If we have such a tree,
then it automatically satisfies the definition of an independent trials process.

In Exercise 5.3-9, if a student knows 80% of the material in a course, we expect that she has
probability .8 of knowing the answer to any given question of a well-designed true-false test. We
regard her work on a question as a two stage process; in stage 1 she determines whether she
knows the answer, and in stage 2, she either answers correctly with probability 1, or she guesses,
in which case she answers correctly with probability 1/2 and incorrectly with probability 1/2.
Then as we see in Figure 5.3 there are two root-leaf paths corresponding to her getting a correct
answer. One of these paths has probability .8 and the other has probability .1. Thus she actually
has probability .9 of getting a right answer if she guesses at each question she does not know the
answer to.

In Figure 5.3 we show the tree diagram for thinking of Exercise 5.3-10 as a two stage process.
In the first stage, a person either has or doesn’t have the disease. In the second stage we
administer the test, and its result is either positive or not. We use D to stand for having the
disease and ND to stand for not having the disease. We use “pos” to stand for a positive test
and “neg” to stand for a negative test, and assume a test is either positive or negative. The
question asks us for the conditional probability that someone has the disease, given that they
test positive. This is

P (D|pos) =
P (D ∩ pos)

P (pos)
.

5.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 211

Figure 5.6: The probability of getting a right answer is .9.

Knows

Doesn’t
Know

Guesses
Wrong

Guesses
Right

.2

.8
.8

.5

.5

.1

.1

Figure 5.7: A tree diagram illustrating Exercise 5.3-10.

.999

.001

.02

.98

.01

.99

D

ND

pos

neg

pos

neg

.0198

.97902

.00099

.00001

From the tree, we read that P (D∩pos) = .00099 because this event consists of just one root-leaf
path. The event “pos” consists of two root-leaf paths whose probabilities total .0198 + .00099 =
.02097. Thus P (D|pos) = P (D ∩ pos)/P (pos) = .00099/.02097 = .0472. Thus, given a disease
this rare and a test with this error rate, a positive result only gives you roughly a 5% chance of
having the disease! Here is another instance where a probability analysis shows something we
might not have expected initially. This explains why doctors often don’t want to administer a
test to someone unless that person is already showing some symptoms of the disease being tested
for.

We can also do Exercise 5.3-10 purely algebraically. We are given that

P (disease) = .001, (5.17)
P (positive test result|disease) = .99, (5.18)

P (positive test result|no disease) = .02. (5.19)

We wish to compute

P (disease|positive test result).

212 CHAPTER 5. PROBABILITY

We use Equation 5.14 to write that

P (disease|positive test result) =
P (disease ∩ positive test result)

P (positive test result)
. (5.20)

How do we compute the numerator? Using the fact that P (disease ∩ positive test result) =
P (positive test result ∩ disease) and Equation 5.14 again, we can write

P (positive test result|disease) =
P (positive test result ∩ disease)

P (disease)
.

Plugging Equations 5.18 and 5.17 into this equation, we get

.99 =
P (positive test result ∩ disease)

.001

or P (positive test result ∩ disease) = (.001)(.99) = .00099.

To compute the denominator of Equation 5.20, we observe that since each person either has
the disease or doesn’t, we can write

P (positive test) = P (positive test ∩ disease) + P (positive test ∩ no disease). (5.21)

We have already computed P (positive test result∩disease), and we can compute the probability
P (positive test result ∩ no disease) in a similar manner. Writing

P (positive test result|no disease) =
P (positive test result ∩ no disease)

P (no disease)
,

observing that P (no disease) = 1 − P (disease) and plugging in the values from Equations 5.17
and 5.19, we get that P (positive test result∩no disease) = (.02)(1− .001) = .01998 We now have
the two components of the right hand side of Equation 5.21 and thus P (positive test result) =
.00099 + .01998 = .02097. Finally, we have all the pieces in Equation 5.20, and conclude that

P (disease|positive test result) =
P (disease ∩ positive test result)

P (positive test result)
=

.00099

.02097
= .0472.

Clearly, using the tree diagram mirrors these computations, but it both simplifies the thought
process and reduces the amount we have to write.

Important Concepts, Formulas, and Theorems

1. Conditional Probability. We define the conditional probability of E given F , denoted by
P (E|F) and read as “the probability of E given F” to be

P (E|F) =
P (E ∩ F)

P (F)
.

2. Independent. We say E is independent of F if P (E|F) = P (E).

3. Product Principle for Independent Probabilities. The product principle for independent
probabilities (Theorem 5.4) gives another test for independence. Suppose E and F are
events in a sample space. Then E is independent of F if and only if P (E∩F) = P (E)P (F).

5.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 213

4. Symmetry of Independence. The event E is independent of the event F if and only if F is
independent of E.

5. Independent Trials Process. A process that occurs in stages is called an independent trials
process if for each sequence a1, a2, . . . , an with ai ∈ Si,

P (xi = ai|x1 = a1, . . . , xi−1 = ai−1) = P (xi = ai).

6. Probabilities of Outcomes in Independent Trials. In an independent trials process the prob-
ability of a sequence a1, a2, . . . , an of outcomes is P ({a1})P ({a2}) · · ·P ({an}).

7. Coin Flipping. Repeatedly flipping a coin is an independent trials process.

8. Hashing. Hashing a list of n keys into k slots is an independent trials process with n stages.

9. Probability Tree. In a probability tree for a multistage process, each level of the tree
corresponds to one stage of the process. Each vertex is labeled by one of the possible
outcomes at the stage it represents. Each edge is labeled with a conditional probability,
the probability of getting the outcome at its right end given the sequence of outcomes that
have occurred so far. Each path from the root to a leaf represents a sequence of outcomes
and is labelled with the product of the probabilities along that path. This is the probability
of that sequence of outcomes.

Problems

1. In three flips of a coin, what is the probability that two flips in a row are heads, given that
there is an even number of heads?

2. In three flips of a coin, is the event that two flips in a row are heads independent of the
event that there is an even number of heads?

3. In three flips of a coin, is the event that we have at most one tail independent of the event
that not all flips are identical?

4. What is the sample space that we use for rolling two dice, a first one and then a second one?
Using this sample space, explain why it is that if we roll two dice, the event “i dots are on
top of the first die” and the event “j dots are on top of the second die” are independent.

5. If we flip a coin twice, is the event of having an odd number of heads independent of the
event that the first flip comes up heads? Is it independent of the event that the second flip
comes up heads? Would you say that the three events are mutually independent? (This
hasn’t been defined, so the question is one of opinion. However you should back up your
opinion with a reason that makes sense!)

6. Assume that on a true-false test, students will answer correctly any question on a subject
they know. Assume students guess at answers they do not know. For students who know
60% of the material in a course, what is the probability that they will answer a question
correctly? What is the probability that they will know the answer to a question they answer
correctly?

214 CHAPTER 5. PROBABILITY

7. A nickel, two dimes, and two quarters are in a cup. We draw three coins, one at a time,
without replacement. Draw the probability tree which represents the process. Use the tree
to determine the probability of getting a nickel on the last draw. Use the tree to determine
the probability that the first coin is a quarter, given that the last coin is a quarter.

8. Write down a formula for the probability that a bridge hand (which is 13 cards, chosen
from an ordinary deck) has four aces, given that it has one ace. Write down a formula for
the probability that a bridge hand has four aces, given that it has the ace of spades. Which
of these probabilities is larger?

9. A nickel, two dimes, and three quarters are in a cup. We draw three coins, one at a time
without replacement. What is the probability that the first coin is a nickel? What is the
probability that the second coin is a nickel? What is the probability that the third coin is
a nickel?

10. If a student knows 75% of the material in a course, and a 100 question multiple choice test
with five choices per question covers the material in a balanced way, what is the student’s
probability of getting a right answer to a given question, given that the student guesses at
the answer to each question whose answer he or she does not know?

11. Suppose E and F are events with E ∩F = ∅. Describe when E and F are independent and
explain why.

12. What is the probability that in a family consisting of a mother, father and two children of
different ages, that the family has two girls, given that one of the children is a girl? What
is the probability that the children are both boys, given that the older child is a boy?

5.4. RANDOM VARIABLES 215

5.4 Random Variables

What are Random Variables?

A random variable for an experiment with a sample space S is a function that assigns a number
to each element of S. Typically instead of using f to stand for such a function we use X (at first,
a random variable was conceived of as a variable related to an experiment, explaining the use of
X, but it is very helpful in understanding the mathematics to realize it actually is a function on
the sample space).

For example, if we consider the process of flipping a coin n times, we have the set of all
sequences of n Hs and T s as our sample space. The “number of heads” random variable takes a
sequence and tells us how many heads are in that sequence. Somebody might say “Let X be the
number of heads in 5 flips of a coin.” In that case X(HTHHT) = 3 while X(THTHT) = 2. It
may be rather jarring to see X used to stand for a function, but it is the notation most people
use.

For a sequence of hashes of n keys into a table with k locations, we might have a random
variable Xi which is the number of keys that are hashed to location i of the table, or a random
variable X that counts the number of collisions (hashes to a location that already has at least
one key). For an n question test on which each answer is either right or wrong (a short answer,
True-False or multiple choice test for example) we could have a random variable that gives the
number of right answers in a particular sequence of answers to the test. For a meal at a restaurant
we might have a random variable that gives the price of any particular sequence of choices of
menu items.

Exercise 5.4-1 Give several random variables that might be of interest to a doctor whose
sample space is her patients.

Exercise 5.4-2 If you flip a coin six times, how many heads do you expect?

A doctor might be interested in patients’ ages, weights, temperatures, blood pressures, choles-
terol levels, etc.

For Exercise 5.4-2, in six flips of a coin, it is natural to expect three heads. We might argue
that if we average the number of heads over all possible outcomes, the average should be half
the number of flips. Since the probability of any given sequence equals that of any other, it is
reasonable to say that this average is what we expect. Thus we would say we expect the number
of heads to be half the number of flips. We will explore this more formally later.

Binomial Probabilities

When we study an independent trials process with two outcomes at each stage, it is traditional
to refer to those outcomes as successes and failures. When we are flipping a coin, we are often
interested in the number of heads. When we are analyzing student performance on a test, we are
interested in the number of correct answers. When we are analyzing the outcomes in drug trials,
we are interested in the number of trials where the drug was successful in treating the disease.
This suggests a natural random variable associated with an independent trials process with two
outcomes at each stage, namely the number of successes in n trials. We will analyze in general

216 CHAPTER 5. PROBABILITY

the probability of exactly k successes in n independent trials with probability p of success (and
thus probability 1 − p of failure) on each trial. It is standard to call such an independent trials
process a Bernoulli trials process.

Exercise 5.4-3 Suppose we have 5 Bernoulli trials with probability p of success on each
trial. What is the probability of success on the first three trials and failure on the last
two? Failure on the first two trials and success on the last three? Success on trials
1, 3, and 5, and failure on the other two? Success on any particular three trials, and
failure on the other two?

Since the probability of a sequence of outcomes is the product of the probabilities of the
individual outcomes, the probability of any sequence of 3 successes and 2 failures is p3(1 − p)2.
More generally, in n Bernoulli trials, the probability of a given sequence of k successes and n− k
failures is pk(1− p)n−k. However this is not the probability of having k successes, because many
different sequences could have k successes.

How many sequences of n successes and failures have exactly k successes? The number of
ways to choose the k places out of n where the successes occur is

(n
k

)
, so the number of sequences

with k successes is
(n
k

)
. This paragraph and the last together give us Theorem 5.7.

Theorem 5.7 The probability of having exactly k successes in a sequence of n independent trials
with two outcomes and probability p of success on each trial is

P (exactly k successes) =

(
n

k

)
pk(1 − p)n−k

.

Proof: The proof follows from the two paragraphs preceding the theorem.

Because of the connection between these probabilities and the binomial coefficients, the prob-
abilities of Theorem 5.7 are called binomial probabilities, or the binomial probability dis-
tribution.

Exercise 5.4-4 A student takes a ten question objective test. Suppose that a student
who knows 80% of the course material has probability .8 of success an any question,
independently of how the student did on any other problem. What is the probability
that this student earns a grade of 80 or better (out of 100)? What grade would you
expect the student to get?

Exercise 5.4-5 Recall the primality testing algorithm from Section 2.4. Here we said that
we could, by choosing a random number less than or equal to n, perform a test on
n that, if n was not prime, would certify this fact with probability 1/2. Suppose
we perform 20 of these tests. It is reasonable to assume that each of these tests is
independent of the rest of them. What is the probability that a non-prime number is
certified to be non-prime?

5.4. RANDOM VARIABLES 217

Since a grade of 80 or better on a ten question test corresponds to 8, 9, or 10 successes in ten
trials, in Exercise 5.4-4 we have

P (80 or better) =

(
10
8

)
(.8)8(.2)2 +

(
10
9

)
(.8)9(.2)1 + (.8)10.

Some work with a calculator gives us that this sum is approximately .678. The grade we would
expect the student to get is 80.

In Exercise 5.4-5, we will first compute the probability that a non-prime number is not certified
to be non-prime. If we think of success as when the number is certified non-prime and failure
when it isn’t, then we see that the only way to fail to certify a number is to have 20 failures. Using
our formula we see that the probability that a non-prime number is not certified non-prime is
just

(20
20

)
(.5)20 = 1/1048576. Thus the chance of this happening is less than one in a million, and

the chance of certifying the non-prime as non-prime is 1 minus this. Therefore the probability
that a non-prime number will be certified non-prime is 1048575/1048576, which is more than
.999999, so a non-prime number is almost sure to be certified non-prime.

A Taste of Generating Functions We note a nice connection between the probability of
having exactly k successes and the binomial theorem. Consider, as an example, the polynomial
(H + T)3. Using the binomial theorem, we get that this is

(H + T)3 =

(
3
0

)
H3 +

(
3
1

)
H2T +

(
3
2

)
HT 2 +

(
3
3

)
T 3.

We can interpret this as telling us that if we flip a coin three times, with outcomes heads or tails
each time, then there are

(3
0

)
= 1 way of getting 3 heads,

(3
2

)
= 3 ways of getting two heads and

one tail,
(3
1

)
= 3 ways of getting one head and two tails and

(3
3

)
= 1 way of getting 3 tails.

Similarly, if we replace H and T by px and (1 − p)y we would get the following:

(px + (1 − p)y)3 =

(
3
0

)
p3x3 +

(
3
1

)
p2(1 − p)x2y +

(
3
2

)
p(1 − p)2xy2 +

(
3
3

)
(1 − p)3y3.

Generalizing this to n repeated trials where in each trial the probability of success is p, we
see that by taking (px + (1 − p)y)n we get

(px + (1 − p)y)n =
k∑

k=0

(
n

k

)
pk(1 − p)n−kxkyn−k.

Taking the coefficient of xkyn−k from this sum, we get exactly the result of Theorem 5.7.
This connection is a simple case of a very powerful tool known as generating functions. We say
that the polynomial (px + (1− p)y)n generates the binomial probabilities. In fact, we don’t even
need the y, because

(px + 1 − p)n =
n∑

i=0

(
n

i

)
pi(1 − p)n−ixi.

In general, the generating function for the sequence a0, a1, a2, . . . , an is
∑n

i=1 aix
i, and the gen-

erating function for an infinite sequence a0, a1, a2, . . . , an, . . . is the infinite series
∑∞

i=1 aix
i.

218 CHAPTER 5. PROBABILITY

Expected Value

In Exercise 5.4-4 and Exercise 5.4-2 we asked about the value you would expect a random
variable(in these cases, a test score and the number of heads in six flips of a coin) to have.
We haven’t yet defined what we mean by the value we expect, and yet it seems to make sense in
the places we asked about it. If we say we expect 1 head if we flip a coin twice, we can explain
our reasoning by taking an average. There are four outcomes, one with no heads, two with one
head, and one with two heads, giving us an average of

0 + 1 + 1 + 2
4

= 1.

Notice that using averages compels us to have some expected values that are impossible to achieve.
For example in three flips of a coin the eight possibilities for the number of heads are 0, 1, 1, 1,
2, 2, 2, 3, giving us for our average

0 + 1 + 1 + 1 + 2 + 2 + 2 + 3
8

= 1.5.

Exercise 5.4-6 An interpretation in games and gambling makes it clear that it makes
sense to expect a random variable to have a value that is not one of the possible
outcomes. Suppose that I proposed the following game. You pay me some money,
and then you flip three coins. I will pay you one dollar for every head that comes up.
Would you play this game if you had to pay me $2.00? How about if you had to pay
me $1? How much do you think it should cost, in order for this game to be fair?

Since you expect to get 1.5 heads, you expect to make $1.50. Therefore, it is reasonable to
play this game as long as the cost is at most $1.50.

Certainly averaging our variable over all elements of our sample space by adding up one
result for each element of the sample space as we have done above is impractical even when we
are talking about something as simple as ten flips of a coin. However we can ask how many times
each possible number of heads arises, and then multiply the number of heads by the number of
times it arises to get an average number of heads of

0
(10

0

)
+ 1

(10
1

)
+ 2

(10
2

)
+ · · · + 9

(10
9

)
+ 10

(10
10

)

1024
=

∑10
i=0 i

(10
i

)

1024
. (5.22)

Thus we wonder whether we have seen a formula for
∑n

i=0 i
(n

i

)
. Perhaps we have, but in any case

the binomial theorem and a bit of calculus or a proof by induction show that

n∑

i=0

i

(
n

i

)
= 2n−1n,

giving us 512 · 10/1024 = 5 for the fraction in Equation 5.22. If you are asking “Does it have to
be that hard?” then good for you. Once we know a bit about the theory of expected values of
random variables, computations like this will be replaced by far simpler ones.

Besides the nasty computations that a simple question lead us to, the average value of a
random variable on a sample space need not have anything to do with the result we expect. For
instance if we replace heads and tails with right and wrong, we get the sample space of possible

5.4. RANDOM VARIABLES 219

results that a student will get when taking a ten question test with probability .9 of getting the
right answer on any one question. Thus if we compute the average number of right answers in all
the possible patterns of test results we get an average of 5 right answers. This is not the number
of right answers we expect because averaging has nothing to do with the underlying process that
gave us our probability! If we analyze the ten coin flips a bit more carefully, we can resolve this
disconnection. We can rewrite Equation 5.22 as

0
(10

0

)

1024
+ 1

(10
1

)

1024
+ 2

(10
2

)

1024
+ · · · + 9

(10
9

)

1024
+ 10

(10
10

)

1024
=

10∑

i=0

i

(10
i

)

1024
. (5.23)

In Equation 5.23 we see we can compute the average number of heads by multiplying each
value of our “number of heads” random variable by the probability that we have that value for our
random variable, and then adding the results. This gives us a “weighted average” of the values
of our random variable, each value weighted by its probability. Because the idea of weighting a
random variable by its probability comes up so much in Probability Theory, there is a special
notation that has developed to use this weight in equations. We use P (X = xi) to stand for the
probability that the random variable X equals the value xi. We call the function that assigns
P (xi) to the event P (X = xi) the distribution function of the random variable X. Thus, for
example, the binomial probability distribution is the distribution function for the “number of
successes” random variable in Bernoulli trials.

We define the expected value or expectation of a random variable X whose values are the
set {x1, x2, . . . xk} to be

E(X) =
k∑

i=1

xiP (X = xi).

Then for someone taking a ten-question test with probability .9 of getting the correct answer
on each question, the expected number of right answers is

10∑

i=0

i

(
10
i

)
(.9)i(.1)10−i.

In the end of section exercises we will show a technique (that could be considered an application of
generating functions) that allows us to compute this sum directly by using the binomial theorem
and calculus. We now proceed to develop a less direct but easier way to compute this and many
other expected values.

Exercise 5.4-7 Show that if a random variable X is defined on a sample space S (you
may assume X has values x1, x2, . . .xk as above) then the expected value of X is
given by

E(X) =
∑

s:s∈S

X(s)P (s).

(In words, we take each member of the sample space, compute its probability, multiply
the probability by the value of the random variable and add the results.)

In Exercise 5.4-7 we asked for a proof of a fundamental lemma

220 CHAPTER 5. PROBABILITY

Lemma 5.8 If a random variable X is defined on a (finite) sample space S, then its expected
value is given by

E(X) =
∑

s:s∈S

X(s)P (s).

Proof: Assume that the values of the random variable are x1, x2, . . .xk. Let Fi stand for the
event that the value of X is xi, so that P (Fi) = P (X = xi). Then, in the sum on the right-hand
side of the equation in the statement of the lemma, we can take the items in the sample space,
group them together into the events Fi and and rework the sum into the definition of expectation,
as follows:

∑

s:s∈S

X(s)P (s) =
k∑

i=1

∑

s:s∈Fi

X(s)P (s)

=
k∑

i=1

∑

s:s∈Fi

xiP (s)

=
k∑

i=1

xi

∑

s:s∈Fi

P (s)

=
k∑

i=1

xiP (Fi)

=
k∑

i=1

xiP (X = xi) = E(X).

The proof of the lemma need not be so formal and symbolic as what we wrote; in English, it
simply says that when we compute the sum in the Lemma, we can group together all elements
of the sample space that have X-value xi and add up their probabilities; this gives us xiP (xi),
which leads us to the definition of the expected value of X.

Expected Values of Sums and Numerical Multiples

Another important point about expected value follows naturally from what we think about when
we use the word “expect” in English. If a paper grader expects to earn ten dollars grading
papers today and expects to earn twenty dollars grading papers tomorrow, then she expects to
earn thirty dollars grading papers in these two days. We could use X1 to stand for the amount
of money she makes grading papers today and X2 to stand for the amount of money she makes
grading papers tomorrow, so we are saying

E(X1 + X2) = E(X1) + E(X2).

This formula holds for any sum of a pair of random variables, and more generally for any sum of
random variables on the same sample space.

Theorem 5.9 Suppose X and Y are random variables on the (finite) sample space S. Then

E(X + Y) = E(X) + E(Y).

5.4. RANDOM VARIABLES 221

Proof: From Lemma 5.8 we may write

E(X + Y) =
∑

s:s∈S

(X(s) + Y (s))P (s) =
∑

s:s∈S

X(s)P (s) +
∑

s:s∈S

Y (s)P (s) = E(X) + E(Y).

If we double the credit we give for each question on a test, we would expect students’ scores
to double. Thus our next theorem should be no surprise. In it we use the notation cX for the
random variable we get from X by multiplying all its values by the number c.

Theorem 5.10 Suppose X is a random variable on a sample space S. Then for any number c,
E(cX) = cE(X).

Proof: Left as a problem.

Theorems 5.9 and 5.10 are very useful in proving facts about random variables. Taken to-
gether, they are typically called linearity of expectation. (The idea that the expectation of a
sum is the same as the sum of expectations is called the additivity of expectation.) The idea of
linearity will often allow us to work with expectations much more easily than if we had to work
with the underlying probabilities.

For example, on one flip of a coin, our expected number of heads is .5. Suppose we flip a
coin n times and let Xi be the number of heads we see on flip i, so that Xi is either 0 or 1. (For
example in five flips of a coin, X2(HTHHT) = 0 while X3(HTHHT) = 1.) Then X, the total
number of heads in n flips is given by

X = X1 + X2 + · · ·Xn, (5.24)

the sum of the number of heads on the first flip, the number on the second, and so on through
the number of heads on the last flip. But the expected value of each Xi is .5. We can take the
expectation of both sides of Equation 5.24 and apply Lemma 5.9 repeatedly (or use induction)
to get that

E(X) = E(X1 + X2 + · · · + Xn)
= E(X1) + E(X2) + · · · + E(Xn)
= .5 + .5 + · · · + .5
= .5n

Thus in n flips of a coin, the expected number of heads is .5n. Compare the ease of this method
with the effort needed earlier to deal with the expected number of heads in ten flips! Dealing
with probability .9 or, in general with probability p poses no problem.

Exercise 5.4-8 Use the additivity of expectation to determine the expected number of
correct answers a student will get on an n question “fill in the blanks” test if he or
she knows 90% of the material in the course and the questions on the test are an
accurate and uniform sampling of the material in the course.

In Exercise 5.4-8, since the questions sample the material in the course accurately, the most
natural probability for us to assign to the event that the student gets a correct answer on a given

222 CHAPTER 5. PROBABILITY

question is .9. We can let Xi be the number of correct answers on question i (that is, either 1 or
0 depending on whether or not the student gets the correct answer). Then the expected number
of right answers is the expected value of the sum of the variables Xi. From Theorem 5.9 see
that in n trials with probability .9 of success, we expect to have .9n successes. This gives that
the expected number of right answers on a ten question test with probability .9 of getting each
question right is 9, as we expected. This is a special case of our next theorem, which is proved
by the same kind of computation.

Theorem 5.11 In a Bernoulli trials process, in which each experiment has two outcomes and
probability p of success, the expected number of successes is np.

Proof: Let Xi be the number of successes in the ith of n independent trials. The expected
number of successes on the ith trial (i.e. the expected value of Xi) is, by definition,

p · 1 + (1 − p) · 0 = p.

The number of successes X in all n trials is the sum of the random variables Xi. Then by
Theorem 5.9 the expected number of successes in n independent trials is the sum of the expected
values of the n random variables Xi and this sum is np.

The Number of Trials until the First Success

Exercise 5.4-9 How many times do you expect to have to flip a coin until you first see a
head? Why? How many times to you expect to have to roll two dice until you see a
sum of seven? Why?

Our intuition suggests that we should have to flip a coin twice to see a head. However we
could conceivably flip a coin forever without seeing a head, so should we really expect to see a
head in two flips? The probability of getting a seven on two dice is 1/6. Does that mean we
should expect to have to roll the dice six times before we see a seven?

In order to analyze this kind of question we have to realize that we are stepping out of
the realm of independent trials processes on finite sample spaces. We will consider the process
of repeating independent trials with probability p of success until we have a success and then
stopping. Now the possible outcomes of our multistage process are the infinite set

{S, FS, FFS, . . . , F iS, . . .},
in which we have used the notation F iS to stand for the sequence of i failures followed by a
success. Since we have an infinite sequence of outcomes, it makes sense to think about whether
we can assign an infinite sequence of probability weights to its members so that the resulting
sequence of probabilities adds to one. If so, then all our definitions make sense, and in fact
the proofs of all our theorems remain valid.5 There is only one way to assign weights that is
consistent with our knowledge of (finite) independent trials processes, namely

P (S) = p, P (FS) = (1 − p)p, . . . , P (F iS) = (1 − p)ip,

5for those who are familiar with the concept of convergence for infinite sums (i.e. infinite series), it is worth
noting that it is the fact that probability weights cannot be negative and must add to one that makes all the sums
we need to deal with for all the theorems we have proved so far converge. That doesn’t mean all sums we might
want to deal with will converge; some random variables defined on the sample space we have described will have
infinite expected value. However those we need to deal with for the expected number of trials until success do
converge.

5.4. RANDOM VARIABLES 223

Thus we have to hope these weights add to one; in fact their sum is

∞∑

i=0

(1 − p)ip = p
∞∑

i=0

(1 − p)i = p
1

1 − (1 − p)
=

p

p
= 1.

Therefore we have a legitimate assignment of probabilities and the set of sequences

{F, FS, FFS, FFFS, . . . , F iS, . . .}

is a sample space with these probability weights. This probability distribution, P (F iS) = (1 −
p)ip, is called a geometric distribution because of the geometric series we used in proving the
probabilities sum to 1.

Theorem 5.12 Suppose we have a sequence of trials in which each trial has two outcomes,
success and failure, and where at each step the probability of success is p. Then the expected
number of trials until the first success is 1/p.

Proof:

We consider the random variable X which is i if the first success is on trial i. (In other words,
X(F i−1S) is i.) The probability that the first success is on trial i is (1 − p)i−1p, since in order
for this to happen there must be i − 1 failures followed by 1 success. The expected number of
trials is the expected value of X, which is, by the definition of expected value and the previous
two sentences,

E[number of trials] =
∞∑

i=0

p(1 − p)i−1i

= p
∞∑

i=0

(1 − p)i−1i

=
p

1 − p

∞∑

i=0

(1 − p)ii

=
p

1 − p

1 − p

p2

=
1
p

To go from the third to the fourth line we used the fact that

∞∑

j=0

jxj =
x

(1 − x)2
, (5.25)

true for x with absolute value less than one. We proved a finite version of this equation as
Theorem 4.6; the infinite version is even easier to prove.

Applying this theorem, we see that the expected number of times you need to flip a coin until
you get heads is 2, and the expected number of times you need to roll two dice until you get a
seven is 6.

224 CHAPTER 5. PROBABILITY

Important Concepts, Formulas, and Theorems

1. Random Variable. A random variable for an experiment with a sample space S is a function
that assigns a number to each element of S.

2. Bernoulli Trials Process. An independent trials process with two outcomes, success and
failure, at each stage and probability p of success and 1− p of failure at each stage is called
a Bernoulli trials process.

3. Probability of a Sequence of Bernoulli Trials. In n Bernoulli trials with probability p of
success, the probability of a given sequence of k successes and n−k failures is pk(1−p)n−k.

4. The Probability of k Successes in n Bernoulli Trials The probability of having exactly k
successes in a sequence of n independent trials with two outcomes and probability p of
success on each trial is

P (exactly k successes) =

(
n

k

)
pk(1 − p)n−k

.

5. Binomial Probability Distribution. The probabilities of of k successes in n Bernoulli trials,(n
k

)
pk(1 − p)n−k, are called binomial probabilities, or the binomial probability distribution.

6. Generating Function. The generating function for the sequence a0, a1, a2, . . . , an is
∑n

i=1 aix
i,

and the generating function for an infinite sequence a0, a1, a2, . . . , an, . . . is the infinite se-
ries

∑∞
i=1 aix

i. The polynomial (px + 1 − p)n is the generating function for the binomial
probabilities for n Bernoulli trials with probability p of success.

7. Distribution Function. We call the function that assigns P (xi) to the event P (X = xi) the
distribution function of the random variable X.

8. Expected Value. We define the expected value or expectation of a random variable X whose
values are the set {x1, x2, . . . xk} to be

E(X) =
k∑

i=1

xiP (X = xi).

9. Another Formula for Expected Values. If a random variable X is defined on a (finite) sample
space S, then its expected value is given by

E(X) =
∑

s:s∈S

X(s)P (s).

10. Expected Value of a Sum. Suppose X and Y are random variables on the (finite) sample
space S. Then

E(X + Y) = E(X) + E(Y).

This is called the additivity of expectation.

11. Expected Value of a Numerical Multiple. Suppose X is a random variable on a sample space
S. Then for any number c, E(cX) = cE(X). This result and the additivity of expectation
together are called the linearity of expectation.

5.4. RANDOM VARIABLES 225

12. Expected Number of Successes in Bernoulli Trials. In a Bernoulli trials process, in which
each experiment has two outcomes and probability p of success, the expected number of
successes is np.

13. Expected Number of Trials Until Success. Suppose we have a sequence of trials in which
each trial has two outcomes, success and failure, and where at each step the probability of
success is p. Then the expected number of trials until the first success is 1/p.

Problems

1. Give several random variables that might be of interest to someone rolling five dice (as one
does, for example, in the game Yatzee).

2. Suppose I offer to play the following game with you if you will pay me some money. You
roll a die, and I give you a dollar for each dot that is on top. What is the maximum amount
of money a rational person might be willing to pay me in order to play this game?

3. How many sixes do we expect to see on top if we roll 24 dice?

4. What is the expected sum of the tops of n dice when we roll them?

5. In an independent trials process consisting of six trials with probability p of success, what
is the probability that the first three trials are successes and the last three are failures?
The probability that the last three trials are successes and the first three are failures? The
probability that trials 1, 3, and 5 are successes and trials 2, 4, and 6 are failures? What is
the probability of three successes and three failures?

6. What is the probability of exactly eight heads in ten flips of a coin? Of eight or more
heads?

7. How many times do you expect to have to role a die until you see a six on the top face?

8. Assuming that the process of answering the questions on a five-question quiz is an inde-
pendent trials process and that a student has a probability of .8 of answering any given
question correctly, what is the probability of a sequence of four correct answers and one
incorrect answer? What is the probability that a student answers exactly four questions
correctly?

9. What is the expected value of the constant random variable X that has X(s) = c for every
member s of the sample space? We frequently just use c to stand for this random variable,
and thus this question is asking for E(c).

10. Someone is taking a true-false test and guessing when they don’t know the answer. We are
going to compute a score by subtracting a percentage of the number of incorrect answers
from the number of correct answers. When we convert this “corrected score” to a percentage
score we want its expected value to be the percentage of the material being tested that the
test-taker knows. How can we do this?

11. Do Problem 10 of this section for the case that someone is taking a multiple choice test
with five choices for each answer and guesses randomly when they don’t know the answer.

226 CHAPTER 5. PROBABILITY

12. Suppose we have ten independent trials with three outcomes called good, bad, and indiffer-
ent, with probabilities p, q, and r, respectively. What is the probability of three goods, two
bads, and five indifferents? In n independent trials with three outcomes A, B, and C, with
probabilities p, q, and r, what is the probability of i As, j Bs, and k Cs? (In this problem
we assume p + q + r = 1 and i + j + k = n.)

13. In as many ways as you can, prove that

n∑

i=0

i

(
n

i

)
= 2n−1n.

14. Prove Theorem 5.10.

15. Two nickels, two dimes, and two quarters are in a cup. We draw three coins, one after the
other, without replacement. What is the expected amount of money we draw on the first
draw? On the second draw? What is the expected value of the total amount of money we
draw? Does this expected value change if we draw the three coins all together?

16. In this exercise we will evaluate the sum

10∑

i=0

i

(
10
i

)
(.9)i(.1)10−i

that arose in computing the expected number of right answers a person would have on a
ten question test with probability .9 of answering each question correctly. First, use the
binomial theorem and calculus to show that

10(.1 + x)9 =
10∑

i=0

i

(
10
i

)
(.1)10−ixi−1

Substituting in x = .9 gives us almost the sum we want on the right hand side of the
equation, except that in every term of the sum the power on .9 is one too small. Use some
simple algebra to fix this and then explain why the expected number of right answers is 9.

17. Give an example of two random variables X and Y such that E(XY) �= E(X)E(Y). Here
XY is the random variable with (XY)(s) = X(s)Y (s).

18. Prove that if X and Y are independent in the sense that the event that X = x and
the event that Y = y are independent for each pair of values x of X and y of Y , then
E(XY) = E(X)E(Y). See Exercise 5-17 for a definition of XY .

19. Use calculus and the sum of a geometric series to show that

∞∑

j=0

jxj =
x

(1 − x)2

as in Equation 5.25.

20. Give an example of a random variable on the sample space {S, FS, FFS, . . . , F iS, . . .} with
an infinite expected value.

5.5. PROBABILITY CALCULATIONS IN HASHING 227

5.5 Probability Calculations in Hashing

We can use our knowledge of probability and expected values to analyze a number of interesting
aspects of hashing including:

1. expected number of items per location,

2. expected time for a search,

3. expected number of collisions,

4. expected number of empty locations,

5. expected time until all locations have at least one item,

6. expected maximum number of items per location.

Expected Number of Items per Location

Exercise 5.5-1 We are going to compute the expected number of items that hash to any
particular location in a hash table. Our model of hashing n items into a table of
size k allows us to think of the process as n independent trials, each with k possible
outcomes (the k locations in the table). On each trial we hash another key into the
table. If we hash n items into a table with k locations, what is the probability that
any one item hashes into location 1? Let Xi be the random variable that counts the
number of items that hash to location 1 in trial i (so that Xi is either 0 or 1). What
is the expected value of Xi? Let X be the random variable X1 + X2 + · · · + Xn.
What is the expected value of X? What is the expected number of items that hash
to location 1? Was the fact that we were talking about location 1 special in any way?
That is, does the same expected value apply to every location?

Exercise 5.5-2 Again we are hashing n items into k locations. Our model of hashing is
that of Exercise 5.5-1. What is the probability that a location is empty? What is
the expected number of empty locations? Suppose we now hash n items into the
same number n of locations. What limit does the expected fraction of empty places
approach as n gets large?

In Exercise 5.5-1, the probability that any one item hashes into location 1 is 1/k, because all
k locations are equally likely. The expected value of Xi is then 1/k. The expected value of X is
then n/k, the sum of n terms each equal to 1/k. Of course the same expected value applies to
any location. Thus we have proved the following theorem.

Theorem 5.13 In hashing n items into a hash table of size k, the expected number of items that
hash to any one location is n/k.

228 CHAPTER 5. PROBABILITY

Expected Number of Empty Locations

In Exercise 5.5-2 the probability that position i will be empty after we hash 1 item into the table
will be 1− 1

k . (Why?) In fact, we can think of our process as an independent trials process with
two outcomes: the key hashes to slot i or it doesn’t. From this point of view, it is clear that the
probability of nothing hashing to slot i in n trials is (1 − 1

k)n. Now consider the original sample
space again and let Xi be 1 if slot i is empty for a given sequence of hashes or 0 if it is not. Then
the number of empty slots for a given sequence of hashes is X1 +X2 + · · ·+Xk evaluated at that
sequence. Therefore, the expected number of empty slots is, by Theorem 5.9, k(1 − 1

k)n. Thus
we have proved another nice theorem about hashing.

Theorem 5.14 In hashing n items into a hash table with k locations, the expected number of
empty locations is k(1 − 1

k)n.

Proof: Given above.

If we have the same number of slots as places, the expected number of empty slots is n(1− 1
n)n,

so the expected fraction of empty slots is (1− 1
n)n. What does this fraction approach as n grows?

You may recall that limn→∞(1 + 1
n)n is e, the base for the natural logarithm. In the problems at

the end of the section, we show you how to derive from this that limn→∞(1− 1
n)n is e−1. Thus for

a reasonably large hash table, if we hash in as many items as we have slots, we expect a fraction
1/e of those slots to remain empty. In other words, we expect n/e empty slots. On the other
hand, we expect n

n items per location, which suggests that we should expect each slot to have an
item and therefore expect to have no empty locations. Is something wrong? No, but we simply
have to accept that our expectations about expectation just don’t always hold true. What went
wrong in that apparent contradiction is that our definition of expected value doesn’t imply that
if we have an expectation of one key per location then every location must have a key, but only
that empty locations have to be balanced out by locations with more than one key. When we
want to make a statement about expected values, we must use either our definitions or theorems
to back it up. This is another example of why we have to back up intuition about probability
with careful analysis.

Expected Number of Collisions

We say that we have a collision when we hash an item to a location that already contains an
item. How can we compute the expected number of collisions? The number of collisions will
be the number n of keys hashed minus the number of occupied locations because each occupied
location will contain one key that will not have collided in the process of being hashed. Thus, by
Theorems 5.9 and 5.10,

E(collisions) = n − E(occupied locations) = n − k + E(empty locations) (5.26)

where the last equality follows because the expected number of occupied locations is k minus the
expected number of unoccupied locations. This gives us yet another theorem.

Theorem 5.15 In hashing n items into a hash table with k locations, the expected number of
collisions is n − k + k(1 − 1

k)n.

5.5. PROBABILITY CALCULATIONS IN HASHING 229

Proof: We have already shown in Theorem 5.14 that the expected number of empty locations
is k(1 − 1

k)n. Substituting this into Equation 5.26 gives our formula.

Exercise 5.5-3 In real applications, it is often the case that the hash table size is not fixed
in advance, since you don’t know, in advance, how many items you will insert. The
most common heuristic for dealing with this is to start k, the hash table size, at some
reasonably small value, and then when n, the number of items, gets to be greater
than 2k, you double the hash table size. In this exercise we propose a different idea.
Suppose you waited until every single slot in the hash table had at least one item in
it, and then you increased the table size. What is the expected number of items that
will be in the table when you increase the size? In other words, how many items do
you expect to insert into a hash table in order to ensure that every slot has at least
one item? (Hint: Let Xi be the number of items added between the time that there
are i − 1 occupied slots for the first time and the first time that there are i occupied
slots.)

For Exercise 5.5-3, the key is to let Xi be the number of items added between the time that
there are i− 1 full slots for the first time and i full slots for the first time. Let’s think about this
random variable. E(X1) = 1, since after one insertion there is one full slot. In fact X1 itself is
equal to 1.

To compute the expected value of X2, we note that X2 can take on any value greater than
1. In fact if we think about it, what we have here (until we actually hash an item to a new slot)
is an independent trials process with two outcomes, with success meaning our item hashes to an
unused slot. X2 counts the number of trials until the first success. The probability of success is
(k − 1)/k. In asking for the expected value of X2, we are asking for expected number of steps
until the first success. Thus we can apply Lemma 5.12 to get that it is k/(k − 1).

Continuing, X3 similarly counts the number of steps in an independent trials process (with
two outcomes) that stops at the first success and has probability of success (k − 2)/k. Thus the
expected number of steps until the first success is k/(k − 2).

In general, we have that Xi counts the number of trials until success in an independent trials
process with probability of success (k− i + 1)/k and thus the expected number of steps until the
first success is k/(k − i + 1), which is the expected value of Xi.

The total time until all slots are full is just X = X1 + · · · + Xk. Taking expectations and
using Lemma 5.12 we get

E(X) =
k∑

j=1

E(Xj)

=
k∑

j=1

k

k − j + 1

= k
k∑

j=1

1
k − j + 1

= k
k∑

k−j+1=1

1
k − j + 1

230 CHAPTER 5. PROBABILITY

= k
k∑

i=1

1
i
,

where the last line follows just by switching the variable of the summation, that is, letting
k − j + 1 = i and summing over i.6 Now the quantity

∑k
i=1

1
i is known as a harmonic number,

and is sometimes denoted by Hk. It is well known (and you can see why in the problems at the
end of the section) that

∑k
i=1

1
i = Θ(log k), and more precisely

1
4

+ ln k ≤ Hk ≤ 1 + ln k, (5.27)

and in fact,
1
2

+ ln k ≤ Hk ≤ 1 + ln k, (5.28)

when k is large enough. As n gets large, Hn − lnn approaches a limit called Euler’s constant;
Euler’s constant is about .58. Equation 5.27 gives us that E(X) = O(k log k).

Theorem 5.16 The expected number of items needed to fill all slots of a hash table of size k is
between k ln k + 1

2k and k ln k + k.

Proof: Given above.

So in order to fill every slot in a hash table of size k, we need to hash roughly k ln k items.
This problem is sometimes called the coupon collectors problem.

The remainder of this section is devoted to proving that if we hash n items into a hash table
with n slots, then the expected number of items per slot is O(log n/ log log n). It should be no
surpise that a result of this form requires a somewhat complex proof. The remainder of this
section can be skipped without losss of continuity.

Expected maximum number of elements in a slot of a hash table (Optional)

In a hash table, the time to find an item is related to the number of items in the slot where you
are looking. Thus an interesting quantity is the expected maximum length of the list of items in
a slot in a hash table. This quantity is more complicated than many of the others we have been
computing, and hence we will only try to upper bound it, rather than compute it exactly. In doing
so, we will introduce a few upper bounds and techniques that appear frequently and are useful
in many areas of mathematics and computer science. We will be able to prove that if we hash
n items into a hash table of size n, the expected length of the longest list is O(log n/ log log n).
One can also prove, although we won’t do it here, that with high probability, there will be some
list with Ω(log n/ log log n) items in it, so our bound is, up to constant factors, the best possible.

Before we start, we give some useful upper bounds. The first allows us to bound terms that
look like (1 + 1

x)x, for any positive x, by e.

Lemma 5.17 For all x > 0, (1 + 1
x)x ≤ e.

6Note that k − j + 1 runs from k to 1 as j runs from 1 to k, so we are describing exactly the same sum.

5.5. PROBABILITY CALCULATIONS IN HASHING 231

Proof: limx→∞(1 + 1
x)x = e, and (1 + 1

x)x has positive first derivative.

Second, we will use an approximation called Stirling’s formula,

x! =
(

x

e

)x √
2πx(1 + Θ(1/n)),

which tells us, roughly, that (x/e)x is a good approximation for x!. Moreover the constant in the
Θ(1/n) term is extremely small, so for our purposes we will just say that

x! =
(

x

e

)x √
2πx.

(We use this equality only in our proof of Lemma 5.18. You will see in that Lemma that we make
the statement that

√
2π > 1. In fact,

√
2π > 2, and this is more than enough to make up for any

lack of accuracy in our approximation.) Using Stirling’s formula, we can get a bound on
(n

t

)
,

Lemma 5.18 For n > t > 0, (
n

t

)
≤ nn

tt(n − t)n−t
.

Proof:
(

n

t

)
=

n!
t!(n − t)!

(5.29)

=
(n/e)n

√
2πn

(t/e)t
√

2πt((n − t)/e)n−t
√

2π(n − t)
(5.30)

=
nn√n

tt(n − t)n−t
√

2π
√

t(n − t)
(5.31)

Now if 1 < t < n − 1, we have t(n − t) ≥ n, so that
√

t(n − t) ≥ √
n. Further

√
2π > 1. We can

use these facts to upper bound the quantity marked 5.31 by

nn

tt(n − t)n−t
.

When t = 1 or t = n − 1, the inequality in the statement of the lemma is n ≤ nn/(n − 1)n−1

which is true since n − 1 < n.

We are now ready to attack the problem at hand, the expected value of the maximum list
size. Let’s start with a related quantity that we already know how to compute. Let Hit be the
event that t keys hash to slot i. P (Hit) is just the probability of t successes in an independent
trials process with success probability 1/n, so

P (Hit) =

(
n

t

) (
1
n

)t (
1 − 1

n

)n−t

. (5.32)

Now we relate this known quantity to the probability of the event Mt that the maximum list
size is t.

232 CHAPTER 5. PROBABILITY

Lemma 5.19 Let Mt be the event that t is the maximum list size in hashing n items into a hash
table of size n. Let H1t be the event that t keys hash to position 1. Then

P (Mt) ≤ nP (H1t)

Proof: We begin by letting Mit be the event that the maximum list size is t and this list
appears in slot i. Observe that that since Mit is a subset of Hit,

P (Mit) ≤ P (Hit). (5.33)

We know that, by definition,
Mt = M1t ∪ · · · ∪ Mnt,

and so
P (Mt) = P (M1t ∪ · · · ∪ Mnt).

Therefore, since the sum of the probabilities of the individual events must be at least as large as
the probability of the union,

P (Mt) ≤ P (M1t) + P (M2t) + · · · + P (Mnt). (5.34)

(Recall that we introduced the Principle of Inclusion and Exclusion because the right hand side
overestimated the probability of the union. Note that the inequality in Equation 5.34 holds for
any union, not just this one: it is sometimes called Boole’s inequality.)

In this case, for any i and j, P (Mit) = P (Mjt), since there is no reason for slot i to be more
likely than slot j to be the maximum. We can therefore write that

P (Mt) = nP (M1t) ≤ nP (H1t).

Now we can use Equation 5.32 for P (H1t) and then apply Lemma 5.18 to get that

P (H1t) =

(
n

t

) (
1
n

)t (
1 − 1

n

)n−t

≤ nn

tt(n − t)n−t

(
1
n

)t (
1 − 1

n

)n−t

.

We continue, using algebra, the fact that (1 − 1
n)n−t ≤ 1 and Lemma 5.17 to get

≤ nn

tt(n − t)n−tnt

=
nn−t

tt(n − t)n−t

=
(

n

n − t

)n−t 1
tt

=
(

1 +
t

n − t

)n−t 1
tt

=

((
1 +

t

n − t

)n−t
t

)t
1
tt

≤ et

tt
.

5.5. PROBABILITY CALCULATIONS IN HASHING 233

We have shown the following:

Lemma 5.20 P (Mt), the probability that the maximum list length is t, is at most net/tt.

Proof: Our sequence of equations and inequalities above showed that P (H1t) ≤ et

tt . Multiply-
ing by n and applying Lemma 5.19 gives our result.

Now that we have a bound on P (Mt), we can compute a bound on the expected length of
the longest list, namely

n∑

t=0

P (Mt)t.

However, if we think carefully about the bound in Lemma 5.20, we see that we have a problem.
For example when t = 1, the lemma tells us that P (M1) ≤ ne. This is vacuous, as we know that
any probability is at most 1. We could make a stronger statement that P (Mt) ≤ max{net/tt, 1},
but even this wouldn’t be sufficient, since it would tell us things like P (M1) + P (M2) ≤ 2, which
is also vacuous. All is not lost however. Our lemma causes this problem only when t is small.
We will split the sum defining the expected value into two parts and bound the expectation for
each part separately. The intuition is that when we restrict t to be small, then

∑
P (Mt)t is small

because t is small (and over all t,
∑

P (Mt) ≤ 1). When t gets larger, Lemma 5.20 tells us that
P (Mt) is very small and so the sum doesn’t get big in that case either. We will choose a way
to split the sum so that this second part of the sum is bounded by a constant. In particular we
split the sum up by

n∑

t=0

P (Mt)t ≤
�5 log n/ log log n	∑

t=0

P (Mt)t +
n∑

t=
5 log n/ log log n�
P (Mt)t (5.35)

For the sum over the smaller values of t, we just observe that in each term t ≤ 5 log n/ log log n
so that

5 log n/ log log n∑

t=0

P (Mt)t ≤
5 log n/ log log n∑

t=0

P (Mt)5 log n/ log log n (5.36)

= 5 log n/ log log n

5 log n/ log log n∑

t=0

P (Mt) (5.37)

≤ 5 log n/ log log n (5.38)

(Note that we are not using Lemma 5.20 here; only the fact that the probabilities of disjoint
events cannot add to more than 1.) For the rightmost sum in Equation 5.35, we want to first
compute an upper bound on P (Mt) for t = (5 log n/ log log n). Using Lemma 5.20, and doing a
bit of calculation we get that in this case P (Mt) ≤ 1/n2. Since the bound on P (Mt) from Lemma
5.20 decreases as t grows, and t ≤ n, we can bound the right sum by

n∑

t=5 log n/ log log n

P (Mt)t ≤
n∑

t=5 log n/ log log n

1
n2

n ≤
n∑

t=5 log n/ log log n

1
n
≤ 1. (5.39)

Combining Equations 5.38 and 5.39 with 5.35 we get the desired result.

Theorem 5.21 If we hash n items into a hash table of size n, the expected maximum list length
is O(log n/ log log n).

234 CHAPTER 5. PROBABILITY

The choice to break the sum into two pieces here—and especially the breakpoint we chose—
may have seemed like magic. What is so special about log n/ log log n? Consider the bound on
P (Mt). If you asked what is the value of t for which the bound equals a certain value, say 1/n2,
you get the equation net/tt = n−2. If we try to solve the equation net/tt = n−2 for t, we quickly
see that we get a form that we do not know how to solve. (Try typing this into Mathematica or
Maple, to see that it can’t solve this equation either.) The equation we need to solve is somewhat
similar to the simpler equation tt = n. While this equation does not have a closed form solution,
one can show that the t that satisfies this equation is roughly c log n/ log log n, for some constant
c. This is why some multiple of log n/ log log n made sense to try as the the magic value. For
values much less than log n/ log log n the bound provided on P (Mt) is fairly large. Once we get
past log n/ log log n, however, the bound on P (Mt) starts to get significantly smaller. The factor
of 5 was chosen by experimentation to make the second sum come out to be less than 1. We
could have chosen any number between 4 and 5 to get the same result; or we could have chosen
4 and the second sum would have grown no faster than the first.

Important Concepts, Formulas, and Theorems

1. Expected Number of Keys per Slot in Hash Table. In hashing n items into a hash table of
size k, the expected number of items that hash to any one location is n/k.

2. Expected Number of Empty Slots in Hash Table. In hashing n items into a hash table with
k locations, the expected number of empty locations is k(1 − 1

k)n.

3. Collision in Hashing. We say that we have a collision when we hash an item to a location
that already contains an item.

4. The Expected Number of Collisions in Hashing. In hashing n items into a hash table with
k locations, the expected number of collisions is n − k + k(1 − 1

k)n.

5. Harmonic Number. The quantity
∑k

i=1
1
i is known as a harmonic number, and is sometimes

denoted by Hk. It is a fact that that
∑k

i=1
1
i = Θ(log k), and more precisely

1
2

+ ln k ≤ Hk ≤ 1 + ln k.

6. Euler’s Constant. As n gets large, Hn − lnn approaches a limit called Euler’s constant;
Euler’s constant is about .58.

7. Expected Number of Hashes until all Slots of a Hash Table are Occupied. The expected
number of items needed to fill all slots of a hash table of size k is between k ln k + 1

2k and
k ln k + k.

8. Expected Maximum Number of Keys per Slot. If we hash n items into a hash table of size
n, the expected maximum list length is O(log n/ log log n).

9. Stirling’s Formula for n!. (Optional.) n! is approximately
(

n
e

)n √2πn.

5.5. PROBABILITY CALCULATIONS IN HASHING 235

Problems

1. A candy machine in a school has d different kinds of candy. Assume (for simplicity) that all
these kinds of candy are equally popular and there is a large supply of each. Suppose that c
children come to the machine and each purchases one package of candy. One of the kinds of
candy is a Snackers bar. What is the probability that any given child purchases a Snackers
bar? Let Yi be the number of Snackers bars that child i purchases, so that Yi is either 0
or 1. What is the expected value of Yi? Let Y be the random variable Y1 + Y2 + · · · + Yc.
What is the expected value of Y ? What is the expected number of Snackers bars that is
purchased? Does the same result apply to any of the varieties of candy?

2. Again as in the previous exercise, we have c children choosing from among ample supplies
of d different kinds of candy, one package for each child, and all choices equally likely. What
is the probability that a given variety of candy is chosen by no child? What is the expected
number of kinds of candy chosen by no child? Suppose now that c = d. What happens to
the expected number of kinds of candy chosen by no child?

3. How many children do we expect to have to observe buying candy until someone has bought
a Snackers bar?

4. How many children to we expect to have to observe buying candy until each type of candy
has been selected at least once?

5. If we have 20 kinds of candy, how many children have to buy candy in order for the
probability to be at least one half that (at least) two children buy the same kind of candy?

6. What is the expected number of duplications among all the candy the children have se-
lected?

7. Compute the values on the left-hand and right-hand side of the inequality in Lemma 5.18
for n = 2, t = 0, 1, 2 and for n = 3, t = 0, 1, 2, 3.

8. When we hash n items into k locations, what is the probability that all n items hash to
different locations? What is the probability that the ith item is the first collision? What
is the expected number of items we must hash until the first collision? Use a computer
program or spreadsheet to compute the expected number of items hashed into a hash table
until the first collision with k = 20 and with k = 100.

9. We have seen a number of occasions when our intuition about expected values or probability
in general fails us. When we wrote down Equation 5.26 we said that the expected number
of occupied locations is k minus the expected number of unoccupied locations. While this
seems obvious, there is a short proof. Give the proof.

10. Write a computer program that prints out a table of values of the expected number of
collisions with n keys hashed into a table with k locations for interesting values of n and
k. Does this value vary much as n and k change?

11. Suppose you hash n items into a hash table of size k. It is natural to ask about the time
it takes to find an item in the hash table. We can divide this into two cases, one when the
item is not in the hash table (an unsuccessful search), and one when the item is in the hash
table (a successful search). Consider first the unsuccessful search. Assume the keys hashing

236 CHAPTER 5. PROBABILITY

to the same location are stored in a list with the most recent arrival at the beginning of the
list. Use our expected list length to bound the expected time for an unsuccessful search.
Next consider the successful search. Recall that when we insert items into a hash table, we
typically insert them at the beginning of a list, and so the time for a successful search for
item i should depend on how many entries were inserted after item i. Carefully compute
the expected running time for a successful search. Assume that the item you are searching
for is randomly chosen from among the items already in the table. (Hint: The unsuccessful
search should take roughly twice as long as the successful one. Be sure to explain why this
is the case.)

12. Suppose I hash n log n items into n buckets. What is the expected maximum number of
items in a bucket?

13. The fact that limn→∞(1 + 1
n)n = e (where n varies over integers) is a consequence of the

fact that limh→0(1 + h)
1
h = e (where h varies over real numbers). Thus if h varies over

negative real numbers, but approaches 0, the limit still exists and equals e. What does this
tell you about limn→−∞(1+ 1

n)n? Using this and rewriting (1− 1
n)n as (1+ 1

−n)n show that

14. What is the expected number of empty slots when we hash 2k items into a hash table with
k slots? What is the expected fraction of empty slots close to when k is reasonably large?

15. Using whatever methods you like (hand calculations or computer), give upper and/or lower
bounds on the value of the x satisfying xx = n.

16. Professor Max Weinberger decides that the method proposed for computing the maximum
list size is much too complicated. He proposes the following solution. Let Xi be the size of
list i. Then what we want to compute is E(maxi(Xi)). Well

E(max
i

(Xi)) = max
i

(E(Xi)) = max
i

(1) = 1.

What is the flaw in his solution?

17. Prove as tight upper and lower bounds as you can on
∑k

i=1
1
i . For this purpose it is useful

to remember the definition of the natural logarithm as an integral involving 1/x and to
draw rectangles and other geometric figures above and below the curve.

18. Notice that lnn! =
∑n

i=1 ln i. Sketch a careful graph of y = lnx, and by drawing in
geometric figures above and below the graph, show that

n∑

i=1

ln i − 1
2

lnn ≤
∫ n

1
lnx dx ≤

n∑

i=1

ln i.

Based on your drawing, which inequality do you think is tighter? Use integration by parts
to evaluate the integral. What bounds on n! can you get from these inequalities? Which
one do you think is tighter? How does it compare to Stirling’s approximation? What big
Oh bound can you get on n!?

5.6. CONDITIONAL EXPECTATIONS, RECURRENCES AND ALGORITHMS 237

5.6 Conditional Expectations, Recurrences and Algorithms

Probability is a very important tool in algorithm design. We have already seen two important
examples in which it is used—primality testing and hashing. In this section we will study several
more examples of probabilistic analysis in algorithms. We will focus on computing the running
time of various algorithms. When the running time of an algorithm is different for different inputs
of the same size, we can think of the running time of the algorithm as a random variable on the
sample space of inputs and analyze the expected running time of the algorithm. This gives us a
different understanding from studying just the worst case running time for an input of a given
size. We will then consider randomized algorithms, algorithms that depend on choosing something
randomly, and see how we can use recurrences to give bounds on their expected running times
as well.

For randomized algorithms, it will be useful to have access to a function which generates
random numbers. We will assume that we have a function randint(i,j), which generates a
random integer uniformly between i and j (inclusive) [this means it is equally likely to be any
number between i and j] and rand01(), which generates a random real number, uniformly
between 0 and 1 [this means that given any two pairs of real numbers (r1, r2) and (s1, s2) with
r2 − r1 = s2 − s1 and r1, r2, s1 and s2 all between 0 and 1, our random number is just as likely to
be between r1 and r2 as it is to be between s1 and s2]. Functions such as randint and rand01
are called random number generators. A great deal of number theory goes into the construction
of good random number generators.

When Running Times Depend on more than Size of Inputs

Exercise 5.6-1 Let A be an array of length n − 1 (whose elements are chosen from some
ordered set), sorted into increasing order. Let b be another element of that ordered
set that we want to insert into A to get a sorted array of length n. Assuming that the
elements of A and b are chosen randomly, what is the expected number of elements
of A that have to be shifted one place to the right to let us insert b?

Exercise 5.6-2 Let A(1 : n) denote the elements in positions 1 to n of the array A. A
recursive description of insertion sort is that to sort A(1 : n), first we sort A(1 : n−1),
and then we insert A(n), by shifting the elements greater than A(n) each one place to
the right and then inserting the original value of A(n) into the place we have opened
up. If n = 1 we do nothing. Let Sj(A(1 : j)) be the time needed to sort the portion
of A from place 1 to place j, and let Ij(A(1 : j), b) be the time needed to insert the
element b into a sorted list originally in the first j positions of A to give a sorted list
in the first j + 1 positions of A. Note that Sj and Ij depend on the actual array
A, and not just on the value of j. Use Sj and Ij to describe the time needed to use
insertion sort to sort A(1 : n) in terms of the time needed to sort A(1 : n− 1). Don’t
forget that it is necessary to copy the element in position i of A into a variable b
before moving elements of A(1 : i−1) to the right to make a place for it, because this
moving process will write over A(i). Let T (n) be the expected value of Sn; that is,
the expected running time of insertion sort on a list of n items. Write a recurrence for
T (n) in terms of T (n−1) by taking expected values in the equation that corresponds
to your previous description of the time needed to use insertion sort on a particular
array. Solve your recurrence relation in big-Θ terms.

238 CHAPTER 5. PROBABILITY

If X is the random variable with X(A, b) equal to the number of items we need to move one
place to the right in order to insert b into the resulting empty slot in A, then X takes on the
values 0, 1, . . . , n − 1 with equal probability 1/n. Thus we have

E(x) =
n−1∑

i=0

i
1
n

=
1
n

n−1∑

i=0

i =
1
n

(n − 1)n
2

=
n − 1

2
.

Using Sj(A(1 : j)) to stand for the time to sort the portion of the array A from places 1 to
j by insertion sort, and Ij(A(1 : j), b) to stand for the time needed to insert b into a sorted list
in the first j positions of the array A, moving all items larger than j to the right one place and
putting b into the empty slot, we can write that for insertion sort

Sn(A(1 : n)) = Sn−1(A(1 : n − 1)) + In−1(A(1 : n − 1), A(n)) + c1.

We have included the constant term c1 for the time it takes to copy the value of A(n) into
some variable b, because we will overwrite A(n) in the process of moving items one place to the
right. Using the additivity of expected values, we get

E(Sn) = E(Sn−1) + E(In−1) + E(c1).

Using T (n) for the expected time to sort A(1 : n) by insertion sort, and the result of the previous
exercise, we get

T (n) = T (n − 1) + c2
n − 1

2
+ c1.

where we include the constant c2 because the time needed to do the insertion is going to be
proportional to the number of items we have to move plus the time needed to copy the value of
A(n) into the appropriate slot (which we will assume we have included in c1). We can say that
T (1) = 1 (or some third constant) because with a list of size 1 we have to realize it has size 1,
and then do nothing. It might be more realistic to write

T (n) ≤ T (n − 1) + cn

and
T (n) ≥ T (n − 1) + c′n,

because the time needed to do the insertion may not be exactly proportional to the number of
items we need to move, but might depend on implementation details. By iterating the recurrence
or drawing a recursion tree, we see that T (n) = Θ(n2). (We could also give an inductive proof.)
Since the best-case time of insertion sort is Θ(n) and the worst case time is Θ(n2), it is interesting
to know that the expected case is much closer to the worst-case than the best case.

Conditional Expected Values

Our next example is cooked up to introduce an idea that we often use in analyzing the expected
running times of algorithms, especially randomized algorithms.

5.6. CONDITIONAL EXPECTATIONS, RECURRENCES AND ALGORITHMS 239

Exercise 5.6-3 I have two nickels and two quarters in my left pocket and 4 dimes in my
right pocket. Suppose I flip a penny and take two coins from my left pocket if it is
heads, and two coins from my right pocket if it is tails. Assuming I am equally likely
to choose any coin in my pocket at any time, what is the expected amount of money
that I draw from my pocket?

You could do this problem by drawing a tree diagram or by observing that the outcomes can
be modeled by three tuples in which the first entry is heads or tails, and the second and third
entries are coins. Thus our sample space is HNQ, HQN, HQQ, HNN, TDD The probabilities
of these outcomes are 1

6 , 1
6 , 1

12 , 1
12 , and 1

2 respectively. Thus our expected value is

30
1
6

+ 30
1
6

+ 50
1
12

+ 10
1
12

+ 20
1
2

= 25.

Here is a method that seems even simpler. If the coin comes up heads, I have an expected
value of 15 cents on each draw, so with probability 1/2, our expected value is 30 cents. If the coin
comes up tails, I have an expected value of ten cents on each draw, so with probability 1/2 our
expected value is 20 cents. Thus it is natural to expect that our expected value is 1

230+ 1
220 = 25

cents. In fact, if we group together the 4 outcomes with an H first, we see that their contribution
to the expected value is 15 cents, which is 1/2 times 30, and if we look at the single element
which has a T first, then its contribution to the sum is 10 cents, which is half of 20 cents.

In this second view of the problem, we took the probability of heads times the expected value of
our draws, given that the penny came up heads, plus the probability of tails times the expected
value of our draws, given that the penny came came up tails. In particular, we were using a
new (and as yet undefined) idea of conditional expected value. To get the conditional expected
value if our penny comes up heads, we could create a new sample space with four outcomes,
NQ, QN, NN, QQ, with probabilities 1

3 , 1
3 , 1

6 , and 1
6 . In this sample space the expected amount

of money we draw in two draws is 30 cents (15 cents for the first draw plus 15 cents for the
second), so we would say the conditional expected value of our draws, given that the penny came
up heads, was 30 cents. With a one-element sample space {DD}, we see that we would say that
the conditional expected value of our draws, given that the penny came up tails, is 20 cents.

How do we define conditional expected value? Rather than create a new sample space as we
did above, we use the idea of a new sample space (as we did in discovering a good definition
for conditional probability) to lead us to a good definition for conditional expected value. In
particular, to get the conditional expected value of X given that an event F has happened we
use our conditional probability weights for the elements of F , namely P (s)/P (F) is the weight
for the element s of F , and pretend F is our sample space. Thus we define the conditional
expected value of X given F by

E(X|F) =
∑

x:s∈F

X(x)
P (x)
P (F)

. (5.40)

Remember that we defined the expected value of a random variable X with values x1, x2, . . . xk

by

E(X) =
k∑

i=1

xiP (X = xi),

240 CHAPTER 5. PROBABILITY

where X = xi stands for the event that X has the value xi. Using our standard notation for
conditional probabilities, P (X = xi|F) stands for the conditional probability of the event X = xi

given the event F . This lets us rewrite Equation 5.40 as

E(X|F) =
k∑

i=1

xiP (X = xi|F).

Theorem 5.22 Let X be a random variable defined on a sample space S and let F1, F2, . . .Fn

be disjoint events whose union is S (i.e. a partition of S). Then

E(X) =
n∑

i=1

E(X|Fi)P (Fi).

Proof: The proof is simply an exercise in applying definitions.

Randomized algorithms

Exercise 5.6-4 Consider an algorithm that, given a list of n numbers, prints them all out.
Then it picks a random integer between 1 and 3. If the number is 1 or 2, it stops.
If the number is 3 it starts again from the beginning. What is the expected running
time of this algorithm?

Exercise 5.6-5 Consider the following variant on the previous algorithm:

funnyprint(n)
if (n == 1)

return
for i = 1 to n

print i
x = randint(1,n)
if (x > n/2)

funnyprint(n/2)
else

return

What is the expected running time of this algorithm?

For Exercise 5.6-4, with probability 2/3 we will print out the numbers and quit, and with
probability 1/3 we will run the algorithm again. Using Theorem 5.22, we see that if T (n) is the
expected running time on a list of length n, then there is a constant c such that

T (n) =
2
3
cn +

1
3
(cn + T (n)),

which gives us 2
3T (n) = cn. This simplifies to T (n) = 3

2cn.

5.6. CONDITIONAL EXPECTATIONS, RECURRENCES AND ALGORITHMS 241

Another view is that we have an independent trials process, with success probability 2/3
where we stop at the first success, and for each round of the independent trials process we spend
Θ(n) time. Letting T be the running time (note that T is a random variable on the sample space
1, 2, 3 with probabilities 1

3 for each member) and R be the number of rounds, we have that

T = R · Θ(n)

and so
E(T) = E(R)Θ(n).

Note that we are applying Theorem 5.10 since in this context Θ(n) behaves as if it were a
constant7, since n does not depend on R. By Lemma 5.12, we have that E(R) = 3/2 and so
E(T) = Θ(n).

In Exercise 5.6-5, we have a recursive algorithm, and so it is appropriate to write down a
recurrence. We can let T (n) stand for the expected running time of the algorithm on an input of
size n. Notice how we are changing back and forth between letting T stand for the running time
of an algorithm and the expected running time of an algorithm. Usually we use T to stand for
the quantity of most interest to us, either running time if that makes sense, or expected running
time (or maybe worst-case running time) if the actual running time might vary over different
inputs of size n. The nice thing will be that once we write down a recurrence for the expected
running time of an algorithm, the methods for solving it will be those for we have already learned
for solving recurrences. For the problem at hand, we immediately get that with probability 1/2
we will be spending n units of time (we should really say Θ(n) time), and then terminating, and
with probability 1/2 we will spend n units of time and then recurse on a problem of size n/2.
Thus using Theorem 5.22, we get that

T (n) = n +
1
2
T (n/2)

Including a base case of T (1) = 1, we get that

T (n) =

{
1
2T (n/2) + n if n > 1
1 if n = 1

.

A simple proof by induction shows that T (n) = Θ(n). Note that the Master Theorem (as we
originally stated it) doesn’t apply here, since a < 1. However, one could also observe that the
solution to this recurrence is no more than the solution to the recurrence T (n) = T (n/2) + n,
and then apply the Master Theorem.

Selection revisited

We now return to the selection algorithm from Section 4.6. The purpose of the algorithm is to
select the ith smallest element in a set with some underlying order. Recall that in this algorithm,
we first picked an an element p in the middle half of the set, that is, one whose value was
simultaneously larger than at least 1/4 of the items and smaller than at least 1/4 of the items.
We used p to partition the items into two sets and then recursed on one of the two sets. If you
recall, we worked very hard to find an item in the middle half, so that our partitioning would

7What we mean here is that T ≥ Rc1n for some constant c1 and T ≤ Rc2n for some other constant c2. Then
we apply Theorem 5.10 to both these inequalities, using the fact that if X > Y , then E(X) > E(Y) as well.

242 CHAPTER 5. PROBABILITY

work well. It is natural to try instead to just pick a partition element at random, because, with
probability 1/2, this element will be in the middle half. We can extend this idea to the following
algorithm:

RandomSelect(A,i,n)
(selects the ith smallest element in set A, where n = |A|)
if (n = 1)

return the one item in A
else

p = randomElement(A)
Let H be the set of elements greater than p
Let L be the set of elements less than or equal to p
If (H is empty)

put p in H
if (i ≤ |L|)

Return RandomSelect(L, i, |L|)
else

Return RandomSelect(H, i − |L|, |H|).

Here randomElement(A) returns one element from A uniformly at random. We use this
element as our partition element; that is, we use it to divide A into sets L and H with every
element less than the partition element in L and every element greater than it in H. We add the
special case when H is empty, to ensure that both recursive problems have size strictly less than
n. This simplifies a detailed analysis, but is not strictly necessary. At the end of this section we
will show how to get a recurrence that describes fairly precisely the time needed to carry out this
algorithm. However, by being a bit less precise, we can still get the same big-O upper bound
with less work.

When we choose our partition element, half the time it will be between 1
4n and 3

4n. Then
when we partition our set into H and L, each of these sets will have no more than 3

4n elements.
The other half of the time each of H and L will have no more than n elements. In any case, the
time to partition our set into H and L is O(n). Thus we may write

T (n) ≤
{

1
2T (3

4n) + 1
2T (n) + bn if n > 1

d if n = 1.

We may rewrite the recursive part of the recurrence as

1
2
T (n) ≤ 1

2
T

(
3
4
n

)
+ bn,

or
T (n) ≤ T

(
3
4
n

)
+ 2bn = T

(
3
4
n

)
+ b′n.

Notice that it is possible (but unlikely) that each time our algorithm chooses a pivot element,
it chooses the worst one possible, in which case the selection process could take n rounds, and
thus take time Θ(n2). Why, then, is it of interest? It involves far less computation than finding
the median of medians, and its expected running time is still Θ(n). Thus it is reasonable to
suspect that on the average, it would be significantly faster than the deterministic process. In
fact, with good implementations of both algorithms, this will be the case.

5.6. CONDITIONAL EXPECTATIONS, RECURRENCES AND ALGORITHMS 243

Exercise 5.6-6 Why does every solution to the recurrence

T (n) ≤ T

(
3
4
n

)
+ b′n

have T (n) = O(n)?

By the master theorem we know that any solution to this recurrence is O(n), giving a proof
of our next Theorem.

Theorem 5.23 Algorithm RandomSelect has expected running time O(n).

Quicksort

There are many algorithms that will efficiently sort a list of n numbers. The two most common
sorting algorithms that are guaranteed to run in O(n log n) time are MergeSort and HeapSort.
However, there is another algorithm, Quicksort, which, while having a worst-case running time of
O(n2), has an expected running time of O(n log n). Moreover, when implemented well, it tends to
have a faster running time than MergeSort or HeapSort. Since many computer operating systems
and programs come with Quicksort built in, it has become the sorting algorithm of choice in many
applications. In this section, we will see why it has expected running time O(n log n). We will not
concern ourselves with the low-level implementation issues that make this algorithm the fastest
one, but just with a high-level description.

Quicksort actually works similarly to the RecursiveSelect algorithm of the previous subsection.
We pick a random element, and then use it to partition the set of items into two sets L and H.
In this case, we don’t recurse on one or the other, but recurse on both, sorting each one. After
both L and H have been sorted, we just concatenate them to get a sorted list. (In fact, Quicksort
is usually done “in place” by pointer manipulation and so the concatenation just happens.) Here
is a pseudocode description of Quicksort:

Quicksort(A,n)
if (n = 1)

return the one item in A
else

p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|
Let L be the set of elements less than or equal to p; Let � = |L|
If (H is empty)

put p in H
A1 = QuickSort(H,h)
A2 = QuickSort(L,�)
return the concatenation of A1 and A2.

There is an analysis of Quicksort similar to the detailed analysis of RecursiveSelect at the
end of the section, and this analysis is a problem at the end of the section. Instead, based on the
preceding analysis of RandomSelect we will think about modifying the algorithm a bit in order

244 CHAPTER 5. PROBABILITY

to make the analysis easier. First, consider what would happen if the random element was the
median each time. Then we would be solving two subproblems of size n/2, and would have the
recurrence

T (n) =

{
2T (n/2) + O(n) if n > 1
O(1) if n = 1

and we know by the master theorem that all solutions to this recurrence have T (n) = O(n log n).
In fact, we don’t need such an even division to guarantee such performance.

Exercise 5.6-7 Suppose you had a recurrence of the form

T (n) ≤
{

T (ann) + T ((1 − an)n) + cn if n > 1
d if n = 1,

where an is between 1/4 and 3/4. Show that all solutions of a recurrence of this form
have T (n) = O(n log n). What do we really need to assume about an in order to
prove this upper bound?

We can prove that T (n) = O(n log n) by induction, or via a recursion tree, noting that there
are O(log n) levels, and each level has at most O(n) work. (The details of the recursion tree are
complicated somewhat by the fact that an varies with n, while the details of an inductive proof
simply use the fact that an and 1 − an are both no more than 3/4.) So long as we know there
is some positive number a < 1 such that an < a for every n, then we know we have at most
log(1/a) n levels in a recursion tree, with at most cn units of work per level for some constant c,
and thus we have the same upper bound in big-O terms.

What does this tell us? As long as our problem splits into two pieces, each having size at least
1/4 of the items, Quicksort will run in O(n log n) time. Given this, we will modify our algorithm
to enforce this condition. That is, if we choose a pivot element p that is not in the middle half,
we will just pick another one. This leads to the following algorithm:

Slower Quicksort(A,n)
if (n = 1)

return the one item in A
else

Repeat
p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|
Let L be the set of elements less than or equal to p; Let � = |L|

Until (|H| ≥ n/4) and (|L| ≥ n/4)
A1 = QuickSort(H,h)
A2 = QuickSort(L,�)
return the concatenation of A1 and A2

Now let’s analyze this algorithm. Let r be the number of times we execute the loop to pick
p, and let ann be the position of the pivot element. Then if T (n) is the expected running time
for a list of length n, then for some constant b

T (n) ≤ E(r)bn + T (ann) + T ((1 − an)n),

5.6. CONDITIONAL EXPECTATIONS, RECURRENCES AND ALGORITHMS 245

since each iteration of the loop takes O(n) time. Note that we take the expectation of r, because
T (n) stands for the expected running time on a problem of size n. Fortunately, E(r) is simple to
compute, it is just the expected time until the first success in an independent trials process with
success probability 1/2. This is 2. So we get that the running time of Slower Quicksort satisfies
the recurrence

T (n) ≤
{

T (ann) + T ((1 − an))n + b′n if n > 1
d if n = 1

,

where an is between 1/4 and 3/4. Thus by Exercise 5.6-7 the running time of this algorithm is
O(n log n).

As another variant on the same theme, observe that looping until we have(|H| ≥ n/4 and
|L| ≥ n/4, is effectively the same as choosing p, finding H and L and then calling Slower
Quicksort(A,n) once again if either H or L has size less than n/4. Then since with probability
1/2 the element p is between n/4 and 3n/4, we can write

T (n) ≤ 1
2
T (n) +

1
2
(T (ann) + T ((1 − an)n) + bn),

which simplifies to
T (n) ≤ T (ann) + T ((1 − an)n) + 2bn,

or
T (n) ≤ T (ann) + T ((1 − an)n) + b′n.

Again by Exercise 5.6-7 the running time of this algorithm is O(n log n).

Further, it is straightforward to see that the expected running time of Slower Quicksort is no
less than half that of Quicksort (and, incidentally, no more than twice that of Quicksort) and so
we have shown:

Theorem 5.24 Quicksort has expected running time O(n log n).

A more exact analysis of RandomSelect

Recall that our analysis of the RandomSelect was based on using T (n) as an upper bound for
T (|H|) or T (|L|) if either the set H or the set L had more than 3n/4 elements. Here we show
how one can avoid this assumption. The kinds of computations we do here are the kind we would
need to do if we wanted to try to actually get bounds on the constants implicit in our big-O
bounds.

Exercise 5.6-8 Explain why, if we pick the kth element as the random element in Ran-
domSelect (k �= n), our recursive problem is of size no more than max{k, n − k}.

If we pick the kth element, then we recurse either on the set L, which has size k, or on the
set H, which has size n − k. Both of these sizes are at most max{k, n − k}. (If we pick the nth
element, then k = n and thus L actually has size k − 1 and H has size n − k + 1.)

Now let X be the random variable equal to the rank of the chosen random element (e.g. if the
random element is the third smallest, X = 3.) Using Theorem 5.22 and the solution to Exercise
5.6-8, we can write that

T (n) ≤
{ ∑n−1

k=1 P (X = k)(T (max{k, n − k}) + bn) + P (X = n)(T (max{1, n − 1} + bn) if n > 1
d if n = 1.

246 CHAPTER 5. PROBABILITY

Since X is chosen uniformly between 1 and n, P (X = k) = 1/n for all k. Ignoring the base case
for a minute, we get that

T (n) ≤
n−1∑

k=1

1
n

(T (max{k, n − k}) + bn) +
1
n

(T (n − 1) + bn)

=
1
n

(
n−1∑

k=1

T (max{k, n − k})
)

+ bn +
1
n

(T (n − 1) + bn).

Now if n is odd and we write out
∑n−1

k=1 T (max{k, n − k}), we get

T (n − 1) + T (n − 2) + · · · + T (�n/2�) + T (�n/2�) + · · · + T (n − 2) + T (n − 1),

which is just 2
∑n−1

k=
n/2� T (k). If n is even and we write out
∑n−1

k=1 T (max{k, n − k}), we get

T (n − 1) + T (n − 2) + · · · + T (n/2) + T (1 + n/2) + · · · + T (n − 2) + T (n − 1),

which is less than 2
∑n−1

k=n/2 T (k). Thus we can replace our recurrence by

T (n) ≤
{

2
n

(∑n−1
k=n/2 T (k)

)
+ 1

nT (n − 1) + bn if n > 1
d if n = 1.

(5.41)

If n is odd, the lower limit of the sum is a half-integer, so the possible integer values of the dummy
variable k run from �n/2� to n − 1. Since this is the natural way to interpret a fractional lower
limit, and since it corresponds to what we wrote in both the n even and n odd case above, we
adopt this convention.

Exercise 5.6-9 Show that every solution to the recurrence in Equation 5.41 has T (n) =
O(n).

We can prove this by induction. We try to prove that T (n) ≤ cn for some constant c. By the
natural inductive hypothesis, we get that

T (n) ≤ 2
n




n−1∑

k=n/2

ck



 +
1
n

c(n − 1) + bn

=
2
n




n−1∑

k=1

ck −
n/2−1∑

k=1

ck



 +
1
n

c(n − 1) + bn

≤ 2c

n

(
(n − 1)n

2
− (n

2 − 1)n
2

2

)
+ c + bn

=
2c

n

3n2

4 − n
2

2
+ c + bn

=
3
4
cn +

c

2
+ bn

= cn − (
1
4
cn − bn − c

2
)

Notice that so far, we have only assumed that there is some constant c such that T (k) < ck for
k < n. We can choose a larger c than the one given to us by this assumption without changing

5.6. CONDITIONAL EXPECTATIONS, RECURRENCES AND ALGORITHMS 247

the inequality T (k) < ck. By choosing c so that 1
4cn− bn− c

2 is nonnegative (for example c ≥ 8b
makes this term at least bn − 2b which is nonnegative for n ≥ 2), we conclude the proof, and
have another proof of Theorem 5.23.

This kind of careful analysis arises when we are trying to get an estimate of the constant in
a big-O bound (which we decided not to do in this case).

Important Concepts, Formulas, and Theorems

1. Expected Running Time. When the running time of an algorithm is different for different
inputs of the same size, we can think of the running time of the algorithm as a random
variable on the sample space of inputs and analyze the expected running time of the algo-
rithm. This gives us a different understanding from studying just the worst case running
time.

2. Randomized Algorithm. Arandomized algorithm is an algorithm that depends on choosing
something randomly.

3. Random Number Generator. A random number generator is a procedure that generates a
number that appears to be chosen at random. Usually the designer of a random number
generator tries to generate numbers that appear to be uniformly distributed.

4. Insertion Sort. A recursive description of insertion sort is that to sort A(1 : n), first we
sort A(1 : n− 1), and then we insert A(n), by shifting the elements greater than A(n) each
one place to the right and then inserting the original value of A(n) into the place we have
opened up. If n = 1 we do nothing.

5. Expected Running Time of Insertion Sort. If T (n) is the expected time to use insertion sort
on a list of length n, then there are constants c and c′ such that T (n) ≤ T (n− 1) + cn and
T (n) ≥ T (n − 1) + c′n. This means that T (n) = Θ(n2). However the best case running
time of insertion sort is Θ(n).

6. Conditional Expected Value. We define the conditional expected value of X given F by
E(X|F) =

∑
x:x∈F X(x) P (x)

P (F) . This is equivalent to E(X|F) =
∑k

i=1 xiP (X = xi|F).

7. Randomized Selection Algorithm. In the randomized selection algorithm to select the ith
smallest element of a set A, we randomly choose a pivot element p in A, divide the rest
of A into those elements that come before p (in the underlying order of A) and those that
come after, put the pivot into the smaller set, and then recursively apply the randomized
selection algorithm to find the appropriate element of the appropriate set.

8. Running Time of Randomized Select. Algorithm RandomSelect has expected running time
O(n). Because it does less computation than the deterministic selection algorithm, on
the average a good implementation will run faster than a good implementation of the
deterministic algorithm, but the worst case behavior is Θ(n2).

9. Quicksort. Quicksort is a sorting algorithm in which we randomly choose a pivot element
p in A, divide the rest of A into those elements that come before p (in the underlying order
of A) and those that come after, put the pivot into the smaller set, and then recursively
apply the Quicksort algorithm to sort each of the smaller sets, and concatenate the two
sorted lists. We do nothing if a set has size one.

248 CHAPTER 5. PROBABILITY

10. Running Time of Quicksort. Quicksort has expected running time O(n log n). It has worst
case running time Θ(n2). Good implementations of Quicksort have proved to be faster on
the average than good implementations of other sorting algorithms.

Problems

1. Given an array A of length n (chosen from some set that has an underlying ordering),
we can select the largest element of the array by starting out setting L = A(1), and then
comparing L to the remaining elements of the array one at a time, replacing L by A(i) if
A(i) is larger than L. Assume that the elements of A are randomly chosen. For i > 1, let
Xi be 1 if element i of A is larger than any element of A(1 : i − 1). Let X1 = 1. Then
what does X1 + X2 + · · · + Xn have to do with the number of times we assign a value to
L? What is the expected number of times we assign a value to L?

2. Let A(i : j) denote the array of items in positions i through j of the Array A. In selection
sort, we use the method of Exercise 5.6-1 to find the largest element of the array A and its
position k in the array, then we exchange the elements in position k and n of Array A, and
we apply the same procedure recursively to the array A(1 : n − 1). (Actually we do this if
n > 1; if n = 1 we do nothing.) What is the expected total number of times we assign a
value to L in the algorithm selection sort?

3. Show that if Hn stands for the nth harmonic number, then

Hn + Hn−1 + · · · + H2 = Θ(n log n).

4. In a card game, we remove the Jacks, Queens, Kings, and Aces from a deck of ordinary
cards and shuffle them. You draw a card. If it is an Ace, you are paid a dollar and the game
is repeated. If it is a Jack, you are paid two dollars and the game ends; if it is a Queen,
you are paid three dollars and the game ends; and if it is a King, you are paid four dollars
and the game ends. What is the maximum amount of money a rational person would pay
to play this game?

5. Why does every solution to T (n) ≤ T (2
3n) + bn have T (n) = O(n)?

6. Show that if in Algorithm Random Select we remove the instruction

If H is empty
put p in H,

then if T (n) is the expected running time of the algorithm, there is a constant b such that
T (n) satisfies the recurrence

T (n) ≤ 2
n − 1

n−1∑

k=n/2

T (k) + bn.

Show that if T (n) satisfies this recurrence, then T (n) = O(n).

5.6. CONDITIONAL EXPECTATIONS, RECURRENCES AND ALGORITHMS 249

7. Suppose you have a recurrence of the form

T (n) ≤ T (ann) + T ((1 − an)n) + bn if n > 1,

where an is between 1
5 and 4

5 . Show that all solutions to this recurrence are of the form
T (n) = O(n log n).

8. Prove Theorem 5.22.

9. A tighter (up to constant factors) analysis of Quicksort is possible by using ideas very
similar to those that we used for the randomized selection algorithm. More precisely, we
use Theorem 5.6.1, similarly to the way we used it for select. Write down the recurrence
you get when you do this. Show that this recurrence has solution O(n log n). In order to
do this, you will probably want to prove that T (n) ≤ c1n log n− c2n for some constants c1

and c2.

10. It is also possible to write a version of the randomized Selection algorithm analogous to
Slower Quicksort. That is, when we pick out the random pivot element, we check if it is in
the middle half and discard it if it is not. Write this modified selection algorithm, give a
recurrence for its running time, and show that this recurrence has solution O(n).

11. One idea that is often used in selection is that instead of choosing a random pivot element,
we choose three random pivot elements and then use the median of these three as our pivot.
What is the probability that a randomly chosen pivot element is in the middle half? What
is the probability that the median of three randomly chosen pivot elements is in the middle
half? Does this justify the choice of using the median of three as pivot?

12. Is the expected running time of Quicksort Ω(n log n)?

13. A random binary search tree on n keys is formed by first randomly ordering the keys, and
then inserting them in that order. Explain why in at least half the random binary search
trees, both subtrees of the root have between 1

4n and 3
4n keys. If T (n) is the expected

height of a random binary search tree on n keys, explain why T (n) ≤ 1
2T (n) + 1

2T (3
4n) + 1.

(Think about the definition of a binary tree. It has a root, and the root has two subtrees!
What did we say about the possible sizes of those subtrees?) What is the expected height
of a one node binary search tree? Show that the expected height of a random binary search
tree is O(log n).

14. The expected time for an unsuccessful search in a random binary search tree on n keys (see
Problem 13 for a definition) is the expected depth of a leaf node. Arguing as in Problem
13 and the second proof of Theorem 5.6.2, find a recurrence that gives an upper bound on
the expected depth of a leaf node in a binary search tree and use it to find a big Oh upper
bound on the expected depth of a leaf node.

15. The expected time for a successful search in a random binary search tree on n nodes (see
problem 13 for a definition) is the expected depth of a node of the tree. With probability
1
n the node is the root, which has depth 0; otherwise the expected depth is one plus the
expected depth of one of its subtrees. Argue as in Problem 13 and the first proof of
Theorem 5.23 to show that if T (n) is the expected depth of a node in a binary search tree,
then T (n) ≤ n−1

n (1
2T (n) + 1

2T (3
4n)) + 1. What big Oh upper bound does this give you on

the expected depth of a node in a random binary search tree on n nodes?

250 CHAPTER 5. PROBABILITY

16. Consider the following code for searching an array A for the maximum item:

max = −∞
for i = 1 to n

if (A[i] > max)
max = A[i]

If A initially consists of n nodes in a random order, what is the expected number of times
that the line max = A[i] is executed? (Hint: Let Xi be the number of times that max = A[i]
is executed in the ith iteration of the loop.)

17. You are a contestant in the game show “Let’s make a Deal.” In this game show, there are
three curtains. Behind one of the curtains is a new car, and behind the other two are cans
of spam. You get to pick one of the curtains. After you pick that curtain, the emcee, Monte
Hall, who we assume knows where the car is, reveals what is behind one of the curtains
that you did not pick, showing you some cans of spam. He then asks you if you would like
to switch your choice of curtain. Should you switch? Why or why not? Please answer this
question carefully. You have all the tools needed to answer it, but several math Ph.D.’s are
on record (in Parade Magazine) giving the wrong answer.

5.7. PROBABILITY DISTRIBUTIONS AND VARIANCE 251

5.7 Probability Distributions and Variance

Distributions of random variables

We have given meaning to the phrase expected value. For example, if we flip a coin 100 times,
the expected number of heads is 50. But to what extent do we expect to see 50 heads. Would
it be surprising to see 55, 60 or 65 heads instead? To answer this kind of question, we have to
analyze how much we expect a random variable to deviate from its expected value. We will first
see how to analyze graphically how the values of a random variable are distributed around its
expected value. The distribution function D of a random variable X is the function on the values
of X defined by

D(x) = P (X = x).

You probably recognize the distribution function from the role it played in the definition of
expected value. The distribution function of the random variable X assigns to each value x of
X the probability that X achieves that value. (Thus D is a function whose domain is the set off
values of X.) When the values of X are integers, it is convenient to visualize the distribution
function with a diagram called a histogram. In Figure 5.8 we show histograms for the distribution
of the “number of heads” random variable for ten flips of a coin and the “number of right answers”
random variable for someone taking a ten question test with probability .8 of getting a correct
answer. What is a histogram? Those we have drawn are graphs which show for for each integer
value x of X a rectangle of width 1, centered at x, whose height (and thus area) is proportional
to the probability P (X = x). Histograms can be drawn with non-unit width rectangles. When
people draw a rectangle with a base ranging from x = a to x = b, the area of the rectangle is the
probability that X is between a and b.

The function D(a, b) = P (a ≤ X ≤ b) is often called a cumulative distribution function.
When sample spaces can be infinite, it doesn’t always make sense to assign probability weights to
individual members of our sample space, but cumulative distribution functions still make sense.
Thus for infinite sample spaces, the treatment of probability is often based on random variables
and their cumulative distribution functions. Histograms are a natural way to display information
about the cumulative distribution function.

Figure 5.8: Two histograms.

number of heads
0 1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty

0 1 2 3 4 5 6 7 8 9 10

number of right answers

pr
ob

ab
ili

ty

0

.05

.10

.15

.20

.25

.30

0

.05

.10

.15

.20

.25

.30

.35

From the histograms in Figure 5.8 you can see the difference between the two distributions.

252 CHAPTER 5. PROBABILITY

You can also see that we can expect the number of heads to be somewhat near the expected
number, though as few heads as 2 or as many as 8 are not out of the question. We see that the
number of right answers tends to be clustered between 6 and ten, so in this case we can expect to
be reasonably close to the expected value. With more coin flips or more questions, however, will
the results spread out? Relatively speaking, should we expect to be closer to or farther from the
expected value? In Figure 5.9 we show the results of 25 coin flips or 25 questions. The expected
number of heads is 12.5. The histogram makes it clear that we can expect the vast majority
of our results to have between 9 and 16 heads. Essentially all the results lie between 5 and 20
Thus the results are not spread as broadly (relatively speaking) as they were with just ten flips.
Once again the test score histogram seems even more tightly packed around its expected value.
Essentially all the scores lie between 14 and 25. While we can still tell the difference between the
shapes of the histograms, they have become somewhat similar in appearance.

Figure 5.9: Histograms of 25 trials

In Figure 5.10 we have shown the thirty most relevant values for 100 flips of a coin and a 100
question test. Now the two histograms have almost the same shape, though the test histogram is
still more tightly packed around its expected value. The number of heads has virtually no chance
of deviating by more than 15 from its expected value, and the test score has almost no chance
of deviating by more than 11 from the expected value. Thus the spread has only doubled, even
though the number of trials has quadrupled. In both cases the curve formed by the tops of the
rectangles seems quite similar to the bell shaped curve called the normal curve that arises in so
many areas of science. In the test-taking curve, though, you can see a bit of difference between
the lower left-hand side and the lower right hand side.

Since we needed about 30 values to see the most relevant probabilities for these curves, while
we needed 15 values to see most of the relevant probabilities for independent trials with 25 items,
we might predict that we would need only about 60 values to see essentially all the results in
four hundred trials. As Figure 5.11 shows, this is indeed the case. The test taking distribution
is still more tightly packed than the coin flipping distribution, but we have to examine it closely
to find any asymmetry. These experiments are convincing, and they suggest that the spread of
a distribution (for independent trials) grows as the square root of the number of trials, because
each time we quadruple the number of elements, we double the spread. They also suggest there
is some common kind of bell-shaped limiting distribution function for at least the distribution of
successes in independent trials with two outcomes. However without a theoretical foundation we

5.7. PROBABILITY DISTRIBUTIONS AND VARIANCE 253

Figure 5.10: One hundred independent trials

36 40 44 48 52 58 62 66 66 70 74 78 82 86 90 94
0

.02

.04

.06

.08

.10

.12

0

.02

.04

.06

.08

Figure 5.11: Four hundred independent trials

170 180 190 200 210 220 230
0

.005

.010

.015

.020

.025

.030

.035

.040

.045

290 300 310 320 330 340 350
0

.01

.02

.03

.04

.05

.06

don’t know how far the truth of our observations extends. Thus we seek an algebraic expression
of our observations. This algebraic measure should somehow measure the difference between a
random variable and its expected value.

Variance

Exercise 5.7-1 Suppose the X is the number of heads in four flips of a coin. Let Y
be the random variable X − 2, the difference between X and its expected value.
Compute E(Y). Does it effectively measure how much we expect to see X deviate
from its expected value? Compute E(Y 2). Try repeating the process with X being
the number of heads in ten flips of a coin and Y being X − 5.

Before answering these questions, we state a trivial, but useful, lemma (which appeared as
Problem 9 in Section 5.4 of this chapter) and corollary showing that the expected value of an
expectation is that expectation.

Lemma 5.25 If X is a random variable that always takes on the value c, then E(X) = c.

254 CHAPTER 5. PROBABILITY

Proof: E(X) = P (X = c) · c = 1 · c = c.

We can think of a constant c as a random variable that always takes on the value c. When
we do, we will just write E(c) for the expected value of this random variable, in which case our
lemma says that E(c) = c. This lemma has an important corollary.

Corollary 5.26 E(E(X)) = E(X).

Proof: When we think of E(X) as a random variable, it has a constant value, µ. By Lemma
5.25 E(E(x)) = E(µ) = µ = E(x).

Returning to Exercise 5.7-1, we can use linearity of expectation and Corollary 5.26 to show
that

E(X − E(X)) = E(X) − E(E(X)) = E(X) − E(X) = 0. (5.42)

Thus this is not a particularly useful measure of how close a random variable is to its expectation.
If a random variable is sometimes above its expectation and sometimes below, you would like
these two differences to somehow add together, rather than cancel each other out. This suggests
we try to convert the values of X − E(X) to positive numbers in some way and then take the
expectation of these positive numbers as our measure of spread. There are two natural ways
to make numbers positive, taking their absolute value and squaring them. It turns our that to
prove things about the spread of expected values, squaring is more useful. Could we have guessed
that? Perhaps, since we see that the spread seems to grow with the square root, and the square
root isn’t related to the absolute value in the way it is related to the squaring function. On the
other hand, as you saw in the example, computing expected values of these squares from what
we know now is time consuming. A bit of theory will make it easier.

We define the variance V (X) of a random variable X as the expected value of E
(
(X − E(X))2

)
.

We can also express this as a sum over the individual elements of the sample space S and get
that

V (X) = E(X − E(X))2 =
∑

s:s∈S

P (s)(X(s) − E(X))2. (5.43)

Now let’s apply this definition and compute the variance in the number X of heads in four
flips of a coin. We have

V (X) = (0 − 2)2 · 1
16

+ (1 − 2)2 · 1
4

+ (2 − 2)2 · 3
8

+ (3 − 2)2 · 1
4

+ (4 − 2)2 · 1
16

= 1.

Computing the variance for ten flips of a coin involves some very inconvenient arithmetic. It
would be nice to have a computational technique that would save us from having to figure out
large sums if we want to compute the variance for ten or even 100 or 400 flips of a coin to check
our intuition about how the spread of a distribution grows. We saw before that the expected
value of a sum of random variables is the sum of the expected values of the random variables.
This was very useful in making computations.

Exercise 5.7-2 What is the variance for the number of heads in one flip of a coin? What
is the sum of the variances for four independent trials of one flip of a coin?

5.7. PROBABILITY DISTRIBUTIONS AND VARIANCE 255

Exercise 5.7-3 We have a nickel and quarter in a cup. We withdraw one coin. What is
the expected amount of money we withdraw? What is the variance? We withdraw
two coins, one after the other without replacement. What is the expected amount of
money we withdraw? What is the variance? What is the expected amount of money
and variance for the first draw? For the second draw?

Exercise 5.7-4 Compute the variance for the number of right answers when we answer
one question with probability .8 of getting the right answer (note that the number
of right answers is either 0 or 1, but the expected value need not be). Compute the
variance for the number of right answers when we answer 5 questions with probability
.8 of getting the right answer. Do you see a relationship?

In Exercise 5.7-2 we can compute the variance

V (X) = (0 − 1
2
)2 · 1

2
+ (1 − 1

2
)2 · 1

2
=

1
4
.

Thus we see that the variance for one flip is 1/4 and sum of the variances for four flips is 1. In
Exercise 5.7-4 we see that for one question the variance is

V (X) = .2(0 − .8)2 + .8(1 − .8)2 = .16

For five questions the variance is

42 · (.2)5 + 32 · 5 · (.2)4 · (.8) + 22 · 10 · (.2)3 · (.8)2 + 12 · 10 · (.2)2 · (.8)3 +
02 · 5 · (.2)1 · (.8)4 + 12 · (.8)5 = .8.

The result is five times the variance for one question.

For Exercise 5.7-3 the expected amount of money for one draw is $.15. The variance is

(.05 − .15)2 · .5 + (.25 − .15)2 · .5 = .01.

For removing both coins, one after the other, the expected amount of money is $.30 and the
variance is 0. Finally the expected value and variance on the first draw are $.15 and .01 and the
expected value and variance on the second draw are $.15 and .01.

It would be nice if we had a simple method for computing variance by using a rule like “the
expected value of a sum is the sum of the expected values.” However Exercise 5.7-3 shows that
the variance of a sum is not always the sum of the variances. On the other hand, Exercise 5.7-2
and Exercise 5.7-4 suggest such a result might be true for a sum of variances in independent trials
processes. In fact slightly more is true. We say random variables X and Y are independent when
the event that X has value x is independent of the event that Y has value y, regardless of the
choice of x and y. For example, in n flips of a coin, the number of heads on flip i (which is 0 or 1) is
independent of the number of heads on flip j. To show that the variance of a sum of independent
random variables is the sum of their variances, we first need to show that the expected value of
the product of two independent random variables is the product of their expected values.

Lemma 5.27 If X and Y are independent random variables on a sample space S with values
x1, x2, . . . , xk and y1, y2, . . . , ym respectively, then

E(XY) = E(X)E(Y).

256 CHAPTER 5. PROBABILITY

Proof: We prove the lemma by the following series of equalities. In going from (5.44) to
(5.45), we use the fact that X and Y are independent; the rest of the equations follow from
definitions and algebra.

E(X)E(Y) =
k∑

i=1

xiP (X = xi)
m∑

j=1

yjP (Y = yj)

=
k∑

i=1

m∑

j=1

xiyjP (X = xi)P (y = yj)

=
∑

z: zis a value of XY

z
∑

(i,j):xiyj=z

P (X = xi)P (Y = yj) (5.44)

=
∑

z: zis a value of XY

z
∑

(i,j):xiyj=z

P ((X = xi) ∧ (Y = yj)) (5.45)

=
∑

z: zis a value of XY

zP (XY = z)

= E(XY).

Theorem 5.28 If X and Y are independent random variables then

V (X + Y) = V (X) + V (Y).

Proof: Using the definitions, algebra and linearity of expectation we have

V (X + Y) = E
(
(X + Y − E(X + Y))2

)

= E
(
(X − E(X) + Y − E(Y))2

)

= E
(
((X − E(X))2 + 2(X − E(X))(Y − E(Y)) + (Y − E(Y))2)

)

= E
(
(X − E(X))2

)
+ 2E((X − E(X))(Y − E(Y))) + E

(
(Y − E(Y))2

)
.

Now the first and last terms are just the definitions of V (X) and V (Y) respectively. Note also
that if X and Y are independent and b and c are constants, then X−b and Y −c are independent
(See Problem 8 at the end of this section.) Thus we can apply Lemma 5.27 to the middle term
to obtain

= V (X) + 2E(X − E(X))E(Y − E(Y)) + V (Y).

Now we apply Equation 5.42 to the middle term to show that it is 0. This proves the theorem.

With this theorem, computing the variance for ten flips of a coin is easy; as usual we have
the random variable Xi that is 1 or 0 depending on whether or not the coin comes up heads. We
saw that the variance of Xi is 1/4, so the variance for X1 + X2 + · · · + X10 is 10/4 = 2.5.

Exercise 5.7-5 Find the variance for 100 flips of a coin and 400 flips of a coin.

Exercise 5.7-6 The variance in the previous problem grew by a factor of four when the
number of trials grew by a factor of 4, while the spread we observed in our histograms
grew by a factor of 2. Can you suggest a natural measure of spread that fixes this
problem?

5.7. PROBABILITY DISTRIBUTIONS AND VARIANCE 257

For Exercise 5.7-5 recall that the variance for one flip was 1/4. Therefore the variance for 100
flips is 25 and the variance for 400 flips is 100. Since this measure grows linearly with the size,
we can take its square root to give a measure of spread that grows with the square root of the
quiz size, as our observed “spread” did in the histograms. Taking the square root actually makes
intuitive sense, because it “corrects” for the fact that we were measuring expected squared spread
rather than expected spread.

The square root of the variance of a random variable is called the standard deviation of the
random variable and is denoted by σ, or σ(X) when there is a chance for confusion as to what
random variable we are discussing. Thus the standard deviation for 100 flips is 5 and for 400 flips
is 10. Notice that in both the 100 flip case and the 400 flip case, the “spread” we observed in the
histogram was ±3 standard deviations from the expected value. What about for 25 flips? For
25 flips the standard deviation will be 5/2, so ±3 standard deviations from the expected value
is a range of 15 points, again what we observed. For the test scores the variance is .16 for one
question, so the standard deviation for 25 questions will be 2, giving us a range of 12 points. For
100 questions the standard deviation will be 4, and for 400 questions the standard deviation will
be 8. Notice again how three standard deviations relate to the spread we see in the histograms.

Our observed relationship between the spread and the standard deviation is no accident. A
consequence of a theorem of probability known as the central limit theorem is that the percentage
of results within one standard deviation of the mean in a relatively large number of independent
trials with two outcomes is about 68%; the percentage within two standard deviations of the
mean is about 95.5%, and the percentage within three standard deviations of the mean is about
99.7%.

The central limit theorem tells us about the probability that the sum of independent ran-
dom variables with the same distribution function is between two numbers. When the number
of random variables we are adding is sufficiently large, the theorem tells us the approximate
probability that the sum is between a and b standard deviations from its expected value. (For
example if a = −1.5 and b = 2, the theorem tells us an approximate probability that the sum
is between 1.5 standard deviations less than its expected value and 2 standard deviations more
than its expected value.) This approximate value is 1√

2π

∫ b
a e−x2/2 dx.8 The distribution given

by that multiple of the integral is called the normal distribution. Since many of the things we
observe in nature can be thought of as the outcome of multistage processes, and the quantities
we measure are often the result of adding some quantity at each stage, the central limit theorem
“explains” why we should expect to see normal distributions for so many of the things we do
measure. While weights can be thought of as the sum of the weight change due to eating and
exercise each week, say, this is not a natural interpretation for blood pressures. Thus while we
shouldn’t be particularly surprised that weights are normally distributed, we don’t have the same
basis for predicting that blood pressures would be normally distributed9, even though they are!

Exercise 5.7-7 If we want to be 95% sure that the number of heads in n flips of a coin is
within ±1% of the expected value, how big does n have to be?

Exercise 5.7-8 What is the variance and standard deviation for the number of right an-
swers for someone taking a 100 question short answer test where each answer is graded

8Still more precisely, if we let µ be the expected value of the random variable Xi and σ be its standard deviation
(all Xi have the same expected value and standard distribution since they have the same distribution) and scale the

sum of our random variables by Z = X1+X2+....Xn−nµ
σ
√

n
, then the probability that a ≤ Z ≤ b is 1√

2π

∫ b

a
e−x2/2 dx.

9Actually, this is a matter of opinion. One might argue that blood pressures respond to a lot of little additive
factors.

258 CHAPTER 5. PROBABILITY

either correct or incorrect if the person knows 80% of the subject material for the test
the test and answers correctly each question she knows? Should we be surprised if
such a student scores 90 or above on the test?

Recall that for one flip of a coin the variance is 1/4, so that for n flips it is n/4. Thus for n
flips the standard deviation is

√
n/2. We expect that 95% of our outcomes will be within 2

standard deviations of the mean (people always round 95.5 to 95) so we are asking when two
standard deviations are 1% of n/2. Thus we want an n such that 2

√
n/2 = .01(.5n), or such that√

n = 5 · 10−3n, or n = 25 · 10−6n2. This gives us n = 106/25 = 40, 000.

For Exercise 5.7-8, the expected number of correct answers on any given question is .8. The
variance for each answer is .8(1− .8)2 + .2(0− .8)2 = .8 · .04 + .2 · .64 = .032 + .128 = .16. Notice
this is .8 · (1 − .8). The total score is the sum of the random variables giving the number of
points on each question, and assuming the questions are independent of each other, the variance
of their sum is the sum of their variances, or 16. Thus the standard deviation is 4. Since 90% is
2.5 standard deviations above the expected value, the probability of getting that a score that far
from the expected value is somewhere between .05 and .003 by the Central Limit Theorem. (In
fact it is just a bit more than .01). Assuming that someone is just as likely to be 2.5 standard
deviations below the expected score as above, which is not exactly right but close, we see that
it is quite unlikely that someone who knows 80% of the material would score 90% or above on
the test. Thus we should be surprised by such a score, and take the score as evidence that the
student likely knows more than 80% of the material.

Coin flipping and test taking are two special cases of Bernoulli trials. With the same kind of
computations we used for the test score random variable, we can prove the following.

Theorem 5.29 In Bernoulli trials with probability p of success, the variance for one trial is
p(1 − p) and for n trials is np(1 − p), so the standard deviation for n trials is

√
np(1 − p).

Proof: You are asked to give the proof in Problem 7.

Important Concepts, Formulas, and Theorems

1. Histogram. Histograms are graphs which show for for each integer value x of a random
variable X a rectangle of width 1, centered at x, whose height (and thus area) is proportional
to the probability P (X = x). Histograms can be drawn with non-unit width rectangles.
When people draw a rectangle with a base ranging from x = a to x = b, the area of the
rectangle is the probability that X is between a and b.

2. Expected Value of a Constant. If X is a random variable that always takes on the value c,
then E(X) = c. In particular, E(E(X)) = E(X).

3. Variance. We define the variance V (X) of a random variable X as the expected value of
(X −E(X))2. We can also express this as a sum over the individual elements of the sample
space S and get that V (X) = E

(
(X − E(X))2

)
=

∑
s:s∈S P (s)(X(s) − E(X))2.

4. Independent Random Variables. We say random variables X and Y are independent when
the event that X has value x is independent of the event that Y has value y, regardless of
the choice of x and y.

5.7. PROBABILITY DISTRIBUTIONS AND VARIANCE 259

5. Expected Product of Independent Random Variables. If X and Y are independent random
variables on a sample space S, then E(XY) = E(X)E(Y).

6. Variance of Sum of Independent Random Variables. If X and Y are independent random
variables then V (X + Y) = V (X) + V (Y).

7. Standard deviation. The square root of the variance of a random variable is called the
standard deviation of the random variable and is denoted by σ, or σ(X) when there is a
chance for confusion as to what random variable we are discussing.

8. Variance and Standard Deviation for Bernoulli Trials. In Bernoulli trials with probability
p of success, the variance for one trial is p(1−p) and for n trials is np(1−p), so the standard
deviation for n trials is

√
np(1 − p).

9. Central Limit Theorem. The central limit theorem says that the sum of independent ran-
dom variables with the same distribution function is approximated well as follows. The
probability that the random variable is between a and b is an appropriately chosen multiple
of

∫ b
a e−cx2

dx, for some constant c, when the number of random variables we are adding is
sufficiently large. This implies that the probability that a sum of independent random vari-
ables is within one, two, or three standard deviations of its expected value is approximately
.68, .955, and .997.

Problems

1. Suppose someone who knows 60% of the material covered in a chapter of a textbook is
taking a five question objective (each answer is either right or wrong, not multiple choice
or true-false) quiz. Let X be the random variable that for each possible quiz, gives the
number of questions the student answers correctly. What is the expected value of the
random variable X − 3? What is the expected value of (X − 3)2? What is the variance
of X?

2. In Problem 1 let Xi be the number of correct answers the student gets on question i, so
that Xi is either zero or one. What is the expected value of Xi? What is the variance
of Xi? How does the sum of the variances of X1 through X5 relate to the variance of X
for Problem 1?

3. We have a dime and a fifty cent piece in a cup. We withdraw one coin. What is the
expected amount of money we withdraw? What is the variance? Now we draw a second
coin, without replacing the first. What is the expected amount of money we withdraw?
What is the variance? Suppose instead we consider withdrawing two coins from the cup
together. What is the expected amount of money we withdraw, and what is the variance?
What does this example show about whether the variance of a sum of random variables is
the sum of their variances.

4. If the quiz in Problem 1 has 100 questions, what is the expected number of right answers,
the variance of the expected number of right answers, and the standard deviation of the
number of right answers?

5. Estimate the probability that a person who knows 60% of the material gets a grade strictly
between 50 and 70 in the test of Exercise 5.7-4

260 CHAPTER 5. PROBABILITY

6. What is the variance in the number of right answers for someone who knows 80% of the
material on which a 25 question quiz is based? What if the quiz has 100 questions? 400
questions? How can we ”correct” these variances for the fact that the “spread” in the
histogram for the number of right answers random variable only doubled when we multiplied
the number of questions in a test by 4?

7. Prove Theorem 5.29.

8. Show that if X and Y are independent and b and c are constant, then X − b and Y − c are
independent.

9. We have a nickel, dime and quarter in a cup. We withdraw two coins, first one and then
the second, without replacement. What is the expected amount of money and variance for
the first draw? For the second draw? For the sum of both draws?

10. Show that the variance for n independent trials with two outcomes and probability p of
success is given by np(1−p). What is the standard deviation? What are the corresponding
values for the number of failures random variable?

11. What are the variance and standard deviation for the sum of the tops of n dice that we
roll?

12. How many questions need to be on a short answer test for us to be 95% sure that someone
who knows 80% of the course material gets a grade between 75% and 85%?

13. Is a score of 70% on a 100 question true-false test consistent with the hypothesis that the
test taker was just guessing? What about a 10 question true-false test? (This is not a plug
and chug problem; you have to come up with your own definition of “consistent with.”)

14. Given a random variable X, how does the variance of cX relate to that of X?

15. Draw a graph of the equation y = x(1 − x) for x between 0 and 1. What is the maximum
value of y? Why does this show that the variance (see Problem 10 in this section) of the
“number of successes” random variable for n independent trials is less than or equal to
n/4?

16. This problem develops an important law of probability known as Chebyshev’s law. Suppose
we are given a real number r > 0 and we want to estimate the probability that the difference
|X(x) − E(X)| of a random variable from its expected value is more than r.

(a) Let S = {x1, x2, . . . , xn} be the sample space, and let E = {x1, x2, . . . , xk} be the set
of all x such that |X(x) − E(X)| > r. By using the formula that defines V (X), show
that

V (X) >
k∑

i=1

P (xi)r2 = P (E)r2

(b) Show that the probability that |X(x) − E(X)| ≥ r is no more than V (X)/r2. This is
called Chebyshev’s law.

17. Use Problem 15 of this section to show that in n independent trials with probability p of
success,

P

(∣∣∣∣
of successes − np

n

∣∣∣∣ ≥ r

)
≤ 1

4nr2

5.7. PROBABILITY DISTRIBUTIONS AND VARIANCE 261

18. This problem derives an intuitive law of probability known as the law of large numbers from
Chebyshev’s law. Informally, the law of large numbers says if you repeat an experiment
many times, the fraction of the time that an event occurs is very likely to be close to the
probability of the event. In particular, we shall prove that for any positive number s, no
matter how small, by making the number n independent trials in a sequence of independent
trials large enough, we can make the probability that the number X of successes is between
np− ns and np + ns as close to 1 as we choose. For example, we can make the probability
that the number of successes is within 1% (or 0.1 per cent) of the expected number as close
to 1 as we wish.

(a) Show that the probability that |X(x) − np| ≥ sn is no more than p(1 − p)/s2n.

(b) Explain why this means that we can make the probability that X(x) is between np−sn
and np + sn as close to 1 as we want by making n large.

19. On a true-false test, the score is often computed by subtracting the number of wrong
answers from the number of right ones and converting that number to a percentage of the
number of questions. What is the expected score on a true-false test graded this way of
someone who knows 80% of the material in a course? How does this scheme change the
standard deviation in comparison with an objective test? What must you do to the number
of questions to be able to be a certain percent sure that someone who knows 80% gets a
grade within 5 points of the expected percentage score?

20. Another way to bound the deviance from the expectation is known as Markov’s inequality.
This inequality says that if X is a random variable taking only non-negative values, then,
for any k ≥ 1,

P (X > kE(X)) ≤ 1
k
.

Prove this inequality.

262 CHAPTER 5. PROBABILITY

Chapter 6

Graphs

6.1 Graphs

In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a
graph. Many situations in the applications of discrete mathematics may be modeled by the use
of a graph, and many algorithms have their most natural description in terms of graphs. It is for
this reason that graphs are important to the computer scientist. Graph theory is an ideal subject
for developing a deeper understanding of proof by induction because induction, especially strong
induction, seems to enter into the majority of proofs in graph theory.

Exercise 6.1-1 In Figure 6.1, you see a stylized map of some cities in the eastern United
States (Boston, New York, Pittsburgh, Cincinnati, Chicago, Memphis, New Orleans,
Atlanta, Washington DC, and Miami). A company has major offices with data pro-
cessing centers in each of these cities, and as its operations have grown, it has leased
dedicated communication lines between certain pairs of these cities to allow for effi-
cient communication among the computer systems in the various cities. Each grey
dot in the figure stands for a data center, and each line in the figure stands for a
dedicated communication link. What is the minimum number of links that could be
used in sending a message from B (Boston) to NO (New Orleans)? Give a route with
this number of links.

Exercise 6.1-2 Which city or cities has or have the most communication links emanating
from them?

Exercise 6.1-3 What is the total number of communication links in the figure?

The picture in Figure 6.1 is a drawing of what we call a “graph”. A graph consists of a set
of vertices and a set of edges with the property that each edge has two (not necessarily different)
vertices associated with it and called its endpoints. We say the edge joins the endpoints, and
we say two endpoints are adjacent if they are joined by an edge. When a vertex is an endpoint
of an edge, we say the edge and the vertex are incident. Several more examples of graphs are
given in Figure 6.2. To draw a graph, we draw a point (in our case a grey circle) in the plane
for each vertex, and then for each edge we draw a (possibly curved) line between the points that
correspond to the endpoints of the edge. The only vertices that may be touched by the line

263

264 CHAPTER 6. GRAPHS

Figure 6.1: A stylized map of some eastern US cities.

B

NY

W

A

MI

NO

ME

CI

P

CH

representing an edge are the endpoints of the edge. Notice that in graph (d) of Figure 6.2 we
have three edges joining the vertices marked 1 and 2 and two edges joining the vertices marked 2
and 3. We also have one edge that joins the vertex marked 6 to itself. This edge has two identical
endpoints. The graph in Figure 6.1 and the first three graphs in Figure 6.2 are called simple
graphs. A simple graph is one that has at most one edge joining each pair of distinct vertices, and
no edges joining a vertex to itself.1 You’ll note in Figure 6.2 that we sometimes label the vertices
of the graph and we sometimes don’t. We label the vertices when we want to give them meaning,

1The terminology of graph theory has not yet been standardized, because it is a relatively young subject. The
terminology we are using here is the most popular terminology in computer science, but some graph theorists
would reserve the word graph for what we have just called a simple graph and would use the word multigraph for
what we called a graph.

Figure 6.2: Some examples of graphs

(a) (b) (c) (d)1

2

3 4

5

6

6.1. GRAPHS 265

as in Figure 6.1 or when we know we will want to refer to them as in graph (d) of Figure 6.2.
We say that graph (d) in Figure 6.2 has a “loop” at vertex 6 and multiple edges joining vertices
1 and 2 and vertices 2 and 3. More precisely, an edge that joins a vertex to itself is called a loop
and we say we have multiple edges between vertices x and y if there is more than one edge joining
x and y. If there is an edge from vertex x to vertex y in a simple graph, we denote it by {x, y}.
Thus {P, W} denotes the edge between Pittsburgh and Washington in Figure 6.1 Sometimes it
will be helpful to have a symbol to stand for a graph. We use the phrase “Let G = (V, E)” as a
shorthand for “Let G stand for a graph with vertex set V and edge set E.”

The drawings in parts (b) and (c) of Figure 6.2 are different drawings of the same graph. The
graph consists of five vertices and one edge between each pair of distinct vertices. It is called
the complete graph on five vertices and is denoted by K5. In general, a complete graph on n
vertices is a graph with n vertices that has an edge between each two of the vertices. We use
Kn to stand for a complete graph on n vertices. These two drawings are intended to illustrate
that there are many different ways we can draw a given graph. The two drawings illustrate two
different ideas. Drawing (b) illustrates the fact that each vertex is adjacent to each other vertex
and suggests that there is a high degree of symmetry. Drawing (c) illustrates the fact that it is
possible to draw the graph so that only one pair of edges crosses; other than that the only places
where edges come together are at their endpoints. In fact, it is impossible to draw K5 so that no
edges cross, a fact that we shall explain later in this chapter.

In Exercise 6.1-1 the links referred to are edges of the graph and the cities are the vertices of
the graph. It is possible to get from the vertex for Boston to the vertex for New Orleans by using
three communication links, namely the edge from Boston to Chicago, the edge from Chicago to
Memphis, and the edge from Memphis to New Orleans. A path in a graph is an alternating
sequence of vertices and edges such that

• it starts and ends with a vertex, and

• each edge joins the vertex before it in the sequence to the vertex after it in the sequence.2

If a is the first vertex in the path and b is the last vertex in the path, then we say the path is a path
from a to b. Thus the path we found from Boston to New Orleans is B{B, CH}CH{CH, ME}, ME{ME, NO}NO.
Because the graph is simple, we can also use the shorter notation B, CH, ME, NO to describe
the same path, because there is exactly one edge between successive vertices in this list. The
length of a path is the number of edges it has, so our path from Boston to New Orleans has length
3. The length of a shortest path between two vertices in a graph is called the distance between
them. Thus the distance from Boston to New Orleans in the graph of Figure 6.1 is three. By
inspecting the map we see that there is no shorter path from Boston to New Orleans. Notice
that no vertex or edge is repeated on our path from Boston to New Orleans. A path is called a
simple path if it has no repeated vertices or edges.3

The degree of a vertex

In Exercise 6.1-2, the city with the most communication links is Atlanta (A). We say the vertex
A has “degree” 6 because 6 edges emanate from it. More generally the degree of a vertex in a

2Again, the terminology we are using here is the most popular terminology in computer science, but what we
just defined as a path would be called a walk by most graph theorists.

3Most graph theorists reserve the word path for what we are calling a simple path, but again we are using the
language most popular in computer science.

266 CHAPTER 6. GRAPHS

graph is the number of times it is incident with edges of the graph; that is, the degree of a vertex
x is the number of edges from x to other vertices plus twice the number of loops at vertex x. In
graph (d) of Figure 6.2 vertex 2 has degree 5, and vertex 6 has degree 4. In a graph like the one
in Figure 6.1, it is somewhat difficult to count the edges just because you can forget which ones
you’ve counted and which ones you haven’t.

Exercise 6.1-4 Is there a relationship between the number of edges in a graph and the
degrees of the vertices? If so, find it. Hint: computing degrees of vertices and
number of edges in some relatively small examples of graphs should help you discover
a formula. To find one proof, imagine a wild west movie in which the villain is hiding
under the front porch of a cabin. A posse rides up and is talking to the owner of the
cabin, and the bad guy can just barely look out from underneath the porch and count
the horses hoofs. If he counts the hooves accurately, what can he do to figure out the
number of horses, and thus presumably the size of the posse?

In Exercise 6.1-4, examples such as those in Figure 6.2 convince us that the sum of the degrees
of the vertices is twice the number of edges. How can we prove this? One way is to count the
total number of incidences between vertices and edges (similar to counting the horses hooves in
the hint). Each edge has exactly two incidences, so the total number of incidences is twice the
number of edges. But the degree of a vertex is the number of incidences it has, so the sum of the
degrees of the vertices is also the total number of of incidences. Therefore the sum of the degrees
of the vertices of a graph is twice the number of edges. Thus to compute the number of edges of
a graph, we can sum the degrees of the vertices and divide by two. (In the case of the hint, the
horses correspond to edges and the hooves to endpoints.) There is another proof of this result
that uses induction.

Theorem 6.1 Suppose a graph has a finite number of edges. Then the sum of the degrees of the
vertices is twice the number of edges.

Proof: We induct on the number of edges of the graph. If a graph has no edges, then each
vertex has degree zero and the sum of the degrees is zero, which is twice the number of edges.
Now suppose e > 0 and the theorem is true whenever a graph has fewer than e edges. Let G be
a graph with e edges and let ε be an edge of G.4 Let G′ be the graph (on the same vertex set
as G) we get by deleting ε from the edge set E of G. Then G has e − 1 edges, and so by our
inductive hypothesis, the sum of the degrees of the vertices of G′ is twice e − 1. Now there are
two possible cases. Either e was a loop, in which case one vertex of G′ has degree two less in
G′ than it has in G. Otherwise e has two distinct endpoints, in which case exactly two vertices
of G′ have degree one less than their degree in G. Thus in both cases the sum of the degrees of
the vertices in G′ is two less than the sum of the degrees of the vertices in G, so the sum of the
degrees of the vertices in G is (2e − 2) + 2 = 2e. Thus the truth of the theorem for graphs with
e− 1 edges implies the truth of the theorem for graphs with e edges. Therefore, by the principle
of mathematical induction, the theorem is true for a graph with any finite number of edges.

There are a couple instructive points in the proof of the theorem. First, since it wasn’t clear
from the outset whether we would need to use strong or weak induction, we made the inductive

4Since it is very handy to have e stand for the number of edges of a graph, we will use Greek letters such as
epsilon (ε) to stand for edges of a graph. It is also handy to use v to stand for the number of vertices of a graph,
so we use other letters near the end of the alphabet, such as w, x, y,and z to stand for vertices.

6.1. GRAPHS 267

hypothesis we would normally make for strong induction. However in the course of the proof, we
saw that we only needed to use weak induction, so that is how we wrote our conclusion. This is
not a mistake, because we used our inductive hypothesis correctly. We just didn’t need to use it
for every possible value it covered.

Second, instead of saying that we would take a graph with e − 1 edges and add an edge to
get a graph with e edges, we said that we would take a graph with e edges and remove an edge
to get a graph with e− 1 edges. This is because we need to prove that the result holds for every
graph with e edges. By using the second approach we avoided the need to say that “every graph
with e edges may be built up from a graph with e − 1 edges by adding an edge,” because in the
second approach we started with an arbitrary graph on e edges. In the first approach, we would
have proved that the theorem was true for all graphs that could be built from an e−1 edge graph
by adding an edge, and we would have had to explicitly say that every graph with e edges could
be built in this way.

In Exercise 3 the sum of the degrees of the vertices is (working from left to right)

2 + 4 + 5 + 6 + 5 + 2 + 5 + 4 + 2 = 40,

and so the graph has 20 edges.

Connectivity

All of the examples we have seen so far have a property that is not common to all graphs, namely
that there is a path from every vertex to every other vertex.

Exercise 6.1-5 The company with the computer network in Figure 6.1 needs to reduce
its expenses. It is currently leasing each of the communication lines shown in the
Figure. Since it can send information from one city to another through one or more
intermediate cities, it decides to only lease the minimum number of communication
lines it needs to be able to send a message from any city to any other city by using
any number of intermediate cities. What is the minimum number of lines it needs to
lease? Give two examples of subsets of the edge set with this number of edges that
will allow communication between any two cities and two examples of a subset of the
edge set with this number of edges that will not allow communication between any
two cities.

Some experimentation with the graph convinces us that if we keep eight or fewer edges, there
is no way we can communicate among the cities (we will explain this more precisely later on),
but that there are quite a few sets of nine edges that suffice for communication among all the
cities. In Figure 6.3 we show two sets of nine edges each that allow us to communicate among all
the cities and two sets of nine edges that do not allow us to communicate among all the cities.

Notice that in graphs (a) and (b) it is possible to get from any vertex to any other vertex
by a path. A graph is called connected there is a path between each two vertices of the graph.
Notice that in graph (c) it is not possible to find a path from Atlanta to Boston, for example,
and in graph (d) it is not possible to find a path from Miami to any of the other vertices. Thus
these graphs are not connected; we call them disconnected. In graph (d) we say that Miami is
an isolated vertex.

268 CHAPTER 6. GRAPHS

Figure 6.3: Selecting nine edges from the stylized map of some eastern US cities.
B

NY

W

A

MI

NO

ME

CI

P

CHB

NY

W

A

MI

NO

ME

CI

P

CH

B

NY

W

A

MI

NO

ME

CI

P

CH B

NY

W

A

MI

NO

ME

CI

P

CH

(a) (b)

(c) (d)

We say two vertices are connected if there is a path between them, so a graph is connected
if each two of its vertices are connected. Thus in Graph (c) the vertices for Boston and New
Orleans are connected. The relationship of being connected is an equivalence relation (in the
sense of Section 1.4). To show this we would have to show that this relationship divides the set
of vertices up into mutually exclusive classes; that is, that it partitions the vertices of the graph.
The class containing Boston, for example is all vertices connected to Boston. If two vertices are
in that set, they both have paths to Boston, so there is a path between them using Boston as an
intermediate vertex. If a vertex x is in the set containing Boston and another vertex y is not, then
they cannot be connected or else the path from y to x and then on to Boston would connect y to
Boston, which would mean y was in the class containing Boston after all. Thus the relation of
being connected partitions the vertex set of the graph into disjoint classes, so it is an equivalence
relation. Though we made this argument with respect to the vertex Boston in the specific case
of graph (c) of Figure 6.3, it is a perfectly general argument that applies to arbitrary vertices
in arbitrary graphs. We call the equivalence relation of “being connected to” the connectivity
relation. There can be no edge of a graph between two vertices in different equivalence classes of
the connectivity relation because then everything in one class would be connected to everything
in the other class, so the two classes would have to be the same. Thus we also end up with a
partition of the edges into disjoint sets. If a graph has edge set E, and C is an equivalence class of
the connectivity relation, then we use E(C) to denote the set of edges whose endpoints are both
in C. Since no edge connects vertices in different equivalence classes, each edge must be in some
set E(C). The graph consisting of an equivalence class C of the connectivity relation together
with the edges E(C) is called a connected component of our original graph. From now on our
emphasis will be on connected components rather than on equivalence classes of the connectivity
relation. Notice that graphs (c) and (d) of Figure 6.3 each have two connected components. In

6.1. GRAPHS 269

graph (c) the vertex sets of the connected components are {NO, ME, CH, CI, P, NY, B} and
{A, W, MI}. In graph (d) the connected components are {NO, ME, CH, B, NY, P, CI, W, A}
and {MI}. Two other examples of graphs with multiple connected components are shown in
Figure 6.4.

Figure 6.4: A simple graph G with three connected components and a graph H with four con-
nected components.

G H

Cycles

In graphs (c) and (d) of Figure 6.3 we see a feature that we don’t see in graphs (a) and (b),
namely a path that leads from a vertex back to itself. A path that starts and ends at the same
vertex is called a closed path. A closed path with at least one edge is called a cycle if, except for
the last vertex, all of its vertices are different. The closed paths we see in graphs (c) and (d) of
Figure 6.3 are cycles. Not only do we say that {NO, ME, CH, B, NY, P, CI, W, A, NO} is a cycle
in in graph (d) of Figure 6.3, but we also say it is a cycle in the graph of Figure 6.1. The way we
distinguish between these situations is to say the cycle {NO, ME, CH, B, NY, P, CI, W, A, NO}
is an induced cycle in Figure 6.3 but not in Figure 6.1. More generally, a graph H is called a
subgraph of the graph G if all the vertices and edges of H are vertices and edges of G. We call H
an induced subgraph of G if every vertex of H is a vertex of G, and every edge of G connecting
vertices of H is an edge of H. Thus the first graph of Figure 6.4 has an induced K4 and an
induced cycle on three vertices.

We don’t normally distinguish which point on a cycle really is the starting point; for example
we consider the cycle {A, W, MI, A} to be the same as the cycle {W, MI, A, W}. Notice that
there are cycles with one edge and cycles with two edges in the second graph of Figure 6.4. We
call a graph G a cycle on n vertices or an n-cycle and denote it by Cn if it has a cycle that
contains all the vertices and edges of G and a path on n vertices and denote it by Pn if it has a
path that contains all the vertices and edges of G. Thus drawing (a) of Figure 6.2 is a drawing
of C4. The second graph of Figure 6.4 has an induced P3 and an induced C2 as subgraphs.

Trees

The graphs in parts (a) and (b) of Figure 6.3 are called trees. We have redrawn them slightly in
Figure 6.5 so that you can see why they are called trees. We’ve said these two graphs are called
trees, but we haven’t given a definition of trees. In the examples in Figure 6.3, the graphs we
have called trees are connected and have no cycles.

Definition 6.1 A connected graph with no cycles is called a tree.

270 CHAPTER 6. GRAPHS

Figure 6.5: A visual explanation of the name tree.

B

NY

W

A

MI

NO

ME

CI

P

CH

B NY

W

A

MI

NO ME
CI

P

CH

(a) (b)

Other Properties of Trees

In coming to our definition of a tree, we left out a lot of other properties of trees we could have
discovered by a further analysis of Figure 6.3

Exercise 6.1-6 Given two vertices in a tree, how many distinct simple paths can we find
between the two vertices?

Exercise 6.1-7 Is it possible to delete an edge from a tree and have it remain connected?

Exercise 6.1-8 If G = (V, E) is a graph and we add an edge that joins vertices of V , what
can happen to the number of connected components?

Exercise 6.1-9 How many edges does a tree with v vertices have?

Exercise 6.1-10 Does every tree have a vertex of degree 1? If the answer is yes, explain
why. If the answer is no, try to find additional conditions that will guarantee that a
tree satisfying these conditions has a vertex of degree 1.

For Exercise 6.1-6, suppose we had two distinct paths from a vertex x to a vertex y. They
begin with the same vertex x and might have some more edges in common as in Figure 6.6. Let
w be the last vertex after (or including) x the paths share before they become different. The
paths must come together again at y, but they might come together earlier. Let z be the first
vertex the paths have in common after w. Then there are two paths from w to z that have only
w and z in common. Taking one of these paths from w to z and the other from z to w gives us a
cycle, and so the graph is not a tree. We have shown that if a graph has two distinct paths from
x to y, then it is not a tree. By contrapositive inference, then, if a graph is a tree, it does not
have two distinct paths between two vertices x and y. We state this result as a theorem.

Theorem 6.2 There is exactly one path between each two vertices in a tree.

6.1. GRAPHS 271

Figure 6.6: A graph with multiple paths from x to y.

x y
w z

Proof: By the definition of a tree, there is at least one path between each two vertices. By
our argument above, there is at most one path between each two vertices. Thus there is exactly
one path.

For Exercise 6.1-7, note that if ε is an edge from x to y, then x, ε, y is the unique path from
x to y in the tree. Suppose we delete ε from the edge set of the tree. If there were still a path
from x to y in the resulting graph, it would also be a path from x to y in the tree, which would
contradict Theorem 6.2. Thus the only possibility is that there is no path between x and y in
the resulting graph, so it is not connected and is therefore not a tree.

For Exercise 6.1-8, if the endpoints are in the same connected component, then the number
of connected components won’t change. If the endpoints of the edge are in different connected
components, then the number of connected components can go down by one. Since an edge has
two endpoints, it is impossible for the number of connected components to go down by more than
one when we add an edge. This paragraph and the previous one lead us to the following useful
lemma.

Lemma 6.3 Removing one edge from the edge set of a tree gives a graph with two connected
components, each of which is a tree.

Proof: Suppose as before the lemma that ε is an edge from x to y. We have seen that the
graph G we get by deleting ε from the edge set of the tree is not connected, so it has at least two
connected components. But adding the edge back in can only reduce the number of connected
compponents by one. Therefore G has exactly two connected components. Since neither has any
cycles, both are trees.

In Exercise 6.1-9, our trees with ten vertices had nine edges. If we draw a tree on two vertices
it will have one edge; if we draw a tree on three vertices it will have two edges. There are two
different looking trees on four vertices as shown in Figure 6.7, and each has three edges. On the

Figure 6.7: Two trees on four vertices.

(a) (b)

basis of these examples we conjecture that a tree on n vertices has n − 1 edges. One approach
to proving this is to try to use induction. To do so, we have to see how to build up every tree
from smaller trees or how to take a tree and break it into smaller ones. Then in either case we

272 CHAPTER 6. GRAPHS

have to figure out how use the truth of our conjecture for the smaller trees to imply its truth for
the larger trees. A mistake that people often make at this stage is to assume that every tree can
be built from smaller ones by adding a vertex of degree 1. While that is true for finite trees with
more than one vertex (which is the point of Exercise 6.1-10), we haven’t proved it yet, so we can’t
yet use it in proofs of other theorems. Another approach to using induction is to ask whether
there is a natural way to break a tree into two smaller trees. There is: we just showed in Lemma
6.3 that if you remove an edge ε from the edge set of a tree, you get two connected components
that are trees. We may assume inductively that the number of edges of each of these trees is one
less than its number of vertices. Thus if the graph with these two connected components has v
vertices, then it has v − 2 edges. Adding ε back in gives us a graph with v − 1 edges, so except
for the fact that we have not done a base case, we have proved the following theorem.

Theorem 6.4 For all integers v ≥ 1, a tree with v vertices has v − 1 edges.

Proof: If a tree has one vertex, it can have no edges, for any edge would have to connect that
vertex to itself and would thus give a cycle. A tree with two or more vertices must have an edge
in order to be connected. We have shown before the statement of the theorem how to use the
deletion of an edge to complete an inductive proof that a tree with v vertices has v − 1 edges,
and so for all v ≥ 1, a tree with v vertices has v − 1 edges.

Finally, for Exercise 6.1-10 we can now give a contrapositive argument to show that a finite
tree with more than one vertex has a vertex of degree one. Suppose instead that G is a graph
that is connected and all vertices of G have degree two or more. Then the sum of the degrees of
the vertices is at least 2v, and so by Theorem 6.1 the number of edges is at least v. Therefore
by Theorem 6.4 G is not a tree. Then by contrapositive inference, if T is a tree, then T must
have at least one vertex of degree one. This corollary to Theorem 6.4 is so useful that we state
it formally.

Corollary 6.5 A finite tree with more than one vertex has at least one vertex of degree one.

Important Concepts, Formulas, and Theorems

1. Graph. A graph consists of a set of vertices and a set of edges with the property that each
edge has two (not necessarily different) vertices associated with it and called its endpoints.

2. Edge; Adjacent. We say an edge in a graph joins its endpoints, and we say two endpoints
are adjacent if they are joined by an edge.

3. Incident. When a vertex is an endpoint of an edge, we say the edge and the vertex are
incident.

4. Drawing of a Graph. To draw a graph, we draw a point in the plane for each vertex, and
then for each edge we draw a (possibly curved) line between the points that correspond to
the endpoints of the edge. Lines that correspond to edges may only touch the vertices that
are their endpoints.

5. Simple Graph. A simple graph is one that has at most one edge joining each pair of distinct
vertices, and no edges joining a vertex to itself.

6.1. GRAPHS 273

6. Length, Distance. The length of a path is the number of edges. The distance between two
vertices in a graph is the length of a shortest path between them.

7. Loop; Multiple Edges. An edge that joins a vertex to itself is called a loop and we say we
have multiple edges between vertices x and y if there is more than one edge joining x and y.

8. Notation for a Graph. We use the phrase “Let G = (V, E)” as a shorthand for “Let G
stand for a graph with vertex set V and edge set E.”

9. Notation for Edges. In a simple graph we use the notation {x, y} for an edge from x to y.
In any graph, when we want to use a letter to denote an edge we use a Greek letter like ε
so that we can save e to stand for the number of edges of the graph.

10. Complete Graph on n vertices. A complete graph on n vertices is a graph with n vertices
that has an edge between each two of the vertices. We use Kn to stand for a complete
graph on n vertices.

11. Path. We call an alternating sequence of vertices and edges in a graph a path if it starts and
ends with a vertex, and each edge joins the vertex before it in the sequence to the vertex
after it in the sequence.

12. Simple Path. A path is called a simple path if it has no repeated vertices or edges.

13. Degree of a Vertex. The degree of a vertex in a graph is the number of times it is incident
with edges of the graph; that is, the degree of a vertex x is the number of edges from x to
other vertices plus twice the number of loops at vertex x.

14. Sum of Degrees of Vertices. The sum of the degrees of the vertices in a graph with a finite
number of edges is twice the number of edges.

15. Connected. A graph is called connected if there is a path between each two vertices of the
graph. We say two vertices are connected if there is a path between them, so a graph is
connected if each two of its vertices are connected. The relationship of being connected is
an equivalence relation on the vertices of a graph.

16. Connected Component. If C is a subset of the vertex set of a graph, we use E(C) to
stand for the set of all edges both of whose endpoints are in C. The graph consisting of an
equivalence class C of the connectivity relation together with the edges E(C) is called a
connected component of our original graph.

17. Closed Path. A path that starts and ends at the same vertex is called a closed path.

18. Cycle. A closed path with at least one edge is called a cycle if, except for the last vertex,
all of its vertices are different.

19. Tree. A connected graph with no cycles is called a tree.

20. Important Properties of Trees.

(a) There is a unique path between each two vertices in a tree.

(b) A tree on v vertices has v − 1 edges.

(c) Every finite tree with at least two vertices has a vertex of degree one.

274 CHAPTER 6. GRAPHS

Problems

1. Find the shortest path you can from vertex 1 to vertex 5 in Figure 6.8.

Figure 6.8: A graph.

1 2 3

4

5

6

7

8

10
911

12

2. Find the longest simple path you can from vertex 1 to vertex 5 in Figure 6.8.

3. Find the vertex of largest degree in Figure 6.8. What is it’s degree?

Figure 6.9: A graph with a number of connected components.

4. How many connected components does the graph in Figure 6.9 have?

5. Find all induced cycles in the graph of Figure 6.9.

6. What is the size of the largest induced Kn in Figure 6.9?

7. Find the largest induced Kn (in words, the largest complete subgraph) you can in Fig-
ure 6.8.

8. Find the size of the largest induced Pn in the graph in Figure 6.9.

9. A graph with no cycles is called a forest. Show that if a forest has v vertices, e edges, and
c connected components, then v = e + c.

10. What can you say about a five vertex simple graph in which every vertex has degree four?

11. Find a drawing of K6 in which only three pairs of edges cross.

12. Either prove true or find a counter-example. A graph is a tree if there is one and only one
simple path between each pair of vertices.

13. Is there some number m such that if a graph with v vertices is connected and has m edges,
then it is a tree? If so, what is m in terms of v?

6.1. GRAPHS 275

14. Is there some number m such that a graph on n vertices is a tree if and only if it has m
edges and has no cycles.

15. Suppose that a graph G is connected, but for each edge, deleting that edge leaves a discon-
nected graph. What can you say about G? Prove it.

16. Show that each tree with four vertices can be drawn with one of the two drawings in
Figure 6.7.

17. Draw the minimum number of drawings of trees you can so that each tree with five vertices
has one of those drawings. Explain why you have drawn all possible trees.

18. Draw the minimum number of drawings of trees you can so that each tree with six vertices
is represented by exactly one of those drawings. Explaining why you have drawn all possible
drawings is optional.

19. Find the longest induced cycle you can in Figure 6.8.

276 CHAPTER 6. GRAPHS

6.2 Spanning Trees and Rooted Trees

Spanning Trees

We introduced trees with the example of choosing a minimum-sized set of edges that would
connect all the vertices in the graph of Figure 6.1. That led us to discuss trees. In fact the kinds
of trees that solve our original problem have a special name. A tree whose edge set is a subset of
the edge set of the graph G is called a spanning tree of G if the tree has exactly the same vertex
set as G. Thus the graphs (a) and (b) of Figure 6.3 are spanning trees of the graph of Figure
6.1.

Exercise 6.2-1 Does every connected graph have a spanning tree? Either give a proof or
a counter-example.

Exercise 6.2-2 Give an algorithm that determines whether a graph has a spanning tree,
finds such a tree if it exists, and takes time bounded above by a polynomial in v and
e, where v is the number of vertices, and e is the number of edges.

For Exercise 6.2-1, if the graph has no cycles but is connected, it is a tree, and thus is its own
spanning tree. This makes a good base step for a proof by induction on the number of cycles of
the graph that every connected graph has a spanning tree. Let c > 0 and suppose inductively that
when a connected graph has fewer than c cycles, then the graph has a spanning tree. Suppose that
G is a graph with c cycles. Choose a cycle of G and choose an edge of that cycle. Deleting that
edge (but not its endpoints) reduces the number of cycles by at least one, and so our inductive
hypothesis implies that the resulting graph has a spanning tree. But then that spanning tree
is also a spanning tree of G. Therefore by the principle of mathematical induction, every finite
connected graph has a spanning tree. We have proved the following theorem.

Theorem 6.6 Each finite connected graph has a spanning tree.

Proof: The proof is given before the statement of the theorem.

In Exercise 6.2-2, we want an algorithm for determining whether a graph has a spanning tree.
One natural approach would be to convert the inductive proof of Theorem 6.6 into a recursive
algorithm. Doing it in the obvious way, however, would mean that we would have to search for
cycles in our graph. A natural way to look for a cycle is to look at each subset of the vertex set
and see if that subset is a cycle of the graph. Since there are 2v subsets of the vertex set, we
could not guarantee that an algorithm that works in this way would find a spanning tree in time
which is big Oh of a polynomial in v and e. In an algorithms course you will learn a much faster
(and much more sophisticated) way to implement this approach. We will use another approach,
describing a quite general algorithm which we can then specialize in several different ways for
different purposes.

The idea of the algorithm is to build up, one vertex at a time, a tree that is a subgraph (not
necessarily an induced subgraph) of the graph G = (V, E). (A subgraph of G that is a tree is
called a subtree of G.) We start with some vertex, say x0. If there are no edges leaving the vertex
and the graph has more than one vertex, we know the graph is not connected and we therefore
don’t have a spanning tree. Otherwise, we can choose an edge ε1 that connects x0 to another

6.2. SPANNING TREES AND ROOTED TREES 277

vertex x1. Thus {x0, x1} is the vertex set of a subtree of G. Now if there are no edges that
connect some vertex in the set {x0, x1} to a vertex not in that set, then {x0, x1} is a connected
component of G. In this case, either G is not connected and has no spanning tree, or it just has
two vertices and we have a spanning tree. However if there is an edge that connects some vertex
in the set {x0, x1} to a vertex not in that set, we can use this edge to continue building a tree.
This suggests an inductive approach to building up the vertex set S of a subtree of our graph
one vertex at a time. For the base case of the algorithm, we let S = {x0}. For the inductive step,
given S, we choose an edge ε that leads from a vertex in S to a vertex in V − S (provided such
an edge exists) and add it to the edge set E′ of the subtree. If no such edge exists, we stop. If
V = S when we stop then E′ is the edge set of a spanning tree. (We can prove inductively that
E′ is the edge set of a tree on S, because adding a vertex of degree one to a tree gives a tree.) If
V �= S when we stop, G is not connected and does not have a spanning tree.

To describe the algorithm a bit more precisely, we give pseudocode.

Spantree(V ,E)
// Assume that V is an array that lists the vertex set of the graph.
// Assume that E is an array with |V | entries, and entry i of E is the set of
// edges incident with the vertex in position i of V .
(1) i = 0;
(2) Choose a vertex x0 in V .
(3) S = {x0}
(4) While there is an edge from a vertex in S to a vertex not in S
(5) i=i+1
(6) Choose an edge εi from a vertex y in S to a vertex xi not in S
(7) S = S ∪ {xi}
(8) E′ = E′ ∪ εi

(9) If i = |V | − 1
(10) return E′

(11) Else
(12) Print "The graph is not connected."

The way in which the vertex xi and the edge εi are chosen was deliberately left vague because
there are several different ways to specify xi and εi that accomplish several different purposes.
However, with some natural assumptions, we can still give a big Oh bound on how long the
algorithm takes. Presumably we will need to consider at most all v vertices of the graph in order
to choose xi, and so assuming we decide whether or not to use a vertex in constant time, this
step of the algorithm will take O(v) time. Presumably we will need to consider at most all e
edges of our graph in order to choose εi, and so assuming we decide whether or not to use an
edge in constant time, this step of the algorithm takes at most O(e) time. Given the generality
of the condition of the while loop that begins in line 4, determining whether that condition is
true might also take O(e) time. Since we repeat the While loop at most v times, all executions
of the While loop should take at most O(ve) time. Since line 9 requires us to compute |V |, it
takes O(v) steps, and all the other lines take constant time. Thus, with the assumptions we have
made, the algorithm takes O(ve + v + e) = O(ve) time.

278 CHAPTER 6. GRAPHS

Breadth First Search

Notice that algorithm Spantree will continue as long as a vertex in S is connected to a vertex
not in S. Thus when it stops, S will be the vertex set of a connected component of the graph
and E′ will be the edge set of a spanning tree of this connected component. This suggests that
one use that we might make of algorithm Spantree is to find connected components of graphs.
If we want the connected component containing a specific vertex x, then we make this choice of
x0 in Line 2. Suppose this is our goal for the algorithm, and suppose that we also want to make
the algorithm run as quickly as possible. We could guarantee a faster running time if we could
arrange our choice of εi so that we examined each edge no more than some constant number of
times between the start and the end of the algorithm. One way to achieve this is to first use all
edges incident with x0 as εis, then consider all edges incident with x1, using them as εi if we can,
and so on.

We can describe this process inductively. We begin by choosing a vertex x0 and putting
vertex x0 in S and (except for loops or multiple edges) all edges incident with x0 in E′. As we
put edges into E′, we number them, starting with ε1. This creates a list ε1, ε2, . . . of edges. When
we add edge εi to the tree, one of its two vertices is not yet numbered. We number it as xi. Then
given vertices 0 through i, all of whose incident edges we have examined and either accepted
or (permanently) rejected as a member of E′ (or more symbolically, as an εj), we examine the
edges leaving vertex i + 1. For each of these edges that is incident with a vertex not already in
S, we add the edge and that vertex to the tree, numbering the edges and vertices as described
above. Otherwise we reject that edge. Eventually we reach a point where we have examined all
the edges leaving all the vertices in S, and we stop.

To give a pseudocode description of the algorithm, we assume that we are given an array V
that contains the names of the vertices. There are a number of ways to keep track of the edge
set of a graph in a computer. One way is to give a list, called an adjacency list, for each vertex
listing all vertices adjacent to it. In the case of multiple edges, we list each adjacency as many
times as there are edges that give the adjacency. In our pseudocode we implement the idea of
an adjacency list with the array E that gives in position i a list of all locations in the array V of
vertices adjacent in G to vertex V [i].

In our pseudocode we also use an array “Edge” to list the edges of the set we called E′ in
algorithm Spantree, an array “Vertex” to list the positions in V of the vertices in the set S in the
algorithm Spantree, an array “Vertexname” to keep track of the names of the vertices we add to
the set S, and an array “Intree” to keep track of whether the vertex in position i of V is in S.
Because we want our pseudocode to be easily translatable into a computer language, we avoid
subscripts, and use x to stand for the place in the array V that holds the name of the vertex
where we are to start the search, i.e. the vertex x0.

BFSpantree(x,V ,E)
// Assume that V is an array with v entries, the names of the vertices,
// and that x is the location in V of the name of the vertex with which we want
// to start the tree.
// Assume that E is an array with v entries, each a list of the positions
// in V of the names of vertices adjacent to the corresponding entry of V .
(1) i = 0 ; k = 0 ; Intree[x] = 1; Vertex[0] = x; Vertexname[0] = V [x]
(2) While i <= k
(3) i = i + 1

6.2. SPANNING TREES AND ROOTED TREES 279

(4) For each j in the list E[Vertex[i]]
(5) If Intree[j] �= 1
(6) k = k + 1
(7) Edge[k] = {V [Vertex[i]], V [j]}
(8) Intree[j] = 1
(9) Vertex[k] = j
(10) Vertexname[k] = V [j].
(11) Print "Connected component"
(12) return Vertexname[0 : k]
(13) print "Spanning tree edges of connected component"
(14) return Edge[1 : k]

Notice that the pseudocode allows us to deal with loops and multiple edges through the test
whether vertex j is in the tree in Line 5. However the primary purpose of this line is to make
sure that we do not examine edges that point from vertex i back to a vertex that is already in
the tree.

This algorithm requires that we execute the “For” loop that starts in Line 4 once for each
edge incident with vertex i. The “While” loop that starts in Line 2 is executed at most once
for each vertex. Thus we execute the “For” loop at most twice for each edge, and carry out the
other steps of the “While” loop at most once for each vertex, so that the time to carry out this
algorithm is O(V + E).

The algorithm carries out what is known as a “breadth first search”5 of the graph centered at
V [x]. The reason for the phrase “breadth first” is because each time we start to work on a new
vertex, we examine all its edges (thus exploring the graph broadly at this point) before going on
to another vertex. As a result, we first add all vertices at distance 1 from V [x] to S, then all
vertices at distance 2 and so on. When we choose a vertex V [Vertex[k]] to put into the set S
in Line 9, we are effectively labelling it as vertex k. We call k the breadth first number of the
vertex V [j] and denote it as BFN(V [j])6. The breadth first number of a vertex arises twice in
the breadth first search algorithm. The breadth first search number of a vertex is assigned to
that vertex when it is added to the tree, and (see Problem 7) is the number of vertices that have
been previously added. But it then determines when a vertex of the tree is used to add other
vertices to the tree: the vertices are taken in order of their breadth first number for the purpose
of examining all incident edges to see which ones allow us to add new vertices, and thus new
edges, to the tree.

This leads us to one more description of breadth first search. We create a breadth first search
tree centered at x0 in the following way. We put the vertex x0 in the tree and give it breadth first
number zero. Then we process the vertices in the tree in the order of their breadth first number
as follows: We consider each edge leaving the vertex. If it is incident with a vertex z not in the
tree, we put the edge into the edge set of the tree, we put z into the vertex set of the tree, and
we assign z a breadth first number one more than that of the vertex most recently added to the
tree. We continue in this way until all vertices in the tree have been processed.

We can use the idea of breadth first number to make our remark about the distances of
vertices from x0 more precise.

5This terminology is due to Robert Tarjan who introduced the idea in his PhD thesis.
6In words, we say that the breadth first number of a vertex is k if it is the kth vertex added to a breadth-first

search tree, counting the initial vertex x as the zeroth vertex added to the tree

280 CHAPTER 6. GRAPHS

Lemma 6.7 After a breadth first search of a graph G centered at V [x], if d(V [x], V [z]) >
d(V [x], V [y]), then BFN(V [z]) >BFN(V [y]).

Proof: We will prove this in a way that mirrors our algorithm. We shall show by induction
that for each nonnegative k, all vertices of distance k from x0 are added to the spanning tree
(that is, assigned a breadth first number and put into the set S) after all vertices of distance
k − 1 and before any vertices of distance k + 1. When k = 1 this follows because S starts as the
set V [x] and all vertices adjacent to V [x] are next added to the tree before any other vertices.
Now assume that n > 1 and all vertices of distance n from V [x] are added to the tree after all
vertices of distance n − 1 from V [x] and before any vertices of distance n + 1. Suppose some
vertex of distance n added to the tree has breadth first number m. Then when i reaches m in
Line 3 of our pseudocode we examine edges leaving vertex V [Vertex[m]] in the “For loop.” Since,
by the inductive hypothesis, all vertices of distance n− 1 or less from V [x] are added to the tree
before vertex V [Vertex[m]], when we examine vertices V [j] adjacent to vertex V [Vertex[m]], we
will have Intree[j] = 1 for these vertices. Since each vertex of distance n from V [x] is adjacent to
some vertex V [z] of distance n− 1 from V [x], and BFN[V [z]] < m (by the inductive hypothesis),
any vertex of distance n from V [x] and adjacent to vertex V [Vertex[m]] will have Intree[j] = 1.
Since any vertex adjacent to vertex V [Vertex[m]] is of distance at most n + 1 from V [x], every
vertex we add to the tree from vertex V [Vertex[m]] will have distance n + 1 from the tree. Thus
every vertex added to the tree from a vertex of distance n from V [x] will have distance n + 1
from V [x]. Further, all vertices of distance n + 1 are adjacent to some vertex of distance n from
V [x], so each vertex of distance n + 1 is added to the tree from a vertex of distance n. Note that
no vertices of distance n + 2 from vertex V [x] are added to the tree from vertices of distance n
from vertex V [x]. Note also that all vertices of distance n+1 are added to the tree from vertices
of distance n from vertex V [x]. Therefore all vertices with distance n+1 from V [x] are added to
the tree after all edges of distance n from V [x] and before any edges of distance n + 2 from V [x].
Therefore by the principle of mathematical induction, for every positive integer k, all vertices
of distance k from V [x] are added to the tree before any vertices of distance k + 1 from vertex
V [x] and after all vertices of distance k − 1 from vertex V [x]. Therefore since the breadth first
number of a vertex is the number of the stage of the algorithm in which it was added to the tree,
if d(V [x], V [z]) > d(V [x], V [y]), then BFN(V [z]) >BFN(V [y]).

Although we introduced breadth first search for the purpose of having an algorithm that
quickly determines a spanning tree of a graph or a spanning tree of the connected component of
a graph containing a given vertex, the algorithm does more for us.

Exercise 6.2-3 How does the distance from V [x] to V [y] in a breadth first search centered
at V [x] in a graph G relate to the distance from V [x] to V [y] in G?

In fact the unique path from V [x] to V [y] in a breadth first search spanning tree of a graph G
is a shortest path in G, so the distance from V [x] to another vertex in G is the same as their
distance in a breadth first search spanning tree centered at V [x]. This makes it easy to compute
the distance between a vertex V [x] and all other vertices in a graph.

Theorem 6.8 The unique path from V [x] in a breadth first search spanning tree centered at the
vertex V [x] of a graph G to a vertex V [y] is a shortest path from V [x] to V [y] in G.

Proof: We prove the theorem by induction on the distance from V [x] to V [y]. Fix a breadth
first search tree of G centered at V [x]. If the distance is 0, then the single vertex V [x] is a shortest

6.2. SPANNING TREES AND ROOTED TREES 281

path from V [x] to V [x] in G and the unique path in the tree. Assume that k > 0 and that when
distance from V [x] to V [y] is less than k, the path from V [x] to V [y] in the tree is a shortest
path from V [x] to V [y] in G. Now suppose that the distance from V [x] to V [y] is k. Suppose
that a shortest path from V [x] to V [y] has V [z] and V [y] as its last two vertices. Suppose that
the unique path from V [x] to V [y] in the tree has V [z′] and V [y] as its last two vertices. Then
BFN(V [z′]) < BFN(V [z]), because otherwise we would have added V [y] to the tree from vertex
V [z]. Then by the contrapositive of Lemma 6.7, the distance from V [x] to V [z′] is less than or
equal to that from V [x] to V [z]. But then by the inductive hypothesis, the distance from V [x]
to V [z′] is the length of the unique path in the tree, and by our previous comment is less than or
equal to the distance from V [x] to V [z]. However then the length of the unique path from V [x]
to V [y] in the tree is no more than the distance from V [x] to V [y], so the two are equal. By the
principle of mathematical induction, the distance from V [x] to V [y] is the length of the unique
path in the tree for every vertex y of the graph.

Rooted Trees

A breadth first search spanning tree of a graph is not simply a tree, but a tree with a selected
vertex, namely V [x]. It is one example of what we call a rooted tree. A rooted tree consists of
a tree with a selected vertex, called a root, in the tree. Another kind of rooted tree you have
likely seen is a binary search tree. It is fascinating how much additional structure is provided to
a tree when we select a vertex and call it a root. In Figure 6.10 we show a tree with a chosen
vertex and the result of redrawing the tree in a more standard way. The standard way computer
scientists draw rooted trees is with the root at the top and all the edges sloping down, as you
might expect to see with a family tree.

Figure 6.10: Two different views of the same rooted tree.

r

r

a

a

b

b

d

d

c

c

e

e

g

g

h

hi
i

f

f

j

We adopt the language of family trees—ancestor, descendant, parent, and child—to describe
rooted trees in general. In Figure 6.10, we say that vertex j is a child of vertex i, and a descendant

282 CHAPTER 6. GRAPHS

of vertex r as well as a descendant of vertices f and i. We say vertex f is an ancestor of vertex
i. Vertex r is the parent of vertices a, b, c, and f . Each of those four vertices is a child of vertex
r. Vertex r is an ancestor of all the other vertices in the tree. In general, in a rooted tree with
root r, a vertex x is an ancestor of a vertex y, and vertex y is a descendant of vertex x if x and y
are different and x is on the unique path from the root to y. Vertex x is a parent of vertex y and
y is a child of vertex x in a rooted tree if x is the unique vertex adjacent to y on the unique path
from r to y. A vertex can have only one parent, but many ancestors. A vertex with no children
is called a leaf vertex or an external vertex; other vertices are called internal vertices.

Exercise 6.2-4 Prove that a vertex in a rooted tree can have at most one parent. Does
every vertex in a rooted tree have a parent?

In Exercise 6.2-4, suppose x is not the root. Then, because there is a unique path between a
vertex x and the root of a rooted tree and there is a unique vertex on that path adjacent to x,
each vertex other than the root has a unique parent. The root, however, has no parent.

Exercise 6.2-5 A binary tree is a special kind of rooted tree that has some additional
structure that makes it tremendously useful as a data structure. In order to describe
the idea of a binary tree it is useful to think of a tree with no vertices, which we call
the null tree or empty tree. Then we can recursively describe a binary tree as

• an empty tree (a tree with no vertices), or

• a structure T consisting of a root vertex, a binary tree called the left subtree of
the root and a binary tree called the right subtree of the root. If the left or right
subtree is nonempty, its root node is joined by an edge to the root of T .

Then a single vertex is a binary tree with an empty right subtree and an empty left
subtree. A rooted tree with two vertices can occur in two ways as a binary tree, either
with a root and a left subtree consisting of one vertex or as a root and a right subtree
consisting of one vertex. Draw all binary trees on four vertices in which the root node
has an empty right child. Draw all binary trees on four vertices in which the root has
a nonempty left child and a nonempty right child.

Exercise 6.2-6 A binary tree is a full binary tree if each vertex has either two nonempty
children or two empty children (a vertex with two empty children is called a leaf.)
Are there any full binary trees on an even number of vertices? Prove that what you
say is correct.

For Exercise 6.2-5 we have five binary trees shown in Figure 6.11 for the first question. Then

Figure 6.11: The four-vertex binary trees whose root has an empty right child.

6.2. SPANNING TREES AND ROOTED TREES 283

Figure 6.12: The four-vertex binary trees whose root has both a left and a right child.

in Figure 6.12 we have four more trees as the answer to the second question.

For Exercise 6.2-6, it is possible to have a full binary tree with zero vertices, so there is one
such binary tree. But, if a full binary tree is not empty, it must have an odd number of vertices.
We can prove this inductively. A full binary tree with 1 vertex has an odd number of vertices.
Now suppose inductively that n > 1 and any full binary tree with fewer than n vertices has
an odd number of vertices. For a full binary tree with n > 1 vertices, the root must have two
nonempty children. Thus removing the root gives us two binary trees, rooted at the children of
the original root, each with fewer than n vertices. By the definition of full, each of the subtrees
rooted in the two children must be full binary tree. The number of vertices of the original tree
is one more than the total number of vertices of these two trees. This is a sum of three odd
numbers, so it must be odd. Thus, by the principle of mathematical induction, if a full binary
tree is not empty, it must have odd number of vertices.

The definition we gave of a binary tree was an inductive one, because the inductive definition
makes it easy for us to prove things about binary trees. We remove the root, apply the inductive
hypothesis to the binary tree or trees that result, and then use that information to prove our
result for the original tree. We could have defined a binary tree as a special kind of rooted tree,
such that

• each vertex has at most two children,

• each child is specified to be a left or right child, and

• a vertex has at most one of each kind of child.

While it works, this definition is less convenient than the inductive definition.

There is a similar inductive definition of a rooted tree. Since we have already defined rooted
trees, we will call the object we are defining an r-tree. The recursive definition states that an
r-tree is either a single vertex, called a root, or a graph consisting of a vertex called a root and
a set of disjoint r-trees, each of which has its root attached by an edge to the original root. We
can then prove as a theorem that a graph is an r-tree if and only if it is a rooted tree. Sometimes
inductive proofs for rooted trees are easier if we use the method of removing the root and applying
the inductive hypothesis to the rooted trees that result, as we did for binary trees in our solution
of Exercise 6.2-6.

Important Concepts, Formulas, and Theorems

1. Spanning Tree. A tree whose edge set is a subset of the edge set of the graph G is called a
spanning tree of G if the tree has exactly the same vertex set as G.

284 CHAPTER 6. GRAPHS

2. Breadth First Search. We create a breadth first search tree centered at x0 in the following
way. We put the vertex x0 in the tree and give it breadth first number zero. Then we
process the vertices in the tree in the order of their breadth first number as follows: We
consider each edge leaving the vertex. If it is incident with a vertex z not in the tree, we
put the edge into the edge set of the tree, we put z into the vertex set of the tree, and we
assign z a breadth first number one more than that of the vertex most recently added to
the tree. We continue in this way until all vertices in the tree have been processed.

3. Breadth first number. The breadth first number of a vertex in a breadth first search tree
is the number of vertices that were already in the tree when the vertex was added to the
vertex set of the tree.

4. Breadth first search and distances. The distance from a vertex y to a vertex x may be
computed by doing a breadth first search centered at x and then computing the distance
from y to x in the breadth first search tree. In particular, the path from x to y in a breadth
first search tree of G centered at x is a shortest path from x to y in G.

5. Rooted tree. A rooted tree consists of a tree with a selected vertex, called a root, in the tree.

6. Ancestor, Descendant. In a rooted tree with root r, a vertex x is an ancestor of a vertex
y, and vertex y is a descendant of vertex x if x and y are different and x is on the unique
path from the root to y.

7. Parent, Child. In a rooted tree with root r, vertex x is a parent of vertex y and y is a child
of vertex x in if x is the unique vertex adjacent to y on the unique path from r to y.

8. Leaf (External) Vertex. A vertex with no children in a rooted tree is called a leaf vertex or
an external vertex.

9. Internal Vertex. A vertex of a rooted tree that is not a leaf vertex is called an internal
vertex.

10. Binary Tree. We recursively describe a binary tree as

• an empty tree (a tree with no vertices), or

• a structure T consisting of a root vertex, a binary tree called the left subtree of the
root and a binary tree called the right subtree of the root. If the left or right subtree
is nonempty, its root node is joined by an edge to the root of T .

11. Full Binary Tree. A binary tree is a full binary tree if each vertex has either two nonempty
children or two empty children.

12. Recursive Definition of a Rooted Tree. The recursive definition of a rooted tree states that
it is either a single vertex, called a root, or a graph consisting of a vertex called a root and
a set of disjoint rooted trees, each of which has its root attached by an edge to the original
root.

6.2. SPANNING TREES AND ROOTED TREES 285

Figure 6.13: A graph.

ee

e

e

e1

34

5

2

Problems

1. Find all spanning trees (list their edge sets) of the graph in Figure 6.13.

2. Show that a finite graph is connected if and only if it has a spanning tree.

3. Draw all rooted trees on 5 vertices. The order and the place in which you write the vertices
down on the page is unimportant. If you would like to label the vertices (as we did in the
graph in Figure 6.10), that is fine, but don’t give two different ways of labelling or drawing
the same tree.

4. Draw all rooted trees on 6 vertices with four leaf vertices. If you would like to label the
vertices (as we did in the graph in Figure 6.10), that is fine, but don’t give two different
ways of labelling or drawing the same tree.

5. Find a tree with more than one vertex that has the property that all the rooted trees you
get by picking different vertices as roots are different as rooted trees. (Two rooted trees are
the same (isomorphic), if they each have one vertex or if you can label them so that they
have the same (labelled) root and the same (labelled) subtrees.)

6. Create a breadth first search tree centered at vertex 12 for the graph in Figure 6.8 and use
it to compute the distance of each vertex from vertex 12. Give the breadth first number
for each vertex.

7. It may seem clear to some people that the breadth first number of a vertex is the number
of vertices previously added to the tree. However the breadth first number was not actually
defined in this way. Give a proof that the breadth first number of a vertex is the number
of vertices previously added to the tree.

8. A(left, right) child of a vertex in a binary tree is the root of a (left, right) subtree of that
vertex. A binary tree is a full binary tree if each vertex has either two nonempty children
or two empty children (a vertex with two empty children is called a leaf.) Draw all full
binary trees on seven vertices.

9. The depth of a node in a rooted tree is defined to be the number of edges on the (unique)
path to the root. A binary tree is complete if it is full (see Problem 8) and all its leaves
have the same depth. How many vertices does a complete binary tree of depth 1 have?
Depth 2? Depth d? (Proof required for depth d.)

10. The height of a rooted or binary tree with one vertex is 0; otherwise it is 1 plus the maximum
of the heights of its subtrees. Based on Exercise 6.2-9, what is the minimum height of any
binary tree on n vertices? (Please prove this.)

286 CHAPTER 6. GRAPHS

11. A binary tree is complete if it is full and all its leaves have the same depth (see Exercise
6.2-8 and Exercise 6.2-9). A vertex that is not a leaf vertex is called an internal vertex.
What is the relationship between the number I of internal vertices and the number L of
leaf vertices in a complete binary tree. A full binary tree? (Proof please.)

12. The internal path length of a binary tree is the sum, taken over all internal (see Exercise
6.2-11) vertices of the tree, of the depth of the vertex. The external path length of a binary
tree is the sum, taken over all leaf vertices of the tree, of the depth of the vertex. Show
that in a full binary tree with n internal vertices, internal path length i and external path
length e, we have e = i + 2n.

13. Prove that a graph is an r-tree, as defined at the end of the section if and only if it is a
rooted tree.

14. Use the inductive definition of a rooted tree (r-tree) given at the end of the section to prove
once again that a rooted tree with n vertices has n − 1 edges if n ≥ 1.

15. In Figure 6.14 we have added numbers to the edges of the graph of Figure 6.1 to give
what is usually called a weighted graph—the name for a graph with numbers, often called
weights associated with its edges. We use w(ε) to stand for the weight of the edge ε. These
numbers represent the lease fees in thousands of dollars for the communication lines the
edges represent. Since the company is choosing a spanning tree from the graph to save
money, it is natural that it would want to choose the spanning tree with minimum total
cost. To be precise, a minimum spanning tree in a weighted graph is a spanning tree of the
graph such that the sum of the weights on the edges of the spanning tree is a minimum
among all spanning trees of the graph.

Figure 6.14: A stylized map of some eastern US cities.

B

NY

W

A

MI

NO

ME

CI

P

CH

8
6

6

4

7

6

6
5

4

6
4

5

7

9
11

3

5
5

6 7

Give an algorithm to select a spanning tree of minimum total weight from a weighted graph

6.2. SPANNING TREES AND ROOTED TREES 287

and apply it to find a minimum spanning tree of the weighted graph in Figure 6.14. Show
that your algorithm works and analyze how much time it takes.

288 CHAPTER 6. GRAPHS

6.3 Eulerian and Hamiltonian Paths and Tours

Eulerian Tours and Trails

Exercise 6.3-1 In an article generally acknowledged to be one of the origins of the graph
theory 7 Leonhard Euler (pronounced Oiler) described a geographic problem that
he offered as an elementary example of what he called “the geometry of position.”
The problem, known as the “Königsberg Bridge Problem,” concerns the town of
Königsberg in Prussia (now Kaliningrad in Russia), which is shown in a schematic
map (circa 1700) in Figure 6.15. Euler tells us that the citizens amused themselves

Figure 6.15: A schematic map of Königsberg

River
Island

River

River

Point

by trying to find a walk through town that crossed each of the seven bridges once and
only once (and, hopefully, ended where it started). Is such a walk possible?

In Exercise 6.3-1, such a walk will enter a land mass on a bridge and leave it on a different bridge,
so except for the starting and ending point, the walk requires two new bridges each time it enters
and leaves a land mass. Thus each of these land masses must be at the end of an even number
of bridges. However, as we see from Figure 6.15 each land mass is at the end of an odd number
of bridges. Therefore no such walk is possible.

We can represent the map in Exercise 6.3-1 more compactly with the graph in Figure 6.16.
In graph theoretic terminology Euler’s question asks whether there is a path, starting and ending

Figure 6.16: A graph to replace the schematic map of Königsberg

IslandPoint

Right Bank

Left Bank

7Reprinted in Graph Theory 1736-1936 by Biggs, Lloyd and Wilson (Clarendon, 1976)

6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 289

at the same vertex, that uses each edge exactly once.

Exercise 6.3-2 Determine whether the graph in Figure 6.1 has a closed path that includes
each edge of the graph exactly once, and find one if it does.

Exercise 6.3-3 Find the strongest condition you can that has to be satisfied by a graph
that has a path, starting and ending at the same place, that includes each vertex at
least once and each edge once and only once. Such a path is known as an Eulerian
Tour or Eulerian Circuit.

Exercise 6.3-4 Find the strongest condition you can that has to be satisfied by a graph
that has a path, starting and ending at different places, that includes each vertex at
least once and each edge once and only once. Such a path is known as an Eulerian
Trail

Exercise 6.3-5 Determine whether the graph in Figure 6.1 has an Eulerain Trail and find
one if it does.

The graph in Figure 6.1 cannot have a closed path that includes each edge exactly once
because if the initial vertex of the path were P , then the number of edges incident with P would
have to be one at the beginning of the path, plus two for each time P appears before the end
of the path, plus one more for the time P would appear at the end of the path, so the degree
of P would have to be even. But if P were not the initial vertex of a closed path including all
the edges, each time we entered P on one edge, we would have to leave it on a second edge, so
the number of edges incident with P would have to be even. Thus in Exercise 6.3-2 there is no
closed path that includes each edge exactly once.

Notice that, just as we argued for a walk through Königsberg, in any graph with an Eulerian
Circuit, each vertex except for the starting-finishing one will be paired with two new edges (those
preceding and following it on the path) each time it appears on the path. Therefore each of these
vertices is incident with an even number of edges. Further, the starting vertex is incident with
one edge at the beginning of the path and is incident with a different edge at the end of the path.
Each other time it occurs, it will be paired with two edges. Thus this vertex is incident with an
even number of edges as well. Therefore a natural condition a graph must satisfy if it has an
Eulerian Tour is that each vertex has even degree. But Exercise 6.3-3 asked us for the strongest
condition we could find that a graph with an Eulerian Tour would satisfy. How do we know
whether this is as strong a condition as we could devise? In fact it isn’t, the graph in Figure 6.17
clearly has no Eulerian Tour because it is disconnected, but every vertex has even degree.

Figure 6.17: This graph has no Eulerian Tour, even though each vertex has even degree.

The point that Figure 6.17 makes is that in order to have an Eulerian Tour, a graph must be
connected as well as having only vertices of even degree. Thus perhaps the strongest condition

290 CHAPTER 6. GRAPHS

we can find for having an Eulerian Tour is that the graph is connected and every vertex has even
degree. Again, the question comes up “How do we show this condition is as strong as possible,
if indeed it is?” We showed a condition was not as strong as possible by giving an example of
a graph that satisfied the condition but did not have an Eulerian Tour. What if we could show
that no such example is possible, i.e. we could prove that a graph which is connected and in
which every vertex has even degree does have an Eulerian Tour? Then we would have shown our
condition is as strong as possible.

Theorem 6.9 A graph has an Eulerian Tour if and only if it is connected and each vertex has
even degree.

Proof: A graph must be connected to have an Eulerian tour, because there must be a path
that includes each vertex, so each two vertices are joined by a path. Similarly, as explained earlier,
each vertex must have even degree in order for a graph to have an Eulerian Tour. Therefore we
need only show that if a graph is connected and each vertex has even degree, then it has an
Eulerain Tour. We do so with a recursive construction. If G has one vertex and no edges, we
have an Eulerian tour consisting of one vertex and no edges. So suppose G is connected, has at
least one edge, and each vertex of G has even degree. Now, given distinct vertices x0, x1, . . . ,
xi and edges ε1, ε2, . . . , εi such that x0ε1x1 . . . εixi is a path, choose an edge εi+1 from xi to
a vertex xj+1. If xj+1 is x0, stop. Eventually this process must stop because G is finite, and
(since each vertex in G has even degree) when we enter a vertex other than x0, there will be an
edge on which we can leave it. This gives us a closed path C. Delete the edges of this closed
path from the edge set of G. This gives us a graph G′ in which each vertex has even degree,
because we have removed two edges incident with each vertex of the closed path (or else we have
removed a loop). However, G′ need not be connected. Each connected component of G′ is a
connected graph in which each vertex has even degree. Further, each connected component of
G′ contains at least one element xi. (Suppose a connected component C contained no xi. Since
G is connected, for each i, there is a path in G from each vertex in C to each vertex xi. Choose
the shortest such path, and suppose it connects a vertex y in C to xj . Then no edge in the path
can be in the closed path, or else we would have a shorter path from y to a different vertex xi.
Therefore removing the edges of the closed path leaves y connected to xj in C, so that C contains
an xi after all, a contradiction.) We may assume inductively that each connected component has
fewer edges than G, so each connected component has an Eulerian Tour. Now we may begin to
recursively construct an Eulerian Tour of G by starting at xj , and taking an Eulerian Tour of
the connected component containing xj . Then given a sequence xj , x1, . . . , xk such that the
Eulerian tour we have constructed so far includes the vertices xj through xk, the vertices and
edges of the connected components of G′ containing the vertices xk through xk, the edges εj+1

through εk, we add the edge ek+1 and the vertex xk+1 to our tour, and if the vertices and edges of
the connected component of G′ containing xk+1 are not already in our tour, we add an Eulerian
Tour of the connected component of G′ containing xk+1 to our tour. When we add the last edge
and vertex of our closed path to the path we have been constructing, every vertex and edge of the
graph will have to be in the path we have constructed, because every vertex is in some connected
component of G′, and every edge is either an edge of the first closed path or an edge of some
connected component of G′. Therefore if G is connected and each vertex of G has even degree,
then G has an Eulerian Tour.

A graph with an Eulerian Tour is called an Eulerian Graph.

6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 291

In Exercise 6.3-4, each vertex other than the initial and final vertices of the walk must have
even degree by the same reasoning we used for Eulerian tours. But the initial vertex must have
odd degree, because the first time we encounter it in our Eulerian Trail it is incident with one
edge in the path, but each succeeding time it is incident with two edges in the path. Similarly
the final vertex must have odd degree. This makes it natural to guess the following theorem.

Theorem 6.10 A graph G has an Eulerian Trail if and only if G is connected and all but two
of the vertices of G have even degree.

Proof: We have already shown that if G has an Eulerian Trail, then all but two vertices of G
have even degree and these two vertices have odd degree.

Now suppose that G is a connected graph in which all but two vertices have even degree.
Suppose the two vertices of odd degree are x and y. Add an edge ε joining x and y to the edge
set of G to get G′. Then G′ has an Eulerian Tour by Theorem 6.9. One of the edges of the tour
is the added edge. We may traverse the tour starting with any vertex and any edge following
that vertex in the tour, so we may begin the tour with either xεy or yεx. By removing the first
vertex and ε from the tour, we get an Eulerian Trail.

By Theorem 6.10, there is no Eulerian Trail in Exercise 6.3-5.

Notice that our proof of Theorem 6.9 gives us a recursive algorithm for constructing a Tour.
Namely, we find a closed walk W starting and ending at a vertex we choose, identify the connected
components of the graph G−W that results from removing the closed walk, and then follow our
closed walk, pausing each time we enter a new connected component of G − W to recursively
construct an Eulerian Tour of the component and traverse it before returning to following our
closed walk. It is possible that the closed walk we remove has only one edge (or in the case of a
simple graph, some very small number of edges), and the number of steps needed for a breadth
first search is Θ(e′), where e′ the number of edges in the graph we are searching. Thus our
construction could take Θ(e) steps, each of which involves examining Θ(e) edges, and therefore
our algorithm takes O(e2) time. (We get a big Oh bound and not a big Theta bound because it
is also possible that the closed walk we find the first time is an Eulerian tour.)

It is an interesting observation on the progress of mathematical reasoning that Euler made a
big deal in his paper of explaining why it is necessary for each land mass to have an even number
of bridges, but seemed to consider the process of constructing the path rather self-evident, as if it
was hardly worth comment. For us, on the other hand, proving that the construction is possible
if each land mass has an even number of bridges (that is, showing that the condition that each
land mass has an even number of bridges is a sufficient condition for the existence of an Eulerian
tour) was a much more significant effort than proving that having an Eulerian tour requires that
each land mass has an even number of bridges. The standards of what is required in order to
back up a mathematical claim have changed over the years.

Hamiltonian Paths and Cycles

A natural question to ask in light of our work on Eulerian tours is whether we can state necessary
and sufficient conditions for a graph to have a closed path that includes each vertex exactly once
(except for the beginning and end). An answer to this question would have the potential to be
quite useful. For example, a salesperson might have to plan a trip through a number of cities

292 CHAPTER 6. GRAPHS

which are connected by a network of airline routes. Planning the trip so the salesperson would
travel through a city only when stopping there for a sales call would minimize the number of flights
the needed. This question came up in a game, called “around the world,” designed by William
Rowan Hamilton. In this game the vertices of the graph were the vertices of a dodecahedron (a
twelve sided solid in which each side is a pentagon), and the edges were the edges of the solid.
The object was to design a trip that started at one vertex and visited each vertex once and then
returned to the starting vertex along an edge. Hamilton suggested that players could take turns,
one choosing the first five cities on a tour, and the other trying to complete the tour. It is because
of this game that a cycle that includes each vertex of the graph exactly once (thinking of the
first and last vertex of the cycle as the same) is called a Hamiltonian Cycle. A graph is called
Hamiltonian if it has a Hamiltonian cycle.. A Hamiltonian Path is a simple path that includes
each vertex of the graph exactly once. It turns out that nobody yet knows (and as we shall explain
briefly at the end of the section, it may be reasonable to expect that nobody will find) uesful
necessary and sufficient conditions for a graph to have a Hamiltonian Cycle or a Hamiltonian
Path that are significantly easier to verify than trying all permutations of the vertices to see if
taking the vertices in the order of that permutation to see if that order defines a Hamiltonian
Cycle or Path. For this reason this branch of graph theory has evolved into theorems that give
sufficient conditions for a graph to have a Hamiltonian Cycle or Path; that is theorems that say
all graphs of a certain type have Hamiltonian Cycles or Paths, but do not characterize all graphs
that have Hamiltonian Cycles of Paths.

Exercise 6.3-6 Describe all values of n such that a complete graph on n vertices has a
Hamiltonian Path. Describe all values of n such that a complete graph on n vertices
has a Hamiltonian Cycle.

Exercise 6.3-7 Determine whether the graph of Figure 6.1 has a Hamiltonian Cycle or
Path, and determine one if it does.

Exercise 6.3-8 Try to find an interesting condition involving the degrees of the vertices
of a simple graph that guarantees that the graph will have a Hamiltonian cycle.
Does your condition apply to graphs that are not simple? (There is more than one
reasonable answer to this exercise.)

In Exercise 6.3-6, the path consisting of one vertex and no edges is a Hamiltonian path but
not a Hamiltonian cycle in the complete graph on one vertex. (Recall that a path consisting of
one vertex and no edges is not a cycle.) Similarly, the path with one edge in the complete graph
K2 is a Hamiltonian path but not a Hamiltonian cycle, and since K2 has only one edge, there
is no Hamiltonian cycle in the K2. In the complete graph Kn, any permutation of the vertices
is a list of the vertices of a Hamiltonian path, and if n > 3, such a Hamiltonian Path from x1

to xn, followed by the edge from xn to x1 and the vertex x1 is a Hamiltonian Cycle. Thus each
complete graph has a Hamiltonian Path, and each complete graph with more than three vertices
has a Hamiltonian Cycle.

In Exercise 6.3-7, the path with vertices NO, A, MI, W , P , NY , B, CH, CL, and ME is a
Hamiltonian Path, and adding the edge from ME to NO gives a Hamiltonian Cycle.

Based on our observation that the complete graph on n vertices has a Hamiltonian Cycle if
n > 2, we might let our condition be that the degree of each vertex is one less than the number
of vertices, but this would be uninteresting since it would simply restate what we already know

6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 293

for complete graphs. The reason why we could say that Kn has a Hamiltonian Cycle when n > 3
was that when we entered a vertex, there was always an edge left on which we could leave the
vertex. However the condition that each vertex has degree n − 1 is stronger than we needed,
because until we were at the second-last vertex of the cycle, we had more choices than we needed
for edges on which to leave the vertex. On the other hand, it might seem that even if n were
rather large, the condition that each vertex should have degree n − 2 would not be sufficient to
guarantee a Hamiltonian cycle, because when we got to the second last vertex on the cycle, all
of the n − 2 vertices it is adjacent to might already be on the cycle and different from the first
vertex, so we would not have an edge on which we could leave that vertex. However there is the
possibility that when we had some choices earlier, we might have made a different choice and
thus included this vertex earlier on the cycle, giving us a different set of choices at the second
last vertex. In fact, if n > 3 and each vertex has degree at least n − 2, then we could choose
vertices for a path more or less as we did for the complete graph until we arrived at vertex n− 1
on the path. Then we could complete a Hamiltonian path unless xn−1 was adjacent only to the
first n − 2 vertices on the path. In this last case, the first n − 1 vertices would form a cycle,
because xn−1 would be adjacent to x1. Suppose y was the vertex not yet on the path. Since y
has degree n − 2 and y is not adjacent to xn−1, y would have to be adjacent to the first n − 2
vertices on the path. Then since n > 3, we could take the path x1yx2 . . . xn−1x1 and we would
have a Hamiltonian cycle. Of course unless n were four, we could also insert y between x2 and
x3 (or any xi−1 and xi such that i < n − 1, so we would still have a great deal of flexibility.
To push this kind of reasoning further, we will introduce a new technique that often appears in
graph theory. We will point out our use of the technique after the proof.

Theorem 6.11 (Dirac) If every vertex of a v-vertex simple graph G with at least three vertices
has degree at least v/2, then G has a Hamiltonian cycle.

Proof: Suppose, for the sake of contradiction that there is a graph G1 with no Hamiltonian
Cycle in which each vertex has degree at least v/2. If we add edges joining existing vertices to
G1, each vertex will still have degree at least v/2. If add all possible edges to G1 we will get a
complete graph, and it will have a Hamiltonian cycle. Thus if we continue adding edges to G1,
we will at some point reach a graph that does have a Hamiltonian cycle. Instead, we add edges to
G1 until we reach a graph G2 that has no Hamiltonian cycle but has the property that if we add
any edge to G2, we get a Hamiltonian cycle. We say G2 is maximal with respect to not having
a Hamiltonian cycle. Suppose x and y are not adjacent in G2. Then adding an edge between
x and y to G2 gives a graph with a Hamiltonian cycle, and x and y must be connected by the
added edge in this Hamiltonian cycle. (Otherwise G2 would have a Hamiltonian cycle.) Thus G2

has a Hamiltonian path x1x2 . . . xv that starts at x = x1 and ends at y = xv. Further x and y
are not adjacent.

Before we stated our theorem we considered a case where we had a cycle on f − 1 vertices
and were going to put an extra vertex into it between two adjacent vertices. Now we have a path
on f vertices from x = x1 to y = xf , and we want to convert it to a cycle. If we had that y
is adjacent to some vertex xi on the path while x is adjacent to xi+1, then we could construct
the Hamiltonian cycle x1xi+1xi+2 . . . xfxixi−1 . . . x2x1. But we are assuming our graph does not
have a Hamiltonian cycle. Thus for each xi that x is adjacent to on the path x1x2 . . . xv, y is not
adjacent to xi−1. Since all vertices are on the path, x is adjacent to at least v/2 vertices among
x2 through xv. Thus y is not adjacent to at least v/2 vertices among x1 through xv−1. But there
are only v − 1 vertices, namely x1 through xv−1, vertices y could be adjacent to, since it is not

294 CHAPTER 6. GRAPHS

adjacent to itself. Thus y is adjacent at most v − 1 − v/2 = v/2 − 1 vertices, a contradiction.
Therefore if each vertex of a simple graph has degree at least v/2, the graph has a Hamiltonian
Cycle. The new tachnique was that of assuming we had a maximal graph (G2) that did not
have our desired property and then using this maximal graph in a proof by contradiction.

Exercise 6.3-9 Suppose v = 2k and consider a graph G consisting of two complete graphs,
one with k vertices, x1, . . . xk and one with k + 1 vertices, xk, . . . x2k. Notice that we
get a graph with exactly 2k vertices, because the two complete graphs have one vertex
in common. How do the degrees of the vertices relate to v? Does the graph you get
have a Hamiltonian cycle? What does this say about whether we can reduce the lower
bound on the degree in Theorem 6.11?

Exercise 6.3-10 In the previous exercise, is there a similar example in the case v = 2k+1?

In Exercise 6.3-9, the vertices that lie in the complete graph with k vertices, with the exception
of xk, have degree k − 1. Since v/2 = k, this graph does not satisfy the hypothesis of Dirac’s
theorem which assumes that every vertex of the graph has degree at least v/2. We show the case
in which k = 3 in Figure 6.18.

Figure 6.18: The vertices of K4 are white or grey; those of K3 are black or grey.

You can see that the graph in Figure 6.18 has no Hamiltonian cycle as follows. If an attempt
at a Hamiltonian cycle begins at a white vertex, after crossing the grey vertex to include the
black ones, it can never return to a white vertex without using the grey one a second time. The
situation is similar if we tried to begin a Hamiltonian cycle at a black vertex. If we try to begin
a Hamiltonian cycle at the grey vertex, we would next have to include all white vertices or all
black vertices in our cycle and would then be stymied because we would have to take our path
through the grey vertex a second time to change colors between white and black. As long as
k ≥ 2, the same argument shows that our graph has no Hamiltonian cycle. Thus the lower bound
of v/2 in Dirac’s theorem is tight; that is, we have a way to construct a graph with minimum
degree v/2 − 1 (when v is even) for which there is no Hamiltonian cycle. If v = 2k + 1 we might
consider two complete graphs of size k + 1, joined at a single vertex. Each vertex other than
the one at which they are joined would have degree k, and we would have k < k + 1/2 = v/2,
so again the minimum degree would be less than v/2. The same kind of argument that we used
with the graph in Figure 6.18 would show that as long as k ≥ 1, we have no Hamiltonian cycle.

If you analyze our proof of Dirac’s theorem, you will see that we really used only a consequence
of the condition that all vertices have degree at least v/2, namely that for any two vertices, the
sum of their degrees is at least n.

Theorem 6.12 (Ore) If G is a v-vertex simple graph with n ≥ 3 such that for each two nonad-
jacent vertices x and y the sum of the degrees of x and y is at least v, then G has a Hamiltonian
cycle.

6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 295

Proof: See Problem 13.

NP-Complete Problems

As we began the study of Hamiltonian Cycles, we mentioned that the problem of determining
whether a graph has a Hamiltonian Cycle seems significantly more difficult than the problem
of determining whether a graph has a Eulerian Tour. On the surface these two problems have
significant similarities.

• Both problems whether a graph has a particular property. (Does this graph have a Hamil-
tonian/Eulerian closed path?) The answer is simply yes or no.

• For both problems, there is additional information we can provide that makes it relatively
easy to check a yes answer if there is one. (The additional information is a closed path. We
simply check whether the closed path includes each edge or each vertex exactly once.)

But there is a striking difference between the two problems as well. It is reasonably easy to
find an Eulerian path in a graph that has one (we saw that the time to use the algorithm implicit
in the proof of Theorem 6.9 is O(e2) where e is the number of edges of the graph. However,
nobody knows how to actually find a permutation of the vertices that is a Hamiltonian path
without checking essentially all permutations of the vertices.8 This puts us in an interesting
position. Although if someone gets lucky and guesses a permutation that is a Hamiltonian path,
we can quickly verify the person’s claim to have a Hamiltonian path, but in a graph of reasonably
large size we have no practical method for finding a Hamiltonian path.

This difference is the essential difference between the class P of problems said to be solvable in
polynomial time and the class NP of problems said to be solvable in nondeterministic polynomial
time. We are not going to describe these problem classes in their full generality. A course in formal
languages or perhaps algorithms is a more appropriate place for such a discussion. However in
order to give a sense of the difference between these kinds of problems, we will talk about them
in the context of graph theory. A question about whether a graph has a certain property is called
a graph decision problem. Two examples are the question of whether a graph has an Eulerian
tour and the question of whether a graph has a Hamiltonian cycle.

A graph decision problem has a yes/no answer. A P-algorithm or polynomial time algorithm
for a property takes a graph as input and in time O(nk), where k is a positive integer independent
of the input graph and n is a measure of the amount of information needed to specify the input
graph, it outputs the answer “yes” if and only if the graph does have the property. We say the
algorithm accepts the graph if it answers yes. (Notice we don’t specify what the algorithm does
if the graph does not have the property, except that it doesn’t output yes.) We say a property
of graphs is in the class P if there is a P-algorithm that accepts exactly the graphs with the
property.

An NP-algorithm (non-deterministic polynomial time) for a property takes a graph and O(nj)
additional information, and in time O(nk), where k and j are positive integers independent of

8We say essentially because one can eliminate some permutations immediately; for example if there is no edge
between the first two elements of the permutation, then not only can we ignore the rest of this permutation, but we
may ignore any other permutation that starts in this way. However nobody has managed to find a sub-exponential
time algorithm for solving the Hamiltonian cycle problem.

296 CHAPTER 6. GRAPHS

the the input graph and n is a measure of the amount of information needed to specify the input
graph, outputs the answer yes if and only if it can use the additional information to determine that
the graph has the property. For example for the property of being Hamiltonian, the algorithm
might input a graph and a permutation of the vertex set of the graph. The algorithm would then
check the permutation to see if it lists the vertices in the order of a Hamiltonian cycle and output
“yes” if it does. We say the algorithm accepts a graph if there is additional information it can use
with the graph as an input to output “yes.” We call such an algorithm nondeterministic, because
whether or not it accepts a graph is determined not merely by the graph but by the additional
information as well. In particular, the algorithm might or might not accept every graph with the
given property. We say a property is in the class NP if there is an NP-algorithm that accepts
exactly the graphs with the property. Since graph decision problems ask us to decide whether
or not a graph has a given problem, we adopt the notation P and NP to describe problems as
well. We say a decision problem is in P or NP if the graph property it asks us to decide is in P
or NP respectively.

When we say that a nondeterministic algorithm uses the additional information, we are think-
ing of “use” in a very loose way. In particular, for a graph decision problem in P, the algorithm
could simply ignore the additional information and use the polynomial time algorithm to de-
termine whether the answer should be yes. Thus every graph property in P is also in NP as
well. The question as to whether P and NP are the same class of problems has vexed computer
scientists since it was introduced in 1968.

Some problems in NP, like the Hamiltonian path problem have an exciting feature: any
instance9 of any problem in NP can be translated in O(nk) steps, where n and k are as before,
into O(nj) instances of the Hamilton path problem, where j is independent of n and k. In
particular, the answer to the original problem is yes if and only if the answer to one of the
Hamiltonian path problems is yes. The translation preserves whether or not the graph in the
original instance of the problem is accepted. We say that the Hamiltonian Path problem is NP-
complete. More generally, a problem in NP is called NP-complete if, for each other problem
in NP, we can devise an algorithm for the second problem that has O(nk) steps (where n is a
measure of the size of the input graph, and k is independent of n), including counting as one step
solving an instance of the first problem, and accepts exactly the instances of the second problem
that have a yes answer. The question of whether a graph has a clique (a subgraph that is a
complete graph) of size j is another problem in NP that is NP-complete. In particular, if one
NP complete problem has a polynomial time algorithm, every problem in NP is in P. Thus we
can determine in polynomial time whether an arbitrary graph has a Hamiltonian path if and only
if we can determine in polynomial time whether an arbitrary graph has a clique of (an arbitrary)
size j. Literally hundreds of interesting problems are NP-complete. Thus a polynomial time
solution to any one of them would provide a polynomial time solution to all of them. For this
reason, many computer scientists consider a demonstration that a problem is NP-complete to be
a demonstration that it is unlikely to be solved by a polynomial time algorithm.

This brief discussion of NP-completeness is intended to give the reader a sense of the nature
and importance of the subject. We restricted ourselves to graph problems for two reasons. First,
we expect the reader to have a sense of what a graph problem is. Second, no treatment of graph
theory is complete without at least some explanation of how some problems seem to be much more
intractable than others. However, there are NP-complete problems throughout mathematics and

9An instance of a problem is a case of the problem in which all parameters are specified; for example a particular
instance of the Hamiltonian Cycle problem is a case of the problem for a particular graph.

6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 297

computer science. Providing a real understanding of the subject would require much more time
than is available in an introductory course in discrete mathematics.

Important Concepts, Formulas, and Theorems

1. A graph that has a path, starting and ending at the same place, that includes each vertex
at least once and each edge once and only once is called an Eulerian Graph. Such a path
is known as an Eulerian Tour or Eulerian Circuit.

2. A graph has an Eulerian Tour if and only if it is connected and each vertex has even degree.

3. A path that includes each vertex of the graph at least once and each edge of the graph
exactly once, but has different first and last endpoints, is known as an Eulerian Trail

4. A graph G has an Eulerian Trail if and only if G is connected and all but two of the vertices
of G have even degree.

5. A cycle that includes each vertex of a graph exactly once (thinking of the first and last
vertex of the cycle as the same) is called a Hamiltonian Cycle. A graph is called Hamiltonian
if it has a Hamiltonian cycle.

6. A Hamiltonian Path is a simple path that includes each vertex of the graph exactly once.

7. (Dirac’s Theorem) If every vertex of a v-vertex simple graph G with at least three vertices
has degree at least v/2, then G has a Hamiltonian cycle.

8. (Ore’s Theorem) If G is a v-vertex simple graph with v ≥ 3 such that for each two non-
adjacent vertices x and y the sum of the degrees of x and y is at least v, then G has a
Hamiltonian cycle.

9. A question about whether a graph has a certain property is called a graph decision problem.

10. A P-algorithm or polynomial time algorithm for a property takes a graph as input and in
time O(nk), where k is a positive integer independent of the input graph and n is a measure
of the amount of information needed to specify the input graph, it outputs the answer “yes”
if and only if the graph does have the property. We say the algorithm accepts the graph if
it answers yes.

11. We say a property of graphs is in the class P if there is a P-algorithm that accepts exactly
the graphs with the property.

12. An NP-algorithm (non-deterministic polynomial time) for a property takes a graph and
O(nj) additional information, and in time O(nk), where k and j are positive integers
independent of the the input graph and n is a measure of the amount of information
needed to specify the input graph, outputs the answer yes if and only if it can use the
additional information to determine that the graph has the property.

13. A graph decision problem in NP if called NP-complete if, for each other problem in NP,
we can devise an algorithm for the second problem that has O(nk) steps (where n is a
measure of the size of the input graph, and k is independent of n), including counting as
one step solving an instance of the first problem, and accepts exactly the instances of the
second problem that have a yes answer.

298 CHAPTER 6. GRAPHS

Figure 6.19: Some graphs

(a) (b) (c)

(d)

1 1 1 1

3 3

3
3

4 4 4

4

5 5

5

5

2 2
2

2 6

7

8

Problems

1. For each graph in Figure 6.19, either explain why the graph does not have an Eulerian
circuit or find an Eulerian Circuit.

2. For each graph in Figure 6.20, either explain why the graph does not have an Eulerian Trail
or find an Eulerian Trail.

Figure 6.20: Some more graphs

(a) (b) (c)

(d)

1 1 1 1

3 3

3
3

4 4 4

4

5 5

5

5

2 2
2

2 6

7

8

3. What is the minimum number of new bridges that would have to be built in Königsberg
and where could they be built in order to give a graph with an Eulerian circuit?

4. If we built a new bridge in Königsberg between the Island and the top and bottom banks
of the river, could we take a walk that crosses all the bridges and uses none twice? Either
explain where could we start and end in that case or why we couldn’t do it.

5. For which values of n does the complete graph on n vertices have an Eulerian Circuit?

6. The hypercube graph Qn has as its vertex set the n-tuples of zeros and ones. Two of these
vertices are adjacent if and only if they are different in one position. The name comes from
the fact that Q3 can be drawn in three dimensional space as a cube. For what values of n
is Qn Eulerian?

7. For what values of n is the hypercube graph Qn (see Problem 6) Hamiltonian?

8. Give an example of a graph which has a Hamiltonian cycle but no Eulerian Circuit and a
graph which has an Eulerian Circuit but no Hamiltonian Cycle.

6.3. EULERIAN AND HAMILTONIAN PATHS AND TOURS 299

9. The complete bipartite graph Km,n is a graph with m + n vertices. These vertices are
divided into a set of size m and a set of size n. We call these sets the parts of the graph.
Within each of these sets there are no edges. But between each pair of vertices in different
sets, there is an edge. The graph K4,4 is pictured in part (d) of Figure 6.19.

(a) For what values of m and n is Km,n Eulerian?

(b) For which values of m and n is Km,n Hamiltonian?

10. Show that the edge set of a graph in which each vertex has even degree may be partitioned
into edge sets of cycles of the graph.

11. A cut-vertex of a graph is a vertex whose removal (along with all edges incident with it)
increases the number of connected components of the graph. Describe any circumstances
under which a graph with a cut vertex can be Hamiltonian.

12. Which of the graphs in Figure 6.21 satisfy the hypotheses of Dirac’s Theorem? of Ore’s
Theorem? Which have Hamiltonian cycles?

Figure 6.21: Which of these graphs have Hamiltonian Cycles?

(a) (b) (c) (d)

13. Prove Theorem 6.12.

14. The Hamiltonian Path problem is the problem of determining whether a graph has a Hamil-
tonian Path. Explain why this problem is in NP. Explain why the problem of determining
whether a graph has a Hamiltonian Path is NP-complete.

15. The k-Path problem is the problem of determining whether a graph on n vertices has a
path of length k, where k is allowed to depend on n. Show that the k-Path problem is
NP-complete.

16. We form the Hamiltonian closure of a graph by constructing a sequence of graphs Gi with
G0 = G, and Gi formed from Gi−1 by adding an edge between two nonadjacent vertices
whose degree sum is at least nv. When we reach a Gi to which we cannot add such an
edge, we call it a Hamiltonian Closure of G. Prove that a Hamiltonian Closure of a simple
graph G is Hamiltonian if and only if G is.

17. Show that a simple connected graph has one and only one Hamiltonian closure.

300 CHAPTER 6. GRAPHS

6.4 Matching Theory

The idea of a matching

Suppose a school board is deciding among applicants for faculty positions. The school board has
positions for teachers in a number of different grades, a position for an assistant librarian, two
coaching positions, and for high school math and English teachers. They have many applicants,
each of whom can fill more than one of the positions. They would like to know whether they can
fill all the positions with people who have applied for jobs and have been judged as qualified.

Exercise 6.4-1 Table 6.1 shows a sample of the kinds of applications a school district might
get for its positions. An x below an applicant’s number means that that applicant

Table 6.1: Some sample job application data

job\applicant 1 2 3 4 5 6 7 8 9
assistant librarian x x x
second grade x x x x
third grade x x x
high school math x x x
high school English x x x
asst baseball coach x x x x
asst football coach x x x

qualifies for the position to the left of the x. Thus candidate 1 is qualified to teach
second grade, third grade, and be an assistant librarian. The coaches teach physical
education when they are not coaching, so a coach can’t also hold one of the listed
teaching positions. Draw a graph in which the vertices are labelled 1 through 9 for
the applicants, and s, t, l, m, e, b, and f for the positions. Draw an edge from an
applicant to a position if that applicant can fill that position. Use the graph to help
you decide if it is possible to fill all the positions from among the applicants deemed
suitable. If you can do so, give an assignment of people to jobs. If you cannot, try to
explain why not.

Exercise 6.4-2 Table 6.2 shows a second sample of the kinds of applications a school
district might get for its positions. Draw a graph as before and use it to help
you decide if it is possible to fill all the positions from among the applicants deemed
suitable. If you can do so, give an assignment of people to jobs. If you cannot, try to
explain why not.

The graph of the data in Table 6.1 is shown in Figure 6.22.

From the figure it is clear that l:1, s:2, t:4, m:5, e:6, b:7, f :8 is one assignment of jobs to people
that works. This assignment picks out a set of edges that share no endpoints. For example, the
edge from l to 1 has no endpoint among s, t, m, e, b, f , 2, 3, 4, 5, 6, 7, or 8. A set of edges
in a graph that share no endpoints is called a matching of the graph. Thus we have a matching
between jobs and people that can fill the jobs. Since we don’t want to assign two jobs to one

6.4. MATCHING THEORY 301

Table 6.2: Some other sample job application data

job\applicant 1 2 3 4 5 6 7 8 9
library assistant x x
second grade x x x 8
third grade x x x x x
high school math x x x
high school English x x
asst baseball coach x x x x
asst football coach x x x

Figure 6.22: A graph of the data from Table 6.1.

l s t m e b f

1 2 3 4 5 6 7 8 9

person or two people to one job, this is exactly the sort of solution we were looking for. Notice
that the edge from l to 1 is a matching all by itself, so we weren’t simply looking for a matching;
we were looking for a matching that fills all the jobs. A matching is said to saturate a set X of
vertices if every vertex in X is matched. We wanted a matching that saturates the jobs. In this
case a matching that saturates all the jobs is a matching that is as big as possible, so it is also a
maximum matching, that is, a matching that is at least as big as any other matching.

The graph in Figure 6.22 is an example of a “bipartite graph.” A graph is called bipartite
whenever its vertex set can be partitioned into two sets X and Y so that each edge connects a
vertex in X with a vertex in Y . We can think of the jobs as the set X and the applicants as the
set Y . Each of the two sets is called a part of the graph. A part of a bipartite graph is an example
of an “independent set.” A subset of the vertex set of a graph is called independent if no two of
its vertices are joined by an edge. Thus a graph is bipartite if and only if its vertex set is a union
of two independent sets. Notice that a bipartite graph cannot have any loop edges, because a
loop would connect a vertex to a vertex in the same set. More generally, a vertex joined to itself
by a loop cannot be in an independent set.

In a bipartite graph, it is sometimes easy to pick a maximum matching out just by staring at
a drawing of the graph. However that is not always the case. Figure 6.23 is a graph of the data
in Table 6.2. Staring at this Figure gives us many matchings, but no matching that saturates
the set of jobs. But staring is not a proof, unless we can describe what we are staring at very
well. Perhaps you tried to construct a matching by matching l to 4, s to 2, t to 7, m to 5, e to 6,
b to 7, and then were frustrated when you got to f and 4, 5 and 6 were already used. You may
then have gone back and tried to redo your earlier choices so as to keep one of 4, 5, or 6 free, and
found you couldn’t do so. This is because jobs l, m, e, and f are adjacent only to people 4, 5,

302 CHAPTER 6. GRAPHS

Figure 6.23: A graph of the data of Table 6.2.

l s t m e b f

1 2 3 4 5 6 7 8 9

and 6. Thus there are only three people qualified for these four jobs, and so there is no way we
can fill them all.

We call the set N(S) of all vertices adjacent to at least one vertex of S the neighborhood of S
or the neighbors of S. In these terms, there is no matching that saturates a part X of a bipartite
graph if there is some subset S of X such that the set N(S) of neighbors of S is smaller than S.
We call the set N(S) of all vertices adjacent to at least one vertex of S the neighborhood of S or
the neighbors of S. In symbols, we can summarize as follows.

Lemma 6.13 If we can find a subset S of a part X of a bipartite graph G such that |N(S)| < |S|,
then there is no matching of G that saturates X.

Proof: A matching that saturates X must saturate S. But if there is such a matching,
each element of S must be matched to a different vertex, and this vertex cannot be in S since
S ⊆ X. Therefore there are edges from vertices in S to at least |S| different vertices not in S, so
|N(S)| > |S|, a contradiction. Thus there is no such matching.

This gives a proof that there is no matching that saturates all the jobs, so the matching that
matches l to 4, s to 2, t to 7, m to 5, e to 6, b to 7 is a maximum matching for the graph in
Figure 6.23.

Another method you may have used to prove that there is no larger matching than the one
we found is the following. When we matched l to 4, we may have noted that 4 is an endpoint of
quite a few edges. Then when we matched s to 2, we may have noted that s is an endpoint of
quite a few edges, and so is t. In fact, 4, s, and t touch 12 edges of the graph, and there are only
23 edges in the graph. If we could find three more vertices that touch the remaining edges of the
graph, we would have six vertices that among them are incident with every edge. A set of vertices
such that at least one of them is incident with each edge of a graph G is called a vertex cover
of the edges of G, or a vertex cover of G for short. What does this have to do with a matching?
Each matching edge would have to touch one, or perhaps two of the vertices in a vertex cover of
the edges. Thus the number of edges in a matching is always less than the number of vertices in
a vertex cover of the edges of a graph. Thus if we can find a vertex cover of size six in our graph
in Figure 6.23, we will know that there is no matching that saturates the set of jobs since there
are seven jobs. For future reference, we state our result about the size of a matching and the size
of a vertex cover as a lemma.

Lemma 6.14 The size of a matching in a graph G is no more than the size of a vertex cover of
G.

6.4. MATCHING THEORY 303

Proof: Given in the preceding discussion.

We have seen that 4, s, and t are good candidates for being members of a relatively small
vertex cover of the graph in Figure 6.23, since they cover more than half the edges of the graph.
Continuing through the edges we first examined, we see that m, 6, and b are good candidates
for a small vertex cover as well. In fact, {4, s, t, m, 6, b} do form a vertex cover. Since we have
a vertex cover of size six, we know a maximum matching has size no more than six. Since we
have already found a six-edge matching, that is a maximum matching. Therefore with the data
in Table 6.2, it is not possible to fill all the jobs.

Making matchings bigger

Practical problems involving matchings will usually lead us to search for the largest possible
matching in a graph. To see how to use a matching to create a larger one, we will assume we
have two matchings of the same graph and see how they differ, especially how a larger one differs
from a smaller one.

Exercise 6.4-3 In the graph G of Figure 6.22, let M1 be the matching {l, 1}, {s, 2}, {t, 4},
{m, 5}, {e, 6}, {b, 9}, {f, 8}, and let M2 be the matching {l, 4}, {s, 2} {t, 1}, {m, 6},
{e, 7} {b, 8}. Recall that for sets S1 and S2 the symmetric difference of S1 and S2,
denoted by S1∆S2 is (S1 ∪ S2) − (S1 ∩ S2). Compute the set M1∆M2 and draw the
graph with the same vertex set as G and edge set M1∆M2. Use different colors or
textures for the edges from M1 and M2 so you can see their interaction. Describe the
kinds of graphs you see as connected components as succinctly as possible.

Exercise 6.4-4 In Exercise 6.4-3, one of the connected components suggests a way to
modify M2 by removing one or more edges and substituting one or more edges from
M1 that will give you a larger matching M ′

2 related to M2. In particular, this larger
matching should saturate everything M2 saturates and more. What is M ′

2 and what
else does it saturate?

Exercise 6.4-5 Consider the matching M = {s, 1}, {t, 4}, {m, 6}, {b, 8} in the graph of
Figure 6.23. How does it relate to the simple path whose vertices are 3, s, 1, t, 4, m, 6, f?
Say as much as you can about the set M ′ that you obtain from M by deleting the
edges of M that are in the path and adding to the result the edges of the path that
are not in M .

In Exercise 6.4-3

M1∆M2 = {l, 1}, {l, 4}, {t, 4}, {t, 1}, {m, 5}, {m, 6}, {e, 6}, {e, 7}, {b, 8}, {f, 8}, {b, 9}.

We have drawn the graph in Figure 6.24. We show the edges of M2 as dashed. As you see,
it consists of a cycle with four edges, alternating between edges of M1 and M2, a path with four
edges, alternating between edges of M1 and M2, and a path with three edges, alternating between
edges of M1 and M2. We call a simple path or cycle an alternating path or alternating cycle for
a matching M of a graph G if its edges alternate between edges in M and edges not in M . Thus
our connected components were alternating paths and cycles for both M1 and M2. The example
we just discussed shows all the ways in which two matchings can differ in the following sense.

304 CHAPTER 6. GRAPHS

Figure 6.24: The graph for Exercise 6.4-3.

l s t m e b f

1 2 3 4 5 6 7 8 9

Lemma 6.15 (Berge) If M1 and M2 are matchings of a graph G = (V, E) then the connected
components of M1∆M2 are cycles with an even number of vertices and simple paths. Further,
the cycles and paths are alternating cycles and paths for both M1 and M2.

Proof: Each vertex of the graph (V, M1∆M2) has degree 0, 1, or two. If a component has
no cycles it is a tree, and the only kind of tree that has vertices of degree 1 and two is a simple
path. If a component has a cycle, then it cannot have any edges other than the edges of the cycle
incident with its vertices because the graph would then have a vertex of degree 3 or more. Thus
the component must be a cycle. If two edges of a path or cycle in (V, M1∆M2) share a vertex,
they cannot come from the same matching, since two edges in the same matching do not share
a vertex. Thus alternating edges of a path or cycle of (V, M1∆M2) must come from different
matchings.

Corollary 6.16 If M1 and M2 are matchings of a graph G = (V, E) and |M2| < |M1|, then there
is an alternating path for M1 and M2 that starts and ends with vertices saturated by M2 but not
by M1.

Proof: Since an even alternating cycle and an even alternating path in (V, M1∆M2) have
equal numbers of edges from M1 and M2, at least one component must be an alternating path
with more edges from M1 than M2, because otherwise |M2| ≤ |M1|. Since this is a component of
(V, M1∆M2), its endpoints lie only in edges of M2, so they are saturated by M2 but not M1.

The path with three edges in Exercise 6.4-3 has two edges of M1 and one edge of M2. We see
that if we remove {b, 8} from M2 and add {b, 9} and {f, 8}, we get the matching

M ′
2 = {{l, 4}, {s, 2}, {t, 1}, {m, 6}, {e, 7}, {b, 9}, {f, 8}}.

This answers the question of Exercise 6.4-4. Notice that this matching saturates everything M2

does, and also saturates vertices f and 9.

In Figure 6.25 we have shown the matching edges of the path in Exercise 6.4-5 in bold and
the non-matching edges of the path as dashed. The edge of the matching not in the path is
shown in zig-zag. Notice that the dashed edges and the zig-zag edge form a matching which is
larger than M and saturates all the vertices that M does in addition to 3 and f . The path begins
and ends with unmatched vertices, namely 3 and f , and and alternates between matching edges
and non-matching edges. All but the first and last vertices of such a path lie on matching edges
of the path and the endpoints of the path do not lie on matching edges. Thus no edges of the
matching that are not path-edges will be incident with vertices on the path. Thus if we delete all
the matching edges of the path from M and add all the other edges of the path to M , we will get

6.4. MATCHING THEORY 305

Figure 6.25: The path and matching of Exercise 6.4-5.

l s t m e b f

1 2 3 4 5 6 7 8 9

a new matching, because by taking every second edge of a simple path, we get edges that do not
have endpoints in common. An alternating path is called an augmenting path for a matching M
if it begins and ends with M -unsaturated vertices. That is, it is an alternating path that begins
and ends with unmatched vertices. Our preceding discussion suggests the proof of the following
theorem.

Theorem 6.17 (Berge) A matching M in a graph is of maximum size if and only if M has no
augmenting path. Further, if a matching M has an augmenting path P with edge set E(P), then
we can create a larger matching by deleting the edges in M ∩ E(P) from M and adding in the
edges of E(P) − M .

Proof: First if there is a matching M1 larger than M , then by Corollary 6.16 there is an
augmenting path for M . Thus if a matching has maximum size, it has no augmenting path.
Further, as in our discussion of Exercise 6.4-5, if there is an augmenting path for M , then there
is a larger matching for M . Finally, this discussion showed that if P is an augmenting path, we
can get such a larger matching by deleting the edges in M ∩ E(P) and adding in the edges of
E(P) − M .

Corollary 6.18 While the larger matching of Theorem 6.17 may not contain M as a subset, it
does saturate all the vertices that M saturates and two additional vertices.

Proof: Every vertex incident with an edge in M is incident with some edge of the larger
matching, and each of the two endpoints of the augmenting path is also incident with a matching
edge. Because we may have removed edges of M to get the larger matching, it may not contain
M .

Matching in Bipartite Graphs

While our examples have all been bipartite, all our lemmas, corollaries and theorems about
matchings have been about general graphs. In fact, it some of the results can be strengthened in
bipartite graphs. For example, Lemma 6.14 tells us that the size of a matching is no more than
the size of a vertex cover. We shall soon see that in a bipartite graph, the size of a maximum
matching actually equals the size of a minimum vertex cover.

306 CHAPTER 6. GRAPHS

Searching for Augmenting Paths in Bipartite Graphs

We have seen that if we can find an augmenting path for a matching M in a graph G, then
we can create a bigger matching. Since our goal from the outset has been to create the largest
matching possible, this helps us achieve that goal. However, you may ask, how do we find an
augmenting path? Recall that a breadth-first search tree centered at a vertex x in a graph
contains a path, in fact a shortest path, from x to every vertex y to which it is connected. Thus
it seems that we ought to be able to alternate between matching edges and non-matching edges
when doing a breadth-first search and find alternating paths. In particular, if we add vertex i to
our tree by using a matching edge, then any edge we use to add a vertex from vertex i should
be a non-matching edge. And if we add vertex i to our tree by using a non-matching edge, then
any edge we use to add a vertex from vertex i should be a matching edge. (Thus there is just
one such edge.) Because not all edges are available to us to use in adding vertices to the tree, the
tree we get will not necessarily be a spanning tree of our original graph. However we can hope
that if there is an augmenting path starting at vertex x and ending at vertex y, then we will find
it by using breadth first search starting from x in this alternating manner.

Exercise 6.4-6 Given the matching {s, 2}, {t, 4}, {b, 7}{f, 8} of the graph in Figure 6.22
use breadth-first search starting at vertex 1 in an alternating way to search for an
augmenting path starting at vertex 1. Use the augmenting path you get to create a
larger matching.

Exercise 6.4-7 Continue using the method of Exercise 6.4-6 until you find a matching of
maximum size.

Exercise 6.4-8 Apply breadth-first search from vertex 0 in an alternating way to graph (a)
in Figure 6.26. Does this method find an augmenting path? Is there an augmenting
path?

Figure 6.26: Matching edges are shown in bold in these graphs.

1

2

43

1

2

4
3

5

567

(a)
(b)

8 9 10

0

0

For Exercise 6.4-6, if we begin at vertex 1, we add vertices l,s and t to our tree, giving them
breadth-first numbers 1,2, and 3. Since l is not incident with a matching edge, we cannot continue
the search from there. Since vertex s is incident with matching edge {s, 2}, we can use this edge
to add vertex 2 to the tree and give it breadth-first number 4. This is the only vertex we can
add from l since we can only use matching edges to add vertices from l. Similarly, from t we
can add vertex 4 by using the matching edge {t, 4} and giving it breadth-first number 5. All

6.4. MATCHING THEORY 307

vertices adjacent to vertex 2 have already been added to the tree, but from vertex 4 we can use
non-matching edges to add vertices m and e to our tree, giving them breadth first numbers 6 and
7. Now we can only use matching edges to add vertices to the tree from m or e, but there are
no matching edges incident with them, so our alternating search tree stops here. Since m and e
are unmatched, we know we have a path in our tree from vertex 1 to vertex m and a path from
vertex 1 to vertex e. The vertex sequence of the path from 1 to m is 1s2t4m Thus our matching
becomes {1, s}, {2, t}, {4, m}, {b, 7}, {f, 8}.

For Exercise 6.4-7 find another unmatched vertex and repeat the search. Working from
vertex l, say, we start a tree by using the edges {l, 1}, {l, 3}, {l, 4} to add vertices 1, 3, and 4.
We could continue working on the tree, but since we see that l{l, 3}3 is an augmenting path,
we use it to add the edge {l, 3} to the matching, short-circuiting the tree-construction process.
Thus our matching becomes {1, s}, {2, t}, {l, 3}, {4, m}, {b, 7}{f, 8}. The next unmatched vertex
we see might be vertex 5. Starting from it, we add m and f to our tree, giving them breadth
first numbers 1 and 2. From m we have the matching edge {m, 4}, and from f we have the
matching edge {f, 8}, so we use them to add the vertices 4 and 8 to the tree. From vertex 4
we add l, s, t, and e to the tree, and from vertex 8 we add vertex b to the tree. All these
vertices except e are in matching edges. Since e is not in a matching edge, we have discovered
a vertex connected by an augmenting path to vertex 5. The path in the tree from vertex 5
to vertex e has vertex sequence 5m4e, and using this augmenting path gives us the matching
{1, s}, {2, t}, {l, 3}, {5, m}, {4, e}, {b, 7}, {f, 8}. Since we now have a matching whose size is the
same as the size of a vertex cover, namely the bottom part of the graph in Figure 6.22, we have
a matching of maximum size.

For Exercise 6.4-8 we start at vertex 0 and add vertex 1. From vertex 1 we use our matching
edge to add vertex 2. From vertex 2 we use our two non-matching edges to add vertices 3 and
4. However, vertices 3 and 4 are incident with the same matching edge, so we cannot use that
matching edge to add any vertices to the tree, and we must stop without finding an augmenting
path. From staring at the picture, we see there is an augmenting path, namely 012435, and it
gives us the matching {{0, 1}, {2, 4}, {3, 5}}. We would have similar difficulties in discovering
either of the augmenting paths in part (b) of Figure 6.26.

It turns out to be the odd cycles in Figure 6.26 that prevent us from finding augmenting paths
by our modification of breadth-first search. We shall demonstrate this by describing an algorithm
which is a variation on the alternating breadth-first search we were using in solving our exercises.
This algorithm takes a bipartite graph and a matching and either gives us an augmenting path
or constructs a vertex cover whose size is the same as the size of the matching.

The Augmentation-Cover algorithm

We begin with a bipartite graph with parts X and Y and a matching M . We label the unmatched
vertices in X with the label a (which stands for alternating). We number them in sequence as
we label them. Starting with i = 1 and taking labeled vertices in order of the numbers we have
assigned them, we use vertex number i to do additional labelling as follows.

1. If vertex i is in X, we label all unlabeled vertices adjacent to it with the label a and the
name of vertex i. Then we number these newly labeled vertices, continuing our sequence
of numbers without interruption.

308 CHAPTER 6. GRAPHS

2. If vertex i is in Y , and it is incident with an edge of M , its neighbor in the matching edge
cannot yet be labeled. We label this neighbor with the label a and the name of vertex i.

3. If vertex i is in Y , and it is not incident with an edge of M , then we have discovered an
augmenting path: the path from vertex i to the vertex we used to add it (and recorded
at vertex i) and so on back to one of the unlabeled vertices in X. It is alternating by our
labeling method, and it starts and ends with unsaturated vertices, so it is augmenting.

If we can continue the labelling process until no more labeling is possible and we do not find an
augmenting path, then we let A be the set of labeled vertices. The set C = (X − A) ∪ (Y ∩ A)
then turns out to be a vertex cover whose size is the size of M . We call this algorithm the
augmentation-cover algorithm.

Theorem 6.19 (König and Egerváry) In a bipartite graph with parts X and Y , the size of
a maximum sized matching equals the size of a minimum-sized vertex cover.

Proof: In light of Berge’s Theorem, if the augmentation-cover algorithm gives us an augment-
ing path, then the matching is not maximum sized, and in light of Lemma 6.14, if we can prove
that the set C the algorithm gives us when there is no augmenting path is a vertex cover whose
size is the size of the matching, we will have proved the theorem. To see that C is a vertex cover,
note that every edge incident with a vertex in X ∩ A is covered, because its endpoint in Y has
been marked with an a and so is in Y ∩ A. But every other edge must be covered by X − A
because in a bipartite graph, each edge must be incident with a vertex in each part. Therefore
C is a vertex cover. If an element of Y ∩ A, were not matched, it would be an endpoint of an
augmenting path, and so all elements of Y ∩ A are incident with matching edges. But every
vertex of X − A is matched because A includes all unmatched vertices of X. By step 2 of the
augmentation-cover algorithm, if ε is a matching edge with an endpoint in Y ∩A, then the other
endpoint must be in A. Therefore each matching edge contains only one member of C. Therefore
the size of a maximum matching is the size of C.

Corollary 6.20 The augmentation-cover algorithm applied to a bipartite graph and a matching
of that graph produces either an augmenting path for the matching or a minimum vertex cover
whose size equals the size of the matching.

Before we proved the König-Egerváry Theorem, we knew that if we could find a matching and
a vertex cover of the same size, then we had a maximum sized matching and a minimum sized
vertex cover. However it is possible that in some graphs we can’t test for whether a matching
is as large as possible by comparing its size to that of a vertex cover because a maximum sized
matching might be smaller than a minimum sized vertex cover. The König-Egárvary Theorem
tells us that in bipartite graphs this problem never arises, so the test always works.

We had a second technique we used to show that a matching could not saturate the set X
of all jobs in Exercise 6.4-2. In Lemma 6.13 we showed that if we can find a subset S of a part
X of a bipartite graph G such that |N(S)| < |S|, then there is no matching of G that saturates
X. In other words, to have a matching that saturates X in a bipartite graph on parts X and Y ,
it is necessary that |N(S)| ≥ |S| for every subset S of X. (When S = ∅, then so does N(S).)
This necessary condition is called Hall’s condition, and Hall’s theorem says that this necessary
condition is sufficient.

6.4. MATCHING THEORY 309

Theorem 6.21 (Hall) If G is a bipartite graph with parts X and Y , then there is a matching
of G that saturates X if and only if |N(S)| ≥ |S| for every subset ⊆ X.

Proof: In Lemma 6.13 we showed (the contrapositive of the statement) that if there is a
matching of G, then |N(S)| ≥ |S| for every subset of X. (There is no reason to use a contrapositive
argument though; if there is a matching that saturates X, then because matching edges have no
endpoints in common, the elements of each subset S of X will be matched to at least |S| different
elements, and these will all be in N(S).)

Thus we need only show that if the graph satisfies Hall’s condition then there is a matching
that saturates S. We will do this by showing that X is a minimum-sized vertex cover. Let C be
some vertex cover of G. Let S = X − C. If ε is an edge from a vertex in S to a vertex y ∈ Y , ε
cannot be covered by a vertex in C ∩X. Therefore ε must be covered by a vertex in C ∩Y . This
means that N(S) ⊆ C ∩ Y , so |C ∩ Y | ≥ |N(S)|. By Hall’s condition, N(S)| > |S|. Therefore
|C ∩ Y | ≥ |S|. Since C ∩X and C ∩ Y are disjoint sets whose union is C, we can summarize our
remarks with the equation

|C| = |C ∩ X| + |C ∩ Y | ≥ |C ∩ X| + |N(S)| ≥ |C ∩ X| + |S| = |C ∩ X| + |C − X| = |X|.

X is a vertex cover, and we have just shown that it is a vertex cover of minimum size . Therefore
a matching of maximum size has size |X|. Thus there is a matching that saturates X.

Good Algorithms

While Hall’s theorem is quite elegant, applying it requires that we look at every subset of X,
which would take us Ω

(
2|X|

)
time. Similarly, actually finding a minimum vertex cover could

involve looking at all (or nearly all) subsets of X ∪Y , which would also take us exponential time.
However, the augmentation-cover algorithm requires that we examine each edge at most some
fixed number of times and then do a little extra work; certainly no more than O(e) work. We
need to repeat the algorithm at most X times to find a maximum matching and minimum vertex
cover. Thus in time O(ev), we can not only find out whether we have a matching that saturates
X; we can find such a matching if it exists and a vertex cover that proves it doesn’t exist if it
doesn’t. However this only applies to bipartite graphs. The situation is much more complicated
in non-bipartite graphs. In a paper which introduced the idea that a good algorithm is one that
runs in time O(nc), where n is the amount of information needed to specify the input and c
is a constant, Edmunds10 developed a more complicated algorithm that extended the idea of a
search tree to a more complicated structure he called a flower. He showed that this algorithm
was good in his sense, introduced the problem class NP, and conjectured that P �= NP. In a
wry twist of fate, the problem of finding a minimum vertex cover problem (actually the problem
of determining whether there is a vertex cover of size k, where k can be a function of v) is, in fact,
NP-complete in arbitrary graphs. It is fascinating that the matching problem for general graphs
turned out to be solvable in polynomial time, while determining the “natural” upper bound on
the size of a matching, an upper bound that originally seemed quite useful, remains out of our
reach.

10Jack Edmonds. Paths, Trees and Flowers. Canadian Journal of Mathematics, 17, 1965 pp449-467

310 CHAPTER 6. GRAPHS

Important Concepts, Formulas, and Theorems

1. Matching. A set of edges in a graph that share no endpoints is called a matching of the
graph.

2. Saturate. A matching is said to saturate a set X of vertices if every vertex in X is matched.

3. Maximum Matching. A matching in a graph is a maximum matching if it is at least as big
as any other matching.

4. Bipartite Graph. A graph is called bipartite whenever its vertex set can be partitioned into
two sets X and Y so that each edge connects a vertex in X with a vertex in Y . Each of
the two sets is called a part of the graph.

5. Independent Set. A subset of the vertex set of a graph is called independent if no two of its
vertices are connected by an edge. (In particular, a vertex connected to itself by a loop is
in no independent set.) A part of a bipartite graph is an example of an ‘independent set.

6. Neighborhood. We call the set N(S) of all vertices adjacent to at least one vertex of S the
neighborhood of S or the neighbors of S.

7. Hall’s theorem for a Matching in a Bipartite Graph. If we can find a subset S of a part
X of a bipartite graph G such that |N(S)| < |S|, then there is no matching of G that
saturates X. If there is no subset S ⊆ X such that |N(S)| < |S|, then there is a matching
that saturates X.

8. Vertex Cover. A set of vertices such that at least one of them is incident with each edge
of a graph G is called a vertex cover of the edges of G, or a vertex cover of G for short. In
any graph, the size a matching is less than or equal to the size of any vertex cover.

9. Alternating Path, Augmenting Path. A simple path is called an alternating path for a
matching M if, as we move along the path, the edges alternate between edges in M and
edges not in M . An augmenting path is an alternating path that begins and ends at
unmatched vertices.

10. Berge’s Lemma. If M1 and M2 are matchings of a graph G then the connected components
of M1∆M2 are cycles with an even number of vertices and simple paths. Further, the cycles
and paths are alternating cycles and paths for both M1 and M2.

11. Berge’s Corollary. If M1 and M2 are matchings of a graph G = (V, E) and |M1| > |M2|,
then there is an alternating path for M1 and M2 that starts and ends with vertices saturated
by M1 but not by M2.

12. Berge’s Theorem. A matching M in a graph is of maximum size if and only if M has no
augmenting path. Further, if a matching M has an augmenting path P with edge set E(P),
then we can create a larger matching by deleting the edges in M∩E(P) from M and adding
in the edges of E(P) − M .

13. Augmentation-Cover Algorithm. The Augmentation-Cover algorithm is an algorithm that
begins with a bipartite graph and a matching of that graph and produces either an aug-
menting path or a vertex cover whose size equals that of the matching, thus proving that
the matching is a maximum matching.

6.4. MATCHING THEORY 311

14. König-Egerváry Theorem. In a bipartite graph with parts X and Y , the size of a maximum
sized matching equals the size of a minimum-sized vertex cover.

Problems

1. Either find a maximum matching or a subset S of the set X = {a, b, c, d, e} such that
|S| > |N(S)| in the graph of Figure 6.27

Figure 6.27: A bipartite graph

a b c d e

1 2 3 4 5 6 7

2. Find a maximum matching and a minimum vertex cover in the graph of Figure 6.27

3. Either find a matching which saturates the set X = {a, b, c, d, e, f} in Figure 6.28 or find a
set S such that |N(S)| < |X|.

Figure 6.28: A bipartite graph

a b c d fe

1 2 3 4 5 6

4. Find a maximum matching and a minimum vertex cover in the graph of Figure 6.28.

5. In the previous exercises, when you were able to find a set S with |S| > |N(S)|, how did
N(S) relate to the vertex cover? Why did this work out as it did?

6. A star is a another name for a tree with one vertex connected to each of n other vertices.
(So a star has n + 1 vertices.) What are the size of a maximum matching and a minimum
vertex cover in a star with n + 1 vertices?

7. In Theorem 6.17 is it true that if there is an augmenting path P with edge set E(P) for a
matching M , then M∆E(P) is a larger matching than M?

8. Find a maximum matching and a minimum vertex cover in graph (b) of Figure 6.26.

9. In a bipartite graph, is one of the parts always a maximum-sized independent set? What
if the graph is connected?

312 CHAPTER 6. GRAPHS

10. Find infinitely many examples of graphs in which a maximum-sized matching is smaller
than a minimum-sized vertex cover.

11. Find an example of a graph in which the maximum size of a matching is less than one
quarter of the size of a minimum vertex cover.

12. Prove or give a counter-example: Every tree is a bipartite graph. (Note, a single vertex
with no edges is a bipartite graph; one of the two parts is empty.)

13. Prove or give a counter-example. A bipartite graph has no odd cycles.

14. Let G be a connected graph with no odd cycles. Let x be a vertex of G. Let X be all
vertices at an even distance from x, and let Y be all vertices at an odd distance from x.
Prove that G is bipartite with parts X and Y .

15. What is the sum of the maximum size of an independent set and the minimum size of a
vertex cover in a graph G? Hint: it is useful to think both about the independent set and
its complement (relative to the vertex set).

6.5. COLORING AND PLANARITY 313

6.5 Coloring and planarity

The idea of coloring

Graph coloring was one of the origins of graph theory. It arose from a question from Francis
Guthrie, who noticed that that four colors were enough colors to color the map of the counties of
England so that if two counties shared a common boundary line, then they got different colors. He
wondered whether this was the case for any map. Through his brother he passed it on to Agustus
DeMorgan, and in this way it seeped into the consciousness of the mathematical community. If
we think of the counties as vertices and draw an edge between two vertices if their counties share
some boundary line, we get a representation of the problem that is independent of such things as
the shape of the counties, the amount of boundary line they share, etc. so that it captures the
part of the problem we need to focus on. We now color the vertices of the graph, and for this
problem we want to do so in such a way that adjacent vertices get different colors. We will return
to this problem later in the section; we begin our study with another application of coloring.

Exercise 6.5-1 The executive committee of the board of trustees of a small college has
seven members, Kim, Smith, Jones, Gupta, Ramirez, Wang, and Chernov. It has six
subcommittees with the following membership

• Investments: W, R, G

• Operations: G, J, S, K

• Academic affairs: S, W, C

• Fund Raising: W, C, K

• Budget: G, R, C

• Enrollment: R, S, J, K

Each time the executive committee has a meeting, first each of the subcommittees
meets with appropriate college officers, and then the executive committee gets to-
gether as a whole to go over subcommittee recommendations and make decisions.
Two committees cannot meet at the same time if they have a member in common,
but committees that don’t have a member in common can meet at the same time. In
this exercise you will figure out the minimum number of time slots needed to schedule
all the subcommittee meetings. Draw a graph in which the vertices are named by the
initials of the committee names and two vertices are adjacent if they have a member
in common. Then assign numbers to the vertices in such a way that two adjacent
vertices get different numbers. The numbers represent time slots, so they need not be
distinct unless they are on adjacent vertices. What is the minimum possible number
of numbers you need?

Because the problem of map coloring motivated much of graph theory, it is traditional to refer
to the process of assigning labels to the vertices of a graph as coloring the graph. An assignment
of labels, that is a function from the vertices to some set, is called a coloring. The set of possible
labels (the range of the coloring function) is often referred to as a set of colors. Thus in Exercise
6.5-1 we are asking for a coloring of the graph. However, as with the map problem, we want a
coloring in which adjacent vertices have different colors. A coloring of a graph is called a proper
coloring if it assigns different colors to adjacent vertices.

314 CHAPTER 6. GRAPHS

We have drawn the graph of Exercise 6.5-1 in Figure 6.29. We call this kind of graph an
intersection graph, which means its vertices correspond to sets and it has an edge between two
vertices if and only if the corresponding sets intersect.

Figure 6.29: The “intersection” graph of the committees.

I O A

D

BE

The problem asked us to color the graph with as few colors possible, regarding the colors as
1,2,3, etc. We will represent 1 as a white vertex, 2 as a light grey vertex, 3 as a dark grey vertex
and 4 as a black vertex. The triangle on the bottom requires three colors simply because all three
vertices are adjacent. Since it doesn’t matter which three colors we use, we choose arbitrarily to
make them white, light grey, and dark grey. Now we know we need at least three colors to color
the graph, so it makes sense to see if we can finish off a coloring using just three colors. Vertex
I must be colored differently from E and D, so if we use the same three colors, it must have the
same color as B. Similarly, vertex A would have to be the same color as E if we use the same
three colors. But now none of the colors can be used on vertex O, because it is adjacent to three
vertices of different colors. Thus we need at least four colors rather than 3, and we show a proper
four-coloring in Figure 6.30.

Figure 6.30: A proper coloring of the committee intersection graph.

I O A

D

BE

Exercise 6.5-2 How many colors are needed to give a proper coloring of the complete
graph Kn?

Exercise 6.5-3 How many colors are needed for a proper coloring of a cycle Cn on n =
3, 4, 5, and 6 vertices?

In Exercise 6.5-2 we need n colors to properly color Kn, because each pair of vertices is
adjacent and thus must have two different colors. In Exercise 6.5-3, if n is even, we can just
alternate two colors as we go around the cycle. However if n is odd, using two colors would
require that they alternate as we go around the cycle, and when we colored our last vertex, it
would be the same color as the first. Thus we need at least three colors, and by alternating two

6.5. COLORING AND PLANARITY 315

of them as we go around the cycle until we get to the last vertex and color it the third color we
get a proper coloring with three colors.

The chromatic number of a graph G, traditionally denoted χ(G), is the minimum number
of colors needed to properly color G. Thus we have shown that the chromatic number of the
complete graph Kn is n, the chromatic number of a cycle on an even number of vertices is two,
and the chromatic number of a cycle on an odd number of vertices is three. We showed that the
chromatic number of our committee graph is 4.

From Exercise 6.5-2, we see that if a graph G has a subgraph which is a complete graph on
n vertices, then we need at least n colors to color those vertices, so we need at least n colors to
color G. this is useful enough that we will state it as a lemma.

Lemma 6.22 If a graph G contains a subgraph that is a complete graph on n vertices, then the
chromatic number of G is at least n.

Proof: Given above.

Interval Graphs

An interesting application of coloring arises in the design of optimizing compilers for computer
languages. In addition to the usual RAM, a computer typically has some memory locations called
registers which can be accessed at very high speeds. Thus values of variables which are going to
be used again in the program are kept in registers if possible, so they will be quickly available
when we need them. An optimizing compiler will attempt to decide the time interval in which a
given variable may be used during a run of a program and arrange for that variable to be stored
in a register for that entire interval of time. The time interval is not determined in absolute
terms of seconds, but the relative endpoints of the intervals can be determined by when variables
first appear and last appear as one steps through the computer code. This information is what is
needed to set aside registers to use for the variables. We can think of coloring the variables by the
registers as follows. We draw a graph in which the vertices are labeled with the variable names,
and associated to each variable is the interval during which it is used. Two variables can use the
same register if they are needed during non-overlapping time intervals. This is helpful, because
registers are significantly more expensive than ordinary RAM, so they are limited in number.
We can think of our graph on the variables as the intersection graph of the intervals. We want
to color the graph properly with a minimum number of registers; hopefully this will be no more
than the number of registers our computer has available. The problem of assigning variables to
registers is called the register assignment problem.

An intersection graph of a set of intervals of real numbers is called an interval graph. The
assignment of intervals to the vertices is called an interval representation. You will notice that
so far in our discussion of coloring, we have not given an algorithm for properly coloring a graph
efficiently. This is because the problem of whether a graph has a proper coloring with k colors,
for any fixed k greater than 2 is another example of an NP-complete problem. However, for
interval graphs, there is a very simple algorithm for properly coloring the graph in a minimum
number of colors.

Exercise 6.5-4 Consider the closed intervals [1, 4], [2, 5], [3, 8], [5, 12], [6, 12], [7, 14], [13, 14].
Draw the interval graph determined by these intervals and find its chromatic number.

316 CHAPTER 6. GRAPHS

We have drawn the graph of Exercise 6.5-4 in Figure 6.31. (We have not included the square
braces to avoid cluttering the figure.) Because of the way we have drawn it, it is easy to see a

Figure 6.31: The graph of Exercise 6.5-4

1,4

2,5

3,8

5,12

6,12

9,14
13,14

subgraph that is a complete graph on four vertices, so we know by our lemma that the graph has
chromatic number at least four. In fact, Figure 6.32 shows that the chromatic number is exactly
four. This is no accident.

Figure 6.32: A proper coloring of the graph of Exercise 6.5-4 with four colors
.

1,4

2,5

3,8

5,12

6,12

9,14
13,14

Theorem 6.23 In an interval graph G, the chromatic number is the size of the largest complete
subgraph.

Proof: List the intervals of an interval representation of the graph in order of their left
endpoints. Then color them with the integers 1 through some number n by starting with 1 on
the first interval in the list and for each succeeding interval, use the smallest color not used on
any neighbor of the interval earlier in the list. This will clearly give a proper coloring. To see that
the number of colors needed is the size of the largest complete subgraph, let n denote the largest
color used, and choose an interval I colored with color n. Then, by our coloring algorithm, I
must intersect with earlier intervals in the list colored 1 through n − 1; otherwise we could have
used a smaller color on I. All these intervals must contain the left endpoint of I, because they
intersect I and come earlier in the list. Therefore they all have a point in common, so they form
a complete graph on n vertices. Therefore the minimum number of colors needed is the size of a
complete subgraph of G. But by Lemma 6.22, G can have no larger complete subgraph. Thus
the chromatic number of G is the size of the largest complete subgraph of G.

Corollary 6.24 An interval graph G may be properly colored using χ(G) consecutive integers as
colors by listing the intervals of a representation in order of their left endpoints and going through

6.5. COLORING AND PLANARITY 317

the list, assigning the smallest color not used on an earlier adjacent interval to each interval in
the list.

Proof: This is the coloring algorithm we used in the proof of Theorem 6.23.

Notice that using the correspondence between numbers and grey-shades we used before, the
coloring in Figure 6.32 is the one given by this algorithm. An algorithm that colors an (arbitrary)
graph G with consecutive integers by listing its vertices in some order, coloring the first vertex
in the list 1, and then coloring each vertex with the least number not used on any adjacent
vertices earlier in the list is called a greedy coloring algorithm. We have just seen that the greedy
coloring algorithm allows us to find the chromatic number of an interval graph. This algorithm
takes time O(n2), because as we go through the list, we might consider every earlier entry when
we are considering a given element of the list. It is good luck that we have a polynomial time
algorithm, because even though we stated in Theorem 6.23 that the chromatic number is the size
of the largest complete subgraph, determining whether the size of a largest complete subgraph in
a general graph (as opposed to an interval graph) is k (where k may be a function of the number
of vertices) is an NP-complete problem.

Of course we assumed that we were given an interval representation of our graph. Suppose
we are given a graph that happens to be an interval graph, but we don’t know an interval
representation. Can we still color it quickly? It turns out that there is a polynomial time
algorithm to determine whether a graph is an interval graph and find an interval representation.
This theory is quite beautiful,11 but it would take us too far afield to pursue it now.

Planarity

We began our discussion of coloring with the map coloring problem. This problem has a special
aspect that we did not mention. A map is drawn on a piece of paper, or on a globe. Thus a
map is drawn either on the plane or on the surface of a sphere. By thinking of the sphere as a
completely elastic balloon, we can imagine puncturing it with a pin somewhere where nothing
is drawn, and then stretching the pinhole until we have the surface of the balloon laid out flat
on a table. This means we can think of all maps as drawn in the plane. What does this mean
about the graphs we associated with the maps? Say, to be specific, that we are talking about
the counties of England. Then in each county we take an important town, and build a road to
the boundary of each county with which it shares more than a single boundary point. We can
build these roads so that they don’t cross each other, and the roads to a boundary line between
two different counties join together at that boundary line. Then the towns we chose are the
vertices of a graph representing the map, and the roads are the edges. Thus given a map drawn
in the plane, we can draw a graph to represent it in such a way that the edges of the graph do
not meet at any point except their endpoints.12 A graph is called planar if it has a drawing in
the plane such that edges do not meet except at their endpoints. Such a drawing is called a
planar drawing of the graph. The famous four color problem asked whether all planar graphs
have proper four colorings. In 1976, Apel and Haken, building on some of the early attempts
at proving the theorem, used a computer to demonstrate that four colors are sufficient to color

11See, for example, the book Algorithmic Graph Theory and the Perfect Graph Conjecture, by Martin Golumbic,
Academic Press, New York, 1980.

12We are temporarily ignoring a small geographic feature of counties that we will mention when we have the
terminology to describe it

318 CHAPTER 6. GRAPHS

any planar graph. While we do not have time to indicate how their proof went, there is now a
book on the subject that gives a careful history of the problem and an explanation of what the
computer was asked to do and why, assuming that the computer was correctly programmed, that
led to a proof.13

What we will do here is derive enough information about planar graphs to show that five colors
suffice, giving the student some background on planarity relevant to the design of computer chips.

We start out with two problems that aren’t quite realistic, but are suggestive of how planarity
enters chip design.

Exercise 6.5-5 A circuit is to be laid out on a computer chip in a single layer. The design
includes five terminals (think of them as points to which multiple electrical circuits
may be connected) that need to be connected so that it is possible for a current to go
from any one of them to any other without sending current to a third. The connections
are made with a narrow layer of metal deposited on the surface of the chip, which
we will think of as a wire on the surface of the chip. Thus if one connection crosses
another one, current in one wire will flow through the other as well. Thus the chip
must be designed so that no two wires cross. Do you think this is possible?

Exercise 6.5-6 As in the previous exercise, we are laying out a computer circuit. However
we now have six terminals, labeled a, b, c, 1, 2, and 3, such that each of a, b, and c
must be connected to each of 1, 2, and 3, but there must be no other connections. As
before, the wires cannot touch each other, so we need to design this chip so that no
two wires cross. Do you think this is possible?

The answer to both these exercises is that it is not possible to design such a chip. One can
make compelling geometric arguments why it is not possible, but they require that we visualize
simultaneously a large variety of configurations with one picture. We will instead develop a
few equations and inequalities relating to planar graphs that will allow us to give convincing
arguments that both these designs are impossible.

The Faces of a Planar Drawing

If we assume our graphs are finite, then it is easy to believe that we can draw any edge of a
graph as a broken line segment (i.e. a bunch of line segments connected at their ends) rather
than a smooth curve. In this way a cycle in our graph determines a polygon in our drawing. This
polygon may have some of the graph drawn inside it and some of the graph drawn outside it.
We say a subset of the plane is geometrically connected if between any two points of the region
we can draw a curve.14 (In our context, you may assume this curve is a broken line segment,
but a careful study of geometric connectivity in general situations is less straightforward.) If we
remove all the vertices and edges of the graph from the plane, we are likely to break it up into a
number of connected sets.

Such a connected set is called a face of the drawing if it not a proper subset of any other
connected set of the plane with the drawing removed. For example, in Figure 6.33 the faces are

13Robin Wilson, Four Colors Suffice. Princeton University Press, Princeton NJ 2003.
14The usual thing to say is that it is connected, but we want to distinguish this kind of connectivity form

graphical connectivity. The fine point about counties that we didn’t point out earlier is that they are geometrically
connected. If they were not, the graph with a vertex for each county and an edge between two counties that share
some boundary line would not necessarily be planar.

6.5. COLORING AND PLANARITY 319

Figure 6.33: A typical graph and its faces.

1

2

3 4

5

6

a
b

c

d

h
g

marked 1, a triangular face, 2, a quadrilateral face that has a line segment and point removed
for the edge {a, b} and the vertex z, 3, another quadrilateral that now has not only a line but a
triangle removed from it as well, 4, a triangular face, 5, a quadrilateral face, and 6 a face whose
boundary is a heptagon connected by a line segment to a quadrilateral. Face 6 is called the
“outside face” of the drawing and is the only face with infinite area. Each planar drawing of
a graph will have an outside face, that is a face of infinite area in which we can draw a circle
that encloses the entire graph. (Remember, we are thinking of our graphs as finite at this point.)
Each edge either lies between two faces or has the same face on both its sides.The edges {a, b},
{c, d} and {g, h} are the edges of the second type. Thus if an edge lies on a cycle, it must divide
two faces; otherwise removing that edge would increase the number of connected components of
the graph. Such an edge is called a cut edge and cannot lie between two distinct faces. It is
straightforward to show that any edge that is not a cut edge lies on a cycle. But if an edge lies
on only one face, it is a cut edge, because we can draw a broken line segment from one side of the
edge to the other, and this broken line segment plus part of the edge forms a closed curve that
encloses part of the graph. Thus removing the edge disconnects the enclosed part of the graph
from the rest of the graph.

Exercise 6.5-7 Draw some planar graphs with at least three faces and experiment to see if
you can find a numerical relationship among v, the number of vertices, e, the number
of edges, and f the number of faces. Check your relationship on the graph in Figure
6.33.

Exercise 6.5-8 In a simple graph, every face has at least three edges. This means that
the number of pairs of a face and an edge bordering that face is at least 3f . Use
the fact that an edge borders either one or two faces to get an inequality relating the
number of edges and the number of faces in a simple planar graph.

Some playing with planar drawings usually convinces people fairly quickly of the following
theorem known as Euler’s Formula.

Theorem 6.25 (Euler) In a planar drawing of a graph G with v vertices, e edges, and f faces,

v − e + f = 2.

320 CHAPTER 6. GRAPHS

Proof: We induct on the number of cycles of G. If G has no cycles, it is a tree, and a tree has
one face because all its edges are cut-edges. Then v − e + f = v − (v − 1) + 1 = 2. Now suppose
G has n > 0 cycles. Choose an edge which is between two faces, so it is part of a cycle. Deleting
that edge joins the two faces it was on together, so the new graph has f ′ = f − 1 faces. The new
graph has the same number of vertices and one less edge. It also has fewer cycles than G, so we
have v − (e − 1) − (f − 1) = 2 by the inductive hypothesis, and this gives us v − e + f = 2.

ForExercise 6.5-8 let’s define an edge-face pair to be an edge and a face such that the edge
borders the face. Then we said that the number of such pairs is at least 3f in a simple graph.
Since each edge is in either one or two faces, the number of edge-face pairs is also no more than
2e. This gives us

3f ≤ # of edge-face pairs ≤ 2e,

or 3f ≤ 2e, so that f ≤ 2
3e in a planar drawing of a graph. We can combine this with Theorem

6.25 to get

2 = v − e + f ≤ v − e +
2
3
e = v − e/3

which we can rewrite as
e ≤ 3v − 6

in a planar graph.

Corollary 6.26 In a simple planar graph, e ≤ 3v − 6.

Proof: Given above.

In our discussion of Exercise 6.5-5 we said that we would see a simple proof that the circuit
layout problem was impossible. Notice that the question in that exercise was really the question
of whether the complete graph on 5 vertices, K5, is planar. If it were, the inequality e ≤ 3v − 6
would give us 10 ≤ 3 · 5 − 6 = 9, which is impossible, so K5 can’t be planar. The inequality of
Corollary 6.26 is not strong enough to solve Exercise 6.5-6. This exercise is really asking whether
the so-called “complete bipartite graph on two parts of size 3,” denoted by K3,3, is planar. In
order to show that it isn’t, we need to refine the inequality of Corollary 6.26 to take into account
the fact that in a simple bipartite graph there are no cycles of size 3, so there are no faces that
are bordered by just 3 edges. You are asked to do that in Problem 13.

Exercise 6.5-9 Prove or give a counter-example: Every planar graph has at least one
vertex of degree 5 or less.

Exercise 6.5-10 Prove that every planar graph has a proper coloring with six colors.

In Exercise 6.5-9 suppose that G is a planar graph in which each vertex has degree six or
more. Then the sum of the degrees of the vertices is at least 6v, and also is twice the number of
edges. Thus 2e ≥ 6v, or e ≥ 3v, contrary to e ≤ 3v − 6. This gives us yet another corollary to
Euler’s formula.

Corollary 6.27 Every planar graph has a vertex of degree 5 or less.

Proof: Given above.

6.5. COLORING AND PLANARITY 321

The Five Color Theorem

We are now in a position to give a proof of the five color theorem, essentially Heawood’s proof,
which was based on his analysis of an incorrect proof given by Kempe to the four color theorem
about ten years earlier in 1879. First we observe that in Exercise 6.5-10 we can use straightforward
induction to show that any planar graph on n vertices can be properly colored in six colors. As a
base step, the theorem is clearly true if the graph has six or fewer vertices. So now assume n > 6
and suppose that a graph with fewer than n vertices can be properly colored with six colors. Let
x be a vertex of degree 5 or less. Deleting x gives us a planar graph on n − 1 vertices, so by
the inductive hypothesis it can be properly colored with six colors. However only five or fewer of
those colors can appear on vertices which were originally neighbors of x, because x had degree 5
or less. Thus we can replace x in the colored graph and there is at least one color not used on
its neighbors. We use such a color on x and we have a proper coloring of G. Therefore, by the
principle of mathematical induction, every planar graph on n ≥ 1 vertices has a proper coloring
with six colors.

To prove the five color theorem, we make a similar start. However, it is possible that after
deleting x and using an inductive hypothesis to say that the resulting graph has a proper coloring
with 5 colors, when we want to restore x into the graph, five distinct colors are already used on
its neighbors. This is where the proof will become interesting.

Theorem 6.28 A planar graph G has a proper coloring with at most 5 colors.

Proof: We may assume that every face except perhaps the outside face of our drawing is a
triangle for two reasons. First, if we have a planar drawing with a face that is not a triangle,
we can draw in additional edges going through that face until it has been divided into triangles,
and the graph will remain planar. Second, if we can prove the theorem for graphs whose faces
are all triangles, then we can obtain graphs with non-triangular faces by removing edges from
graphs with triangular faces, and a proper coloring remains proper if we remove an edge from our
graph. Although this appears to muddy the argument at this point, at a crucial point it makes
it possible to give an argument that is clearer than it would otherwise be.

Our proof is by induction on the number of vertices of the graph. If G has five or fewer
vertices then it is clearly properly colorable with five or fewer colors. Suppose G has n vertices
and suppose inductively that every planar graph with fewer than n vertices is properly colorable
with five colors. G has a vertex x of degree 5 or less. Let G′ be the graph obtained by deleting
x form G. By the inductive hypothesis, G′ has a coloring with five or fewer colors. Fix such a
coloring. Now if x has degree four or less, or if x has degree 5 but is adjacent to vertices colored
with just four colors in G′, then we may replace x in G′ to get G and we have a color available
to use on x to get a proper coloring of G.

Thus we may assume that x has degree 5, and that in G′ five different colors appear on the
vertices that are neighbors of x in G. Color all the vertices of G other than x as in G′. Let the five
vertices adjacent to x be a, b, c, d, e in clockwise order, and assume they are colored with colors
1, 2, 3, 4, and 5. Further, by our assumption that all faces are triangles, we have that {a, b},
{b, c}4,{c,d},{d, e}, and {e, a} are all edges, so that we have a pentagonal cycle surrounding
x. Consider the graph G1,3 of G which has the same vertex set as G but has only edges with
endpoints colored 1 and 3. (Some possibilities are shown in Figure 6.34. We show only edges
connecting vertices colored 1 and 3, as well as dashed lines for the edges from x to its neighbors

322 CHAPTER 6. GRAPHS

and the edges between successive neighbors. There may be many more vertices and edges in G.)

Figure 6.34: Some possibilities for the graph G1,3.

x

a

b

c
d

e

1

3

1

3

3
1

3
1

31

1

3

3

1
x

a

b

c
d

e

1

3

1

3

3
1

3
1

3
1

1

3

3

1

1

3
1

3

The graph G1,3 will have a number of connected components. If a and c are not in the same
component, then we may exchange the colors on the vertices of the component containing a
without affecting the color on c. In this way we obtain a coloring of G with only four colors,
3,2,3,4,5 on the vertices a, b, c, d, e. We may then use the fifth color (in this case 1) on vertex x
and we have properly colored G with five colors.

Otherwise, as in the second part of Figure 6.34, since a and c are in the same component of
G1,3, there is a path from a to c consisting entirely of vertices colored 1 and 3. Now temporarily
color x with a new color, say color 6. Then in G we have a cycle C of vertices colored 1, 3, and
6. This cycle has an inside and an outside. Part of the graph can be on the inside of C, and part
can be on the outside. In Figure 6.35 we show two cases for how the cycle could occur, one in

Figure 6.35: Possible cycles in the graph G1,3.

x

a

b

c
d

e

1

3

1

3

3
1

3
1

31

1

3

3

1

1

3
1

3

x

a

b

c
d

e

1

3

1
1

3

3
1

3
1

3
11

1

3

3

3

3

1

3

which vertex b is inside the cycle C and one in which it is outside C. (Notice also that in both
cases, we have more than one choice for the cycle because there are two ways in which we could
use the quadrilateral at the bottom of the figure.)

In G we also have the cycle with vertex sequence a, b, c, d, e which is colored with five different
colors. This cycle and the cycle C can intersect only in the vertices a and c. Thus these two cycles
divide the plane into four regions: the one inside both cycles, the one outside both cycles, and the
two regions inside one cycle but not the other. If b is inside C, then the area inside both cycles
is bounded by the cycle a{a, b}b{b, c}c{c, x}x{x, a}a. Therefore e and d are not inside the cycle

6.5. COLORING AND PLANARITY 323

C. If one of d and e is inside C, then both are (because the edge between them cannot cross the
cycle) and the boundary of the region inside both cycles is a{a, e}e{e, d}d{d, c}c{c, x}x{x, a}a.
In this case b cannot be inside C. Therefore one of b and d is inside the cycle c and one is outside
it. Therefore if we look at the graph G2,4 with the same vertex set as G and just the edges
connecting vertices colored 2 and 4, the connected component containing b and the connected
component containing d must be different, because otherwise a path of vertices colored 2 and 4
would have to cross the cycle C colored with colors 1, 3, and 6. Therefore in G′ we may exchange
the colors 2 and 4 in the component containing d, and we now have only colors 1, 2, 3, and 5
used on vertices a, b, c, d, and e. Therefore we may use this coloring of G′ as the coloring for
the vertices of G different from x and we may change the color on x from 6 to 4, and we have
a proper five coloring of G. Therefore by the principle of mathematical induction, every finite
planar graph has a proper coloring with 5 colors.

Kempe’s argument that seemed to prove the four color theorem was similar to this, though
where we had five distinct colors on the neighbors of x and sought to remove one of them, he
had four distinct colors on the five neighbors of x and sought to remove one of them. He had a
more complicated argument involving two cycles in place of our cycle C, and he missed one of
the ways in which these two cycles can interact.

Important Concepts, Formulas, and Theorems

1. Graph Coloring. An assignment of labels to the vertices of a graph, that is a function from
the vertices to some set, is called a coloring of the graph. The set of possible labels (the
range of the coloring function) is often referred to as a set of colors.

2. Proper Coloring. A coloring of a graph is called a proper coloring if it assigns different
colors to adjacent vertices.

3. Intersection Graph. We call a graph an intersection graph if its vertices correspond to sets
and it has an edge between two vertices if and only if the corresponding sets intersect.

4. Chromatic Number. The chromatic number of a graph G, traditionally denoted χ(G), is
the minimum number of colors needed to properly color G.

5. Complete Subgraphs and Chromatic Numbers. If a graph G contains a subgraph that is a
complete graph on n vertices, then the chromatic number of G is at least n.

6. Interval Graph. An intersection graph of a set of intervals of real numbers is called an in-
terval graph. The assignment of intervals to the vertices is called an interval representation.

7. Chromatic Number of an Interval Graph. In an interval graph G, the chromatic number is
the size of the largest complete subgraph.

8. Algorithm to Compute the Chromatic number and a proper coloring of an Interval Graph.
An interval graph G may be properly colored using χ(G) consecutive integers as colors by
listing the intervals of a representation in order of their left endpoints and going through
the list, assigning the smallest color not used on an earlier adjacent interval to each interval
in the list.

9. Planar Graph and Planar Drawing. A graph is called planar if it has a drawing in the plane
such that edges do not meet except at their endpoints. Such a drawing is called a planar
drawing of the graph.

324 CHAPTER 6. GRAPHS

10. Face of a Planar Drawing. A geometrically connected connected subset of the plane with
the vertices and edges of a planar graph taken away is called a face of the drawing if it not
a proper subset of any other connected set of the plane with the drawing removed.

11. Cut Edge. An edge whose removal from a graph increases the number of connected compo-
nents is called a cut edge of the graph. A cut edge of a planar graph lies on only one face
of a planar drawing.

12. Euler’s Formula. Euler’s formula states that in a planar drawing of a graph with v vertices,
e edges and f faces, v − e + f = 2. As a consequence, in a planar graph, e ≤ 3v − 6.

Problems

1. What is the minimum number of colors needed to properly color a path on n vertices if
n > 1?

2. What is the minimum number of colors needed to properly color a bipartite graph with
parts X and Y .

3. If a graph has chromatic number two, is it bipartite? Why or why not?

4. Prove that the chromatic number of a graph G is the maximum of the chromatic numbers
of its components.

5. A wheel on n vertices consists of a cycle on n − 1 vertices together with one more vertex,
normally drawn inside the cycle, which is connected to every vertex of the cycle. What is
the chromatic number of a wheel on 5 vertices? What is the chromatic number of a wheel
on an odd number of vertices?

6. A wheel on n vertices consists of a cycle on n − 1 vertices together with one more vertex,
normally drawn inside the cycle, which is connected to every vertex of the cycle. What is
the chromatic number of a wheel on 6 vertices? What is the chromatic number of a wheel
on an even number of vertices?

7. The usual symbol for the maximum degree of any vertex in a graph is ∆. Show that the
chromatic number of a graph is no more than ∆ + 1. (In fact Brooks proved that if G is
not complete or an odd cycle, then χ(G) ≤ ∆. Though there are now many proofs of this
fact, none are easy!)

8. Can an interval graph contain a cycle with four vertices and no other edges between vertices
of the cycle?

9. The Petersen graph is in Figure 6.36. What is its chromatic number?

10. Let G consist of a five cycle and a complete graph on four vertices, with all vertices of the
five-cycle joined to all vertices of the complete graph. What is the chromatic number of
G?

11. In how many ways can we properly color a tree on n vertices with t colors?

12. In how many ways may we properly color a complete graph on n vertices with t colors?

6.5. COLORING AND PLANARITY 325

Figure 6.36: The Petersen Graph.

13. Show that in a simple planar graph with no triangles, e ≤ 2v − 4.

14. Show that in a simple bipartite planar graph, e ≤ 2v − 4, and use that fact to prove that
K3,3 is not planar.

15. Show that in a planar graph with no triangles there is a vertex of degree three or less.

16. Show that if a planar graph has fewer than twelve vertices, then it has at least one vertex
of degree 4.

17. The Petersen Graph is in Figure 6.36. What is the size of the smallest cycle in the Petersen
Graph? Is the Petersen Graph planar?

18. Prove the following Theorem of Welsh and Powell. If a graph G has degree sequence
d1 ≥ d2 ≥ · · · ≥ dn, then χ(G) ≤ 1 + maxi[min(di, i − 1)]. (That is the maximum over all
i of the minimum of di and i − 1.)

19. What upper bounds do Problem 18 and Problem 7 and the Brooks bound in Problem 7
give you for the chromatic number in Problem 10. Which comes closest to the right value?
How close?

326 CHAPTER 6. GRAPHS

Index

k-element permutation of a set, 13
n choose k, 6
Zn, 48

abstraction, 2
absurdity

reduction to, 112
addition mod n, 48
additive identity, 45
adjacency list, 278
adjacent in a graph, 263, 272
Adleman, 70
adversary, 39, 42, 48
algorithm

non-deterministic, 294, 296
divide and conquer, 139, 148
polynomial time, 294
randomized, 79, 237, 247

alternating cycle for a matching, 302
alternating path, 309
alternating path for a matching, 302
ancestor, 282, 284
and (in logic), 85, 86, 92
associative law, 48
augmentation-cover algorithm, 307
augmenting path, 309
augmenting path for a matching, 304
axioms of probability, 186

base case for a recurrence, 128
base case in proof by induction, 121, 124, 125
Berge’s Theorem (for matchings), 304
Berge’s Theorem for matchings, 309
Bernoulli trials

expected number of successes, 222, 224
variance and standard deviation, 258, 259

Bernoulli trials process, 216, 224
bijection, 12
Bijection Principle, 12
binary tree, 282–284

full, 282, 284
binomial coefficient, 14–15, 18–25
binomial probabilities, 216, 224
Binomial Theorem, 21, 23
bipartite graph, 298, 300, 309
block of a partition, 2, 33
bookcase problem, 32
Boole’s inequality, 232
breadth first number, 279
breadth first search, 279, 283

Caesar cipher, 48
Caeser cipher, 40
ceilings

removing from recurrences, 156, 170, 172
removing from recurrences, 160

child, 282, 284
Chinese Remainder Theorem, 71, 73
cipher

Caeser, 40, 48
ciphertext, 40, 48
Circuit

Eulerian, 288, 296
closed path in a graph, 269, 273
codebook, 42
coefficient

binomial, 15, 18, 21
multinomial, 24
trinomial, 23

collision in hashing, 187, 191
collisions in hashing, 228, 234

expected number of, 228, 234
coloring

proper, 312, 322
coloring of a graph, 312, 322
combinations

with repetitions, 34
with repititions, 33

commutative law, 48
complement, 187, 191

327

328 INDEX

complementary events, 187, 191
complementary probability, 189
complete bipartite graph, 298
complete graph, 265, 273
component

connected, 268, 273
conclusion (of an implication), 90
conditional connective, 90, 93
conditional expected value, 239, 247
conditional probability, 205, 212
conditional proof

principle of, 114
conditional statements, 90
connected

geometrically, 317
connected component of a graph, 268, 273
connected graph, 267, 273
connective

conditional, 90, 93
logical, 86, 93

connectivity relation, 268
constant coefficient recurrence, 136
contradiction, 94

proof by, 52, 112, 115
contraposition

proof by, 111
contrapositive, 111
contrapositive (of an implication), 115
converse (of an implication), 111, 115
correspondence

one-to-one, 12
counterexample

smallest, 56
counting, 1–37
coupon collector’s problem, 230
cryptography, 39, 47

private key, 40, 48
public key, 42, 48

RSA, 68, 70, 72
cut edge, 318, 323
cut-vertex, 298
cycle, 269

Hamiltonian, 291, 296
cycle in a graph, 269, 273

decision problem, 294, 296
degree, 265, 273
DeMorgan’s Laws, 88, 93

derangement, 199
derangement problem, 199
descendant, 282, 284
diagram

Venn, 194, 195, 201
digital signature, 81
direct inference, 108, 114
direct proof, 109
disjoint, 2, 6

mutually, 6
distribution

probability, 186, 189, 191
distribution function, 219, 224, 251
distributive law, 48
distributive law (and over or), 88
divide and conquer algorithm, 139, 148
divide and conquer recurrence, 150
division in Zn, 53
domain of a function, 10
drawing

planar
of a graph, 316, 322

edge in a graph
multiple, 265

edge of a graph, 263, 272
empty slots in hashing, 228, 234
encrypted, 39
encryption

RSA, 70
equations in Zn

solution of, 61, 62
solutions to, 51

equivalence classes, 28, 34
equivalence relation, 27, 34
equivalent (in logic), 93
equivalent statements, 88, 101
Euclid’s Division Theorem, 48, 56
Euclid’s extended greatest common divisor

algorithm, 58, 59, 61
Euclid’s greatest common divisor algorithm,

57, 61
Euler”s Formula, 318
Euler’s constant, 230, 234
Euler, Leonhard, 287
Eulerian Circuit, 288, 296
Eulerian Graph, 289, 296
Eulerian Tour, 288, 296

INDEX 329

Eulerian Trail, 288, 296
event, 185, 191
events

complementary, 187, 191
independent, 205, 212

excluded middle
principle of, 92, 93

exclusive or, 86
exclusive or (in logic), 85, 86, 92
existential quantifier, 97, 105
expectation, 219, 224

additivity of, 221, 224
conditional, 239, 247
linearity of, 221, 224

expected number of trials until first success,
223, 225

expected running time, 237, 247
expected value, 219, 224

conditional, 239, 247
number of successes in Bernoulli trials,

222, 224
exponentiation in Zn, 65, 72
exponentiation mod n, 65

practical aspects, 75
extended greatest common divisor algorithm,

58, 59, 61
external vertex, 282, 284

face of a planar drawing, 317, 323
factorial

falling, 13
factoring numbers

difficulty of, 77
falling factorial, 13
family of sets, 2
Fermat’s Little Theorem, 67, 72
Fermat’s Little Theorem for integers, 68, 72
first order linear constant coefficient recur-

rence
solution to, 136

first order linear recurrence, 133, 136
solution to, 137

floors
removing from recurrences, 156, 160, 170,

172
forest, 274
fractions in Zn, 49
free variable, 96, 105

full binary tree, 282, 284
function, 10

one-to-one, 11
hash, 187
increasing, 170
inverse, 17
one-way, 68, 70
onto, 11

gcd, 55
generating function, 217, 224
geometric series

bounds on the sum, 136
finite, 131, 136

geometrically connected, 317
graph, 263, 272

bipartite, 298, 300, 309
coloring, 312, 322
complete, 265, 273
complete bipartite, 298
connected, 267, 273

Graph
Eulerian, 289, 296

graph
Hamiltonian, 291, 296
hypercube, 297
interval, 314, 322
interval representation, 314, 322
neighborhood, 301, 309
planar, 316, 322
planar drawing, 316, 322

face of, 317, 323
weighted, 286

graph decision problem, 294, 296
greatest common divisor, 55, 60–62
greatest common divisor algorithm, 57, 61

extended, 58, 59, 61

Hall’s condition (for a matching), 307
Hall’s Theorem for matchings, 308
Hall’s Theorem for matchings., 309
Hamilton, William Rowan, 291
Hamiltonian Cycle, 291, 296
Hamiltonian graph, 291, 296
Hamiltonian Path, 291, 296
hanoi, towers of, 128
harmonic number, 230, 234
hash

330 INDEX

function, 187
hash table, 186
hashing

collision, 187, 191
collisions, 228, 234
empty slots, 228, 234
expected maximum number of keys per

slot, 233, 234
expected number of collisions, 228, 234
expected number of hashes until all slots

occupied, 230, 234
expected number of items per slot, 227,

234
hatcheck problem, 199
histogram, 251
hypercube graph, 297
hypothesis (of an implication), 90

identity
additive, 45
multiplicative, 45

if (in logic), 93
if and only if (in logic), 93
if . . . then (in logic), 93
implies, 93
implies (in logic), 93
incident in a graph, 263, 272
increasing function, 170
independent events, 205, 212
independent random variables, 255, 258

product of, 255, 258
variance of sum, 256, 259

independent set (in a graph), 300, 309
indirect proof, 112, 113
induced subgraph, 269
induction, 117–125, 164–167

base case, 121, 125
inductive conclusion, 121, 126
inductive hypothesis, 121, 126
inductive step, 121, 126
strong, 123, 125
stronger inductive hypothesis, 167
weak, 120, 125

inductive conclusion in proof by induction,
121, 126

inductive hypothesis in proof by induction,
121, 126

inductive step in proof by induction, 121, 126

inference
direct, 108, 114
rule of, 115
rules of, 109, 111, 112, 114

initial condition for a recurrence, 128
initial condition for recurrence, 136
injection, 11
insertion sort, 237, 238, 247
integers mod n, 48
internal vertex, 282, 284
interval graph, 314, 322
intervalrepresentation of a graph, 314, 322
inverse

multiplicative
in Zn, 51, 53, 55, 60–62
in Zn, computing, 61
in Zp, p prime, 60, 62

inverse function, 17
iteration of a recurrence, 131, 137, 141

key
private, 48

for RSA, 68
public, 42, 48

for RSA, 68
secret, 42

König-Egerváry Theorem, 310
Königsberg Bridge Problem, 287

labeling with two labels, 23
law

associative, 48
commutative, 48
distributive, 48

leaf, 282, 284
length of a path in a graph, 265
lexicographic order, 13, 87
linear congruential random number genera-

tor, 50
list, 10
logarithms

important properties of, 147, 149, 151,
159, 161

logic, 83–115
logical connective, 86, 93
loop in a graph, 265

Master Theorem, 150, 153, 159, 160
matching, 299, 309

INDEX 331

alternating cycle, 302
alternating path, 302
augmenting path, 304
Hall’s condition for, 307
increasing size, 304
maximum, 300, 309

mathematical induction, 117–125, 164–167
base case, 121, 125
inductive conclusion, 121, 126
inductive hypothesis, 121, 126
inductive step, 121, 126
strong, 123, 125
stronger inductive hypothesis, 167
weak, 120, 125

maximum matching, 300, 309
measure

probability, 186, 189, 191
median, 174, 181
mergesort, 140, 148
Miller-Rabin primality testing algorithm, 79
minimum spanning tree, 286
mod n

using in a calculation, 48
modus ponens, 108, 114
multinomial, 24
multinomial coefficient, 24
Multinomial Theorem, 24
multiple edges, 265
multiple edges in a graph, 265
multiplication mod n, 48
multiplicative identity, 45
multiplicative inverse in Zn, 51, 53, 55, 60–62

computing, 61
multiplicative inverse in Zp, p prime, 60, 62
multiset, 30, 34

size of, 30
mutually disjoint sets, 2, 6

negation, 85, 92
neighbor in a graph, 301, 309
neighborhood, 301, 309
non-deterministic algorithm, 296
non-deterministic graph algorithm, 294
not (in logic), 85, 86, 92
NP, problem class, 295
NP-complete, 295, 296
NP-complete Problems, 294
number theory, 40–81

one-to-one function, 11
one-way function, 68, 70
only if (in logic), 93
onto function, 11
or

exclusive (in logic), 85
or (in logic), 85, 86, 92

exclusive, 86
order

lexicographic, 13
ordered pair, 6
overflow, 50

P, problem class, 294, 296
pair

ordered, 6
parent, 282, 284
part of a bipartite graph, 300, 309
partition, 28

blocks of, 2
partition element, 176, 182, 242
partition of a set, 2, 6, 33
Pascal Relationship, 18, 23
Pascal’s Triangle, 18, 23
path, 269

alternating, 309
augmenting, 309
Hamiltonian, 291, 296

path in a graph, 265, 273
closed, 269, 273
length of, 265
simple, 265, 273

percentile, 174, 181
permutation, 12

k-element, 13
permutation of Zp, 67, 72
Pi notation, 32, 34
plaintext, 40, 48
planar drawing, 316, 322
planar drawing face of, 317, 323
planar graph, 316, 322
polynomial time graph algorithm, 294
power

falling factorial, 13
rising factorial, 32

primality testing, 216
deterministic polynomial time, 78
difficulty of, 78

332 INDEX

randomized algorithm, 79
Principle

Symmetry, 33
Bijection, 12
Product, 5, 6

Version 2, 10
Quotient, 28

principle
quotient, 34

Principle
Sum, 2, 6
Symmetry, 26

Principle of conditional proof, 114
Principle of Inclusion and exclusion

for counting, 201, 202
principle of inclusion and exclusion

for probability, 197
Principle of proof by contradiction, 52, 115
principle of the excluded middle, 92, 93
Principle of universal generalization, 114
private key, 48

for RSA, 68
private key cryptography, 40, 48
probability, 186, 191

axioms of, 186
Bernoulli trials, 216, 224

Probability
Bernoulli trials

variance and standard deviation, 258,
259

probability
binomial, 216, 224
complementary, 189
complementary events, 187, 191
conditional, 205, 212
distribution, 186, 189, 191

binomial, 216, 224
event, 185, 191
independence, 205, 212
independent random variables

variance of sum, 256, 259
measure, 186, 189, 191
random variable, 215, 223

distribution function, 219, 224, 251
expectation, 219, 224
expected value, 219, 224
independent, 255, 258
numerical multiple of, 221, 224

standard deviation, 257, 259
variance, 254, 258

random variables
product of, 255, 258
sum of, 220, 224

sample space, 185, 190
uniform, 189, 191
union of events, 194, 196, 197, 201
weight, 186, 191

product notation, 32, 34
Product Principle, 5, 6

Version 2, 10
proof

direct, 109
indirect, 112, 113

proof by contradiction, 52, 112, 115
proof by contraposition, 111
proof by smallest counterexample, 56
proper coloring, 312, 322
pseudoprime, 79
public key, 42, 48

for RSA, 68
public key cryptography, 42, 48

quantified statements
truth or falsity, 101, 105

quantifier, 97, 105
existential, 97, 105
universal, 97, 105

quicksort, 243
quotient principle, 28, 34

random number, 50
random number generator, 237
random variable, 215, 223

distribution function, 219, 224, 251
expectation, 219, 224
expected value, 219, 224
independence, 255, 258
numerical multiple of, 221, 224
standard deviation, 257, 259
variance, 254, 258

random variables
independent

variance of sum, 256, 259
product of, 255, 258
sum of, 220, 224

randomized algorithm, 79, 237, 247

INDEX 333

randomized selection algorithm, 242, 247
range of a function, 10
recurence

iterating, 131, 137
recurrence, 128, 136

base case for, 128
constant coefficient, 136
divide and conquer, 150
first order linear, 133, 136

solution to, 137
first order linear constant coefficient

solution to, 136
initial condition, 128, 136
iteration of, 141

recurrence equation, 128, 136
recurrence inequality, 163

solution to, 163
recurrences on the positive real numbers, 154,

160
recursion tree, 141, 148, 150, 167
reduction to absurdity, 112
register assignment problem, 314
relation

equivalence, 27
relatively prime, 55, 60, 61
removing floors and ceilings from recurrences,

160, 172
removing floors and ceilings in recurrences,

156, 170
rising factorial, 32
Rivest, 70
root, 281, 284
rooted tree, 281, 284
RSA Cryptosystem, 68
RSA cryptosystem, 70, 72

security of, 77
time needed to use it, 76

RSA encryption, 70
rule of inference, 115
rules of exponents in Zn, 65, 72
rules of inference, 109, 111, 112, 114

sample space, 185, 190
saturate(by matching edges), 300, 309
secret key, 42
selection algorithm, 174, 182

randomized, 242, 247
recursive, 182

running time, 180
set, 6

k-element permutation of, 13
partition of, 2, 6, 33
permutation of, 12
size of, 2, 6

sets
disjoint, 2
mutually disjoint, 2, 6

Shamir, 70
signature

digital, 81
simple path, 265, 273
size of a multiset, 30
size of a set, 2, 6
solution of equations in Zn, 61
solution to a recurrence inequality, 163
solutions of equations in Zn, 62
solutions to equations in Zn, 51
spanning tree, 276, 283

minimum, 286
standard deviation, 257, 259
statement

conditional, 90
contrapositive, 111
converse, 111

statements
equivalent, 88

Stirling Numbers of the second kind, 203
Stirling’s formula, 230
stronger induction hypothesis, 167
subgraph, 269

induced, 269
subtree of a graph, 276
success

expected number of trials until, 223, 225
Sum Principle, 2, 6
surjection, 11
Symmetry Principle, 26, 33

table
hash, 186

tautology, 94
Theorem

Binomial, 21, 23
Multinomial, 24
Trinomial, 23

Tour

334 INDEX

Eulerian, 288, 296
towers of Hanoi problem, 128
Trail

Eulerian, 288, 296
tree, 269, 273

binary, 282, 284
recursion, 148, 150, 167
rooted, 281, 284
spanning, 276, 283

minimum, 286
tree recursion, 141
trinomial coefficient, 23
Trinomial Theorem, 23
truth values, 86

uniform probability, 189, 191
union

probability of, 194, 196, 197, 201
universal generalization

Principle of, 114
universal quantifier, 97, 105
universe for a statement, 96, 105

variable
free, 96, 105

variance, 254, 258
Venn diagram, 194, 195, 201
vertex

external, 282, 284
internal, 282, 284

vertex cover, 301, 309
vertex of a graph, 263, 272

weight
probability, 186, 191

weighted graph, 286
weights for a graph, 286
wheel, 323

xor (in logic), 86, 92

