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Series Introd uction 

Over the past 50 years, digital signal processing has evolved as a major engineering 
discipline. The fields of signal processing have grown from the origin of fast Fourier 
transform and digital filter design to statistical spectral analysis and array pro- 
cessing, and image, audio, and multimedia processing, and shaped developments 
in high-performance VLSI signal processor design. Indeed, there are few fields that 
enjoy so many applications-signal processing is everywhere in our lives. 

When one uses a cellular phone, the voice is compressed, coded, and modulated 
using signal processing techniques. As a cruise missile winds along hillsides searching 
for the target, the signal processor is busy processing the images taken along the way. 
When we are watching a movie in HDTV, millions of audio and video data are being 
sent to our homes and received with unbelievable fidelity. When scientists compare 
DNA samples, fast pattern recognition techniques are being used. On and on, 
one can see the impact of signal processing in almost every engineering and scientific 
discipline. 

Because of the immense importance of signal processing and the fast-growing 
demands of business and industry, this series on signal processing serves to report 
up-to-date developments and advances in the field. The topics of interest include 
but are not limited to the following: 

0 Signal theory and analysis 
0 Statistical signal processing 
0 Speech and audio processing 
0 Image and video processing 
0 Multimedia signal processing and technology 
0 Signal processing for communications 

Signal processing architectures and VLSI design 

I hope this series will provide the interested audience nith high-quality. 
state-of-the-art signal processing literature through research monographs, edited 
books, and rigorously written textbooks by experts in their fields. 

iii 
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Preface 

Sigriul Procvssing.Jiir Iritelligent Sensor Systems covers a broad range of topics that 
are essential to the design of intelligent autonomous computing systems. A unified 
approach is presented linking data acquisition, system modeling, signal filtering 
in one and two dimensions, adaptive filtering, Kalman filtering, system 
identification, wavenumber processing, pattern recognition, sensor systems, and 
noise cancellation techniques. Together these topics form the technical basis for 
the state of the art in radar, sonar, medical and machinery health diagnosis and 
prognosis, and “smart” sensor systems in general. Applications are given 
throughout the book in the areas of passive remote sensing, active radar and sonar. 
digital image processing, tracking filters, acoustic imaging and diagnostics, and 
wavenumber filters. Additional references and example problems are provided in 
each topic area for further research by the reader. This book presents adaptive signal 
processing from a physical, rather than mathematical, point of view, with emphasis 
on application to intelligent sensor systems. Engineers and scientists working on 
the development of advanced sensor and control systems should find this text useful 
in bringing together the required topics. Unifying these topics in  a single book allows 
the uncertainties from the basic sensor detection elements to be propagated through 
each adaptive signal processing topic to produce meaningful metrics for overall sys-
tem performance. Many signal processing applications require knowledge of a wide 
range of adaptive signal processing topics for developing such systems. This text 
pays specific attention to the underlying physics behind the signal processing 
application, and, where appropriate, examines the signal processing system as a 
physical device with physical laws to be examined arid exploited for science. 

The text is well suited for senior undergraduate and graduate students in 
science and engineering as well as professionals with a similar background. Some 
prior knowledge of digital signal processing, statistics, and acoustics /field theory 
would be helpful to readers, but an undergraduate level of understanding in complex 
matrix algebra, field theory, and Fourier-LaPlace transforms should be sufficient 
background. From this starting point, the book develops basic adaptive signal 
processing principles and applies them to the problems such as adaptive 
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vi Preface 

beamforming, system identification, and data tracking. The benefit of using this 
book is that one comes away with a more global view of adaptive signal processing 
in the context of a “smart” sensor and/or  control system as well as a detailed under- 
standing of many state-of-the-art techniques. While adaptive algorithms extract 
information from input data according to optimization schemes such as 
least-squared error, they can also be used to “intelligently” adapt the sensor system 
to the environment. Adaptive systems that optimize themselves based on command 
inputs and the sensor and/or  actuator environment represent the most advanced 
“sentient” systems under development today. The term “sentient” means “having 
the five senses” and the associated awareness of the environment. Sensor technology 
in the 21st century will no doubt achieve sentient processing and this text is aimed at 
providing an interdisciplinary groundwork toward this end. 

A simple example of an environment-sensitive adaptive algorithm is automatic 
exposure, focus, and image stabilization on many commercially available video 
cameras. When coupled to a digital frame-grabber and computer vision system, 
adaptive image processing algorithms can be implemented for detecting, say, prod- 
uct defects in an assembly line. Adaptive systems designed to detect specific 
”information patterns” in a wide range of environments are often referred to as 
automatic target recognition (ATR) systems, especially in defense applications. 
The ATR problem has proved to be one of the most difficult and intriguing problems 
in adaptive signal processing, especially in the computer vision area. Acoustic ATRs 
have enjoyed some degree of success in the areas of machine condition vibration 
monitoring, sound navigation and ranging (SONAR), and speech recognition. In 
medical imaging, adaptive image processing systems can produce remarkable 
measurements of bone density, geometry, or tissue properties, but the actual end 
recognition is currently done by people, not by machines. I t  is curious to note that 
while a toddler can easily find a partially obscured toy in a full toybox, it’s not 
an easy task for even the most sophisticated computer vision system, due to the 
complexity of the signal separation problem. It is likely that people will always 
be “in the loop” in making critical decisions based on information that intelligent 
sensor systems provide because of the inherent intelligence and personal responsi- 
bility human beings can display. But as technology progresses, we should certainly 
expect many noncritical sensor-controller applications to be fully automated at sig- 
nificant levels. 

What we can do  today is build adaptive systems in which the accepted laws of 
physics and mathematics are exploited in computer algorithms that extract infor- 
mation from sensor data. The information is then used to do useful things such 
a s :  optimize the sensor configuration for maximum resolution; recognize primitive 
patterns in the input data and track the patterns and information to determine stat- 
istical trends; and logically assemble the information to test and score hypotheses. 
The results of the adaptive processing can in some instances lead to a completely 
automatic recognition system. However, since many of the current ATR 
applications are life-critical (such as military targeting, medicine, and machine 
or structure prognosis). the idea of eliminating the “man-in-the-loop“ is being 
replaced by the idea of making the man-in-the-loop smarter and more efficient. This 
text is concerned with the mathematics of the adaptive algorithms and their relation- 
ship to the underlying physics of the detection problems at hand. The mechanical 
control systems on automobile engines (choke, spark-plug timing, etc.), mechanical 
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Preface vii 

audio recordings, and many household appliances changed to digital systems only in 
the last decade or so. Most industrial process controls and practically all military 
control and communication systems are digital, at least in part. The reasons for 
this unprecedented proliferation of basic digital system technology are not just 
the increased precision and sophistication of digital systems. Digital control systems 
are now far cheaper to manufacture and have better repeatability and reliability than 
their analog computers. One could argue that a new industrial revolution is already 
underway, in which the machines and practices from the previous revolution are 
being computerized, optimized, and reinvented with “machine intelligence.” 

The text is organized into five main parts. Fundamentals, frequency domain 
processing, adaptive filtering, wavenumber systems, and signal processing 
applications. Together, these five parts cover the major system operations of an intel- 
ligent sensor system. However, the emphasis is on applied use, physics, and data 
confidence rather than just applied mathematical theory. There are many available 
texts listed in each chapter’s bibliography that can supply the reader with sufficient 
detail beyond that offered here. By focusing on the essential elements of 
measurement, filtering, detection, and information confidence metrics, this book 
provides a good foundation for an intelligent sensor system. In the future, sensor 
system engineering will need to be more accessible to the nonelectrical engineering 
discipline, while electrical engineers will need a stronger applied background in phys-
ics and information processing. Bridging this gap in an interdisciplinary approach 
has been the main challenge of preparing this text. The student with a strong signal 
processing background should be advised that even in the fundamentals chapter 
there are subtle physical application points to be learned. Furthermore, students 
relatively new to signal processing should not be intimidated by the advanced signal 
processing topics such as lattice filters and adaptive beamforming. These advanced 
topics are explained in a very straightforward and practical manner for the essential 
techniques, leaving many of the more narrow techniques to presentations given in 
other texts. 

The prime objective of this book is to organize the broad scope of adaptive 
signal processing into a practical theory for the technical components of smart 
machines. The longer a normal human being works in the area of developing a 
computing system’s eyes, ears, motor control, and brains, the more incredible bio- 
logical life appears to be. It’s almost funny how our most powerful supercomputers, 
with a throughput of over billions of operations per second, have the real-time neural 
network capacity of a slug (okay, a smart slug). Computer programs and algorithms 
teach us a great deal about our own thought processes, as well as how our imagin- 
ations lead us to both inventiveness and human error. Perhaps the most important 
thing building machine intelligence can teach us is what an amazing gift we all have: 
to be human with the ability to learn, create, and communicate. 
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Sampled Data Systems 


Figure 1 shows a basic general architecture which can be seen to depict most 
adaptive signal processing systems. The number of inputs to the system can 
be very large, especially for image processing sensor systems. Since adaptive 
signal processing system is constructed using a computer, the inputs generally 
fall into the categories of analog “sensor” inputs from the physical world 
and digital inputs from other computers or  human communication. The outputs 
also can be categorized into digital information such as identified patterns, 
and analog outputs which may drive actuators (active electrical, mechanical, 
and/or acoustical sources) to instigate physical control over some part of the 
outside world. In this chapter we examine to basic constructs of signal input, 
processing using digital filters, and output. While these very basic operations 
may seem rather simple compared to the algorithms presented later in the text, 
careful consideration is needed to insure a high fidelity adaptive processing 
system. For example, Figure 1 shows the adaptive process controlling the analog 
input and output gains. This technique is relatively straightforward to implement 
and allows high fidelity signal acquisition and output over a wide dynamic range. 
With a programmed knowledge-base of rules for acceptable input and output 
gains, the adaptive system can also decide if a transducer channel is broken, 
distorted, or operating normally. Therefore, we will need to pay close attention 
to the fundamentals of sampling analog signals and digital filtering. The next 
chapter will focus on fundamental techniques for extracting information from 
the signals. 

Consider a transducer system which produces a voltage in response to some 
electromagnetic or mechanical wave. In the case of a microphone, the transducer 
sensitivitity would have units of volts/Pascal. For the case of a video camera pixel 
sensor, it would be volts per lumen/m2, while for an infrared imaging system 
the sensitivity might be given as volts per In any case, the transducer voltage O K .  

is conditioned by filtering and amplification in order to make the best use of the 
A / D convertor system. While most adaptive signal processing systems use 
floating-point numbers for computation, the A /D  convertors generally produce 
fixed-point (integer) digital samples. The integer samples from the A / D  are con- 
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4 Chapter 1 

Input
Sensor Input 
System 

Convertor 

In ell ain' uti8econtrol 
Information, 

Adaptive Patterns, Etc. 

>Signal
Processing

System 
Commands, 

DigitalI 

Data Input 
Intelligent

Output Gain 
Control 

D/A
Convertor 

Control 
Actuator 

Figure I A basic architecture for an adaptive signal processing system including sensory 
inputs, control outputs, and information inputs and outputs for human interaction. 

verted to floating-point by the signal processor chip before subsequent processing. 
This relieves the algorithm developer from the problem of controlling numerical 
dynamic range to avoid underflow or  overflow errors in fixed-point processing unless 
less or  more expensive fixed-point processors are used. If the processed signals are to 
be output, then floating-point samples are simply re-converted to integer and an 
analog voltage is produced using a digital-to-analog (D/A)  convertor system 
and filtered and amplified. 
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Sampled Data Systems 5 

1.1 A/D CONVERSION 

Quite often, adaptive signal processing systems are used to dynamically calibrate and 
adjust input and output gains of their respective A / D  and D/A convertors. This 
extremely useful technique requires a clear understanding of how most data acqui- 
sition systems really work. Consider a generic successive approximation &bit 
A/D convertor as seen in Figure 2 below. The operation of the A/D actually involves 
an internal D/A convertor which produces an analog voltage for the “current” 
decoded digital output. A D/A convertor simply sums the appropriate voltages cor- 
responding to the bits set to 1 .  If the analog input to the A / D  does not match the 
internal D/A converted output, the binary counter counts up or down to 
compensate. The actual voltage from the transducer must be sampled and held con- 
stant (on a capacitor) while the successive approximation completes. Upon com- 
pletion, the least significant bit (LSB) of the digital output number will 
randomly toggle between 0 and 1 as the internal D/A analog output voltage con- 
verges about the analog input voltage. The “settling time” for this process increases 
with the number of bits quantized in the digital output. The shorter the settling time, 
the faster the digital output sample rate may be. The toggling of the LSB as i t  
approximates the analog input signal leads to a low level of uniformly-distributed 
(between 0 and 1 )  random noise in the digitized signal. This is normal, expected, 
and not a problem so long as the sensor signal strengths are sufficient enough that 
the quantization noise is small compared to signal levels. It is important to under-

Digital Output 

1
E T 
0 - bitConvertor 

Counter 

t 
if a>b: count down 

i f  a<b: count up 

Analog
Input 

Compari tor 

Figure 2 A generic successive approximation 8-bit A / D convertor actually has an internal 
D/A sub-system. 
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6 Chapter 1 

stand how transducer and data acquisition systems work so that the adaptive signal 
processing algorithms can exploit and control their operation. 

While there are many digital coding schemes, the binary number produced by 
the A / D are usually coded in either offset binary or in tttlo ’s conzplenir~ntforrzicits. 
Offset binary is used for either all-positive or all-negative data such as absolute 
temperature. The internal D / A  convertor in Figure 2 is set to produce a voltage 
b’,,,,,, which corresponds to the number 0, and VmaXfor the biggest number or 
255 ( 1  1 1  I 1  1 1  I ) ,  for the 8-bit A I D .  The largest number produced by an M-bit 
A /  D is therefore 2M-1.The smallest number, or (LSB) will actually be wrong about 
50% of the time due to the approximation process. Most data acquisition systems 
are built around either 8, 12, or  16-bit A / D  convertors giving maximum offset binary 
numbers of 255,4095, and 65535, respectively. If a “noise-less” signal corresponds to 
a number of, say 1000, on a 12-bit A/D,  the signal-to-noise ratio (SNR) of the 
yuantization is 1000:1, or approximately 60 dB. 

Signed numbers are generally encoded in two’s complement format where the 
most significant bit (MSB) is I for negative numbers and 0 for positive numbers. 
This is the normdl “signed integer” format in programming languages such as “C”. 
If the MSB is I indicating a negative number, the magnitude of the binary number 
is found by complementing (changing 0 to 1 or 1 to 0) all of the bits and adding 
1.  The reason for this apparently confusing coding scheme has to do with the binary 
requirements of logic-based addition and subtraction circuitry in all of today’s 
computers. The logic simplicity of two’s complement arithmetic can be seen when 
considering that the sum of two two’s complement numbers N I  and N2 is done 
exactly the same as for offset binary numbers, except any carry from the MSB 
is simply ignored. Subtraction of NI from N ?  is done simply by forming the two’s 
complement of N I  (complementing the bits and adding l ) ,  and then adding the 
two numbers together ignoring any MSB carry. Table 1 below shows two’s comp- 
lement binary for a 3-bit f3.5 V A / D  and shows the effect of subtracting the 
number + 2  (010 or +2.5 V) from each of the possible 3-bit numbers. Note that 
the complement of +2 is (101) and adding 1 gives the “two’s complement“ of ( 1  10). 
which is equal to numerical -2, or -1.5 V in the table. 

As can be easily seen in Table 1, the numbers and voltages with an asterisk are 
rather grossly in error. This type of numerical error is the single most reason to use 
floating-point rather than fixed-point signal processors. It is true that fixed-point 

Table 1 The Effect of Subtracting2 from the Range of Numbers From a 
3-bit Two’s Complement AID 

Voltage N Binary N Binary N-2 Voltage N-2 

+3.5 01 1 00 1 +1.5 
+2.5 010 000 +O. 5 
+ I S  00 I 1 1 1  -0.5 
+ O S  000 110 -1.5 
-0.5 1 1 1  101 -2.5 
-1.5 110 100 -3.5 
-2.5 101 01 1 *  +1.5* 
-3.5 100 010* +0.5* 

TLFeBOOK



Sampled Data Systems 7 

signal processor chips are very inexpensive and sometimes faster at  fixed-point 
arithmetic. However, a great deal of attention must be paid to insuring that no 
numerical errors of the type in Table 1 occur in a fixed-point processor. Fixed-point 
processing severely limits the numerical dynamic range of the adaptive algorithms 
used. In particular, algorithms involving many divisions, matrix operations, or 
transcendental functions such as logarithms or trigonometric functions are generally 
not good candidates for fixed-point processing. All of the subtractions are off by at 
least 0.5 V, or  half the LSB. A final point worth noting from Table 1 is that while 
the analog voltages of the A / D  are symmetric about 0 V, the coded binary numbers 
are not, giving a small numerical offset from the two’s complement coding. In 
general, the design of analog circuits with nearly zero offset voltage is a difficult 
enough task that one should always assume some non-zero offset in all digitized 
sensor data. The maximum M-bit two’s complement positive number is 2’-’-1 
and the minimum negative number is -2M-*. Even though the A / D  and analog 
circuitry offset is small, it is good practice in any signal processing system to numeri- 
cally remove it. This is simply done by recursively computing the mean of the A / D  
samples and subtracting this time-averaged mean from each A / D  sample. 

1.2 SAMPLING THEORY 

We now consider the effect of the periodic rate of A I D  conversion relative to the 
frequency of the waveform of interest. There appear to be certain advantages to 
randomly spaced A / D  conversions or “dithering” (l), but this separate issue will 
not be addressed here. According to Fourier’s theorem, any waveform can be rep- 
resented as a weighted sum of complex exponentials of the form Af,,d“’f”‘;-00 

< rn < + OQ. A low frequency waveform will have plenty of samples per wavelength 
and will be well represented in the digital domain. But, as one considers higher fre- 
quency components of the waveform relative to the sampling rate, the number 
of samples per wavelength declines. As will be seen below for a real sinusoid, at 
least two equally-spaced samples per wavelength are needed to adequately represent 
the waveform in the digital domain. Consider the arbitrary waveform in Eq. (1.2.1). 

We now sample x( t )  every T sec giving a samplingfrequency off, Hz (samples per 
sec). The digital waveform is denoted as x[n] where n refers to the nth sample in 
the digitized sequence. 

x[n]= x(nT)= A cos(onT) 
(1.2.2)

= A c o s ( y n )  

Eq. (1.2.2) shows a “digital frequency” of C2 = 27lf/f,.,which has the same period 
as an analog waveform of frequencyfso long as f i s  less thanf,/2. Clearly, for the 
real sampled cosine waveform, a digital frequency of 1 . 1 ~is basically 
indistinguishable from 0 . 9 ~except that the period of the 1. 1~ waveform will actually 
be longer than the analog frequencyf! Figures 3 and 4 graphically illustrate this 
phenomenon well-known as aliasing. Figure 3 shows a 100 Hz analog waveform 
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Figure 3 A 75 Hz sinusoid (-) is sampled at 1000 Hz giving a digital signal ( * )  which 
clearly represents the analog signal. 

sampled 1000 times per sec. Figure 4 shows a 950 Hz analog signal with the same 
1000 Hz sample rate. Since the periods of the sampled and analog signals match 
only when f’5 j,’,/2, these frequency components of the analog waveform are said 
to be uncrliusrd, and therefore adequately represented in the digital domain. 

Restricting real analog frequencies to be less than f s / 2  has become widely 
known as the Nyquist sampling criterion. This restriction is generally implemented 
by a low-pass filter with -3  dB cutoff frequency in the range of 0.4.f; to insure 
a wide margin of attenuation for frequencies above.f;/2. However, as will be dis- 
cussed in the rest of this chapter, the “anti-aliasing” filters can have 
environment-dependent frequency responses which adaptive signal processing sys- 
tems can intelligently compensate, 

I t  will be very useful for us to explore the mathematics of aliasing to fully 
understand the phenomenon, and to take advantage of its properties in high fre- 
quency bandlimited A / D systems. Consider a complex exponential representation 
of the digital waveform in Eq. (1.2.3) showing both positive and negative 
frequencies. 

.r[n] = ‘4 cos(Sln) 
(1.2.3) 
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9 Sampled Data Systems 
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Figure 4 A 950 Hz analog signal sampled 1000 times per sec actually appears "aliased" a s  
a 50 Hz signal. 

While Eq. (1.2.3) compares well with (1.2.1) there is a big difference due to the digital 
sampling. Assuming no anti-aliasing filters are used, the digital frequency of R = 
2qf/.f, (from the analog waveform sampled every T sec), could represent a 
multiplicity of analog frequencies. 

A cos(R12)= A cos(Rr2 f271171); 112 = 0, 1 ,  2 .  . . ( I  2 .4)  

For the real signal in Eq. (1.2.3), both the positive and negative frequencies hakre 
images at f 27~111;111 = 0, 1,2,  . . . Therefore, if the analog frequency .f is outside 
the Nyquist bandwidth of 0 -f , / 2  Hz, one of the images of f f w i l l  appear within 
the Nyquist bandwidth, but at the wrong (aliased) frequency. Since we want the 
digital waveform to a linear approximation to the original analog waveform, the 
frequencies of the two must be equal. One must always suppress frequencies outside 
the Nyquist bandwidth to be sure that no aliasing occurs. In  practice, i t  is not poss-
ible to make an analog signal filter which perfectly passes signals in the Nyquist 
band while completely suppressing all frequencies outside this range. One should 
expect a transition zone near the Nyquist band upper frequency where unaliased 
frequencies are attenuated and some aliased frequency "images" are detectable. 
Most spectral analysis equipment will implement an anti-alias filter with a -3  dB 
cutoff frequency about 1 / 3  the sampling frequency. The frequency range from 
I I 3 . f ;  to 1 / 2 , f ;  is usually not displayed as part of the observed spectrum so the user 
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does not notice the the anti-alias filter’s transition region and the filter very 
effectively suppresses frequencies above fs/ 2. 

Figure 5 shows a graphical representation of the digital frequencies and images 
for a sample rate of 1000 Hz and a range of analog frequencies including those of 
100 Hz and 950 Hz in Figures 3 and 4, respectively. When the analog frequency 
exceeds the Nyquist rate off, /2 (n  on the Q axis), one of the negative frequency 
images (dotted lines) appears in the Nyquist band with the wrong (aliased) 
frequency, violating assumptions of system linearity. 

Figure 5 A graphical view of 100, 300,495,600 and 950 Hz sampled at 1000 Hz showing 
aliasing for 600 and 950 Hz. 
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1.3 COMPLEX BANDPASS SAMPLING 

Bandpass sampling systems are extremely useful to adaptive signal processing sys- 
tems which use high frequency sensor data but with a very narrow bandwidth of 
interest. Some excellent examples of these systems are active sonar, radar, and 
ultrasonic systems for medical imaging or  non-destructive testing and evaluation 
of materials. These systems in general require highly directional transmit and receive 
transducers which physically means that the wavelengths used must be much smaller 
than the size of the transducers. The transmit and receive “beams” (comparable to a 
flashlight beam) can then be used to scan a volume for echoes from relatively big 
objects (relative to wavelength) with different impedances than the medium. The 
travel time from transmission to the received echo is related to the object’s range 
by the wave speed. 

Wave propagation speeds for active radar and sonar vary from a speedy 
300 m / p e c  for electromagnetic waves, to 1500 m/sec for sound waves in water, 
to a relatively slow 345 m/sec for sound waves in air at room temperature. Also 
of interest is the relative motion of the object along the beam. If  the object is 
approaching, the received echo will be shifted higher in frequency due to Doppler, 
and lower in frequency if the object is moving away. Use of Doppler, time of arrival, 
and bearing of arrival, provide the basic target tracking inputs to active radar and 
sonar systems. Doppler radar has also become a standard meteorological tool 
for observing wind patterns. Doppler ultrasound has found important uses in  
monitoring fluid flow both in industrial processes as well as the human cardio- 
vascular system. 

Given the sensor system’s need for high frequency operation and relatively 
narrow signal bandwidth, a digital data acquisition system can exploit the phenom- 
enon of aliasing to drastically reduce the Nyquist rate from twice the highest fre- 
quency of interest down to the bandwidth of interest. For example. suppose a 
Doppler ultrasound system operates at  1 MHz to measure fluid flow of approxi- 
mately f0.15 m /  sec. If the speed of sound is approximately 1500 m/sec, one might 
expect a Doppler shift of only f100 Hz. Therefore, if the received ultrasound is 
bandpass filtered from 999.9 kHz to 1.0001 MHz, it should be possible to extract 
the information using a sample rate on the order of 1 kHz, rather than the over 
2 MHz required to sample the full frequency range. From an information point 
of view, bandpass sampling makes a lot of sense because only 0.01% of the over 
1 MHz frequency range is actually required. 

We can show a straightforward example using rpal aliased samples for the 
above case of a I MHz frequency with Doppler bandwidth of f100 Hz. First 
the analog signal is bandpass filtered attenuating all frequencies outside the 
999.9 kHz to 1.0001 MHz frequency range of interest. By sampling at  a rate com- 
mensurate with the signal bandwidth rather than absolute frequency, one of the 
aliased images will appear in the baseband between 0 Hz and the Nyquist rate. 
As seen in Figure 5 ,  as the analog frequency increases to the right, the negative 
images all move to the left. Therefore, one of the positive images of the analog fre- 
quency is sought in the baseband. Figure 6 depicts the aliasecl bands i n  terms on 
the sample rate,f’,. 

So if the 1 MHz, f100 Hz signal is bandpass filtered from 999.9 kHz to 1.0001 
MHz, we can sample at a rate of 1000.75 Hz putting the analog signal in the middle 
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-mfs -2fs -fs 0 fs 2fs mfs 

Figure 6 Analog frequencies bandpass filtered for the 171th band will appear from 0 to 
j ; / 2 Hz after sampling. 

of the 999th positive image band. Therefore, one would expect to find a 1.0000 MHz 
signal aliased at 250.1875 Hz, 1.0001 MHz aliased at 350.1875 Hz, and 999.9 kHz at  
150.1875 Hz in the digital domain. The extra 150 Hz at  the top and bottom of the 
digital baseband allow for a transition zone of the anti-aliasing filters. Practical 
use of this technique requires precise bandpass filtering and selection of the sample 
rate. However, Figure 6 should also raise concerns about the effects of 
high-frequency analog noise “leaking” into digital signal processing systems at 
the point of A / D  conversion. The problem of aliased electronic noise is particularly 
acute is systems where many high-speed digital signal processors operate in close 
proximity to high impedance analog circuits and the A / D  subsystem has a large 
number of resolution bits. 

For the case of a very narrow bandwidth at a high frequency it  is obvious to see 
the numerical savings and it is relatively easy to pick a sample rate where only a little 
bandwidth is left unused. However, for wider analog signal bandwidths a more gen- 
eral approach is needed where the bandwidth of interest is not required to lie within 
a multiple of the digital baseband. To accomplish this we must insure that the negative 
images of the sampled data do  not mix with the positive images for some arbituary 
bandwidth of interest. The best way to do  this is to simply get rid of the negative 
frequency and its images entirely by using complex (real plus imaginary) samples. 

How can one obtain complex samples from the real output of the AID con-
\w-tor‘? Mathematically one can describe a “cosine” waveform as the real part 
of a complex exponential. But, in the real world where we live (at least most of 
us some of the time), the sinusoidal waveform is generally observed and measured 
iis a real quantity. Some exceptions to this are simultaneous measurement of 
spatially orthogonal (e.g. horizontal and vertical polarized) wave components such 
iis polarization of electromagnetic waves, surface Rayleigh waves. or orbital 
vibrations of rotating equipment, all of which can directly generate complex digital 
samples. To generate a complex sample from a single real A / D  convertor, we must 
tolerate a signal phase delay which varies with frequency. However, since this phase 
response of the complex sampling process is known, one can easily remove the phase 
effect in the frequency domain. 

The usual approach is to gather the real part as before and to subtract in the 
imaginary part using a T/4 delayed sample. 

(1.3.1) 
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The parameter (6 in Eq. (1.3. I )  is just an arbitrary phase angle for generality. For a 
frequency of ,f = f s ,  Eq. (1.3.1 ) reduces to 

~ ~ [ n ]  + (6)= A C O S ( ~ X ~  

( 1  3 . 2 )  

= A sin(2nn + 4 )  

so that for this particular frequency the phase of the imaginary part is actually 
correct. We now have a usable bandwidth offy, rather than,f;/2 as with real samples. 
But, each complex sample is actually two real samples, keeping the total information 
rate (number of samples per sec) constant! As the frequency decreases towards 0, a 
phase error bias will increase towards a phase lag of n / 2 .  However, since we wish 
to apply complex sampling to high frequency bandpass systems, the phase bias 
can be changing very rapidly with frequency, but i t  will be fixed for the given sample 
rate. The complex samples in terms of the digital frequency LR and analog frequency.f 
a re 

s R [ t 2 ]  = A cos(Qn + 4) 
( 1  3 . 3 )  

giving a sampling phase bias (in the imaginary part only) of 

( 1  3.4)  

For adaptive signal processing systems which require phase information, 
usually two or more channels have their relative phases measured. Since the phase 
bias caused by the complex sampling is identical for all channels, the phase bias 
can usually be ignored if relative channel phase is needed. The scheme for complex 
sampling presented here is sometimes referred to as “quadrature sampling” or even 
“Hilbert transform sampling” due to the mathematical relationship between the real 
and imaginary parts of the sampled signal in the frequency domain. 

Figure 7 shows how any arbitrary bandwidth can be complex sampled at a rate 
equal to the bandwidth in Hz, and then digitally “demodulated” into the Nyquist 
baseband. If the signal bandwidth of interest extends from f l  to .f2 Hz, an analog 
bandpass filter is used to band-limit the signal and complex samples are formed 
as seen in Figure 7 at  a sample rate of fy = .fi - f I  samples per sec. To move the 
complex data with frequencyf, down to 0 Hz and the data at f 2  down to ,f,Hz, 
all one needs to do is multiply the complex samples by 6’ where Q I  is simply 
27cfl/.f;. Therefore, the complex samples in Eq. (1.3.1) are demodulated as seen 
in Eq. (1.3.5). 

( 1  3 . 5 )  
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of Interest 

Complex Baseband 

0 2n 4n 6n 
Figure 7 An arbitrary signal bandwith may be complex sampled and demodulated to 
base ba nd . 

Analog signal reconstruction can be done by re-modulating the real and 
imaginary samples by 1; in the analog domain. Two oscillators are needed, one 
for the cos(27rf;r) and the other for the sin(27cf;r). A real analog waveform can 
be reconstructed from the analog multiplication of the D/A converted real sample 
times the cosine minus the D / A  converted imaginary sample times the sinusoid. 
As with the complex sample construction, some phase bias will occur. However, 
the technique of modulation and demodulation is well established in amplitude 
modulated (AM) radio. In fact, one could have just as easily demodulated (i.e. 
via an analog heterodyne circuit) a high frequency signal, band-limited i t  to a 
low-pass frequency range of half the sample rate, and A I D  converted it as real 
samples. Reconstruction would simply involve D /A conversion, low-pass filtering, 
and re-modulation by a cosine waveform. In  either case, the net signal information 
rate (number of total samples per sec) is constant for the same signal bandwidth. 
I t  is merely a matter of algorithm convenience and desired analog circuitry com- 
plexity from which the system developer must decide how to handle high frequency 
band-1imite d sign a I s. 

1.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

This section has reviewed the basic process of analog waveform digitization and 
sampling. The binary numbers from an A I D  convertor can be coded into 
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offset-binary or into two’s complement formats for use with unsigned or signed 
integer arithmetic, respectively. Floating-point digital signal processors sub-
sequently convert the integers from the A I D  to their internal floating-point format 
for processing, and then back to the appropriate integer format for D / A  conversion. 
Even though floating-point arithmetic has a huge numerical dynamic range, the lim- 
ited dynamic range of the A / D  and D / A  convertors must always be considered. 
Adaptive signal processing systems can, and should, adaptively adjust input and 
output gains while maintaining floating-point data calibration. Adaptive signal cali- 
bration is straightforwardly-based on known transducer sensitivities, signal con- 
ditioning gains, and the voltage sensitivity and number of bits in the A I D  and 
D / A  convertors. The least-significant bit (LSB) is considered to be a random noise 
source, both numerically for the A / D  convertor, and electronically for the D / A  
convertor. Given a periodic rate for sampling analog data and reconstruction of 
analog data from digital samples, analog filters must be applied before A I D  and 
after D / A  conversion to avoid unwanted signal aliasing. For real digital data, 
the sample rate must be at least twice the highest frequency which passes through 
the analog “anti-aliasing” filters. For complex samples, the complex-pair sample 
rate equals the bandwidth of interest, which may be demodulated to baseband if 
the bandwidth of interest was in a high frequency range. The frequency response 
of D / A  conversion as well as sophisticated techniques for analog signal rec-
onstruction will be discussed in the subsection on reconstruction filters later in 
the text. 

PROBLEMS 

1. An accelerometer with sensitivity 10 mV/G (1.0 G is 9.801 mIsec’) is 
subjected to a f 2 5  G acceleration. The electrical output of the acceler- 
ometer is amplified by 1 1.5 dB before A / D  conversion with a 14-bit two‘s 
complement encoder with an input sensitivity of 0.305 mV/bit. 
(a) What is the numerical range of the digitized data? 
(b) If the amplifier can be programmed in 1.5 dB steps, what would be the 

amplification for maximum SNR? What is the SNR? 
2. An %bit two’s complement A / D  system is to have no detectable signal 

aliasing at a sample rate of 100,000 samples per sec. An 8th-order 
(-48 dB/octave) programmable cutoff frequency low-pass filter is 
available. 
(a)  What is a possible cutoff frequencyfc? 
(b) For a 16-bit signed A I D  what would the cutoff frequency be‘? 
(c) If you could tolerate some aliasing between.fi* and the Nyquist rate, 

what is the highest-fca possible for the 16-bit system in part b? 
3. An acceptable resolution for a medical ultrasonic image is declared to be 

1 mm. Assume sound travels at 1500 m/sec in the human body. 
(a)  What is the absolute minimum A I D  sample rate for a receiver if i t  is to 

detect echoes from scatterers as close as 1 mni apart? 
(b)  I f  the velocity of blood flow is to be measured in the range of f lni,’sec 

(we don’t need resolution here) using a 5 Mhz ultrasonic sinusoidal 
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burst, what is the minimum required bandwidth and sample rate for an 
A I D  convertor? (hint: a Doppler-shifted frequency #a can be deter- 

13mined byfii  = f l  + v/c.), < \’ < + 1 2 ;  where f is the transmitted 
frequency, I - is the wave speed, and 1’ is the velocity of the scatterer 
towards the receiver). 

4. A microphone has a voltage sensitivity of 12 mV/Pa ( 1  Pascal = 1 Ntim’). 
If a sinusoidal sound of about 94 dB (approximately 1 Pa rms in the 
atmosphere) is to be digitally recorded, how much gain would be needed 
to insure a “clean” recording for a 10 V 16-bit signed A / D  system‘? 

5.  A standard television in the United States has 525 vertical lines scanned in 
even and odd frames 30 times per sec. I f  the vertical field of view covers 
a distance of 1 .0 m, what is the size of the smallest horizontal line thickness 
which would appear unaliased? 

6. A new car television commercial is being produced where the wheels of the 
car have 12 stylish holes spaced every 30 around the rim. If the wheels are 
0.7 m in diameter, how fast can the car move before the uheels start 
appearing to be rotating backwards? 

7. Suppose a very low frequency high signal-to-noise ratio signal is being 
sampled at a high rate by a limited dynamic range 8-bit signed A / D  con- 
vertor. I f  one simply adds consecutive pairs of samples together one 
has 9-bit data at half the sample rate. Adding consecutive pairs of the 9-bit 
samples together gives 10-bit data at 114 the 8-bit sample rate, and so on. 
( a )  I f  one continued on to get 16-bit data from the original 8-data sampled 

at 10,000 Hz, what would the data rate be for the 16-bit data? 
(b )  Suppose we had a very fast device which samples data using only I -bit, 

0 for negative and 1 for positive. How fast would the 1-bit A / D  have to 
sample to produce 16-bit data at the standard digital audio rate of 
44,100 samples per sec? 

8. An “offset binary” encoded signal assumes single-signed input voltage 
where one adds a dc offset (if necessary) which forces the A D input 
to be between 0 and the maximum positive voltage. The offset binary range 
for an M-bit A / D  is 0 to 2>“-1, or 0 to 65535 for a 16-bit A / D .  

( a )  For a sine wave with its zero crossing at 32767 and a 16-bit offset 
binary A / D ,  plot the wave response for a few cycles if the A ’ D  data 
is misinterpreted as two’s complement. 

( b )  Suppose we have a zero mean two’s complement A / D  sampled sine 
wave. Plot the response of this digital signal if it is misinterpreted 
iis offset binary encoded. 
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The Z-Transform 


Given a complete mathematical expression for a discrete time-domain signal, why 
transform it  to another domain? The main reason for time-frequency transforms 
is that many mathematical reductions are much simpler in one domain than the 
other. The z-transform in the digital domain is the counterpart to the Laplace trans- 
form in the analog domain. The z-transform is an extremely useful tool for analyzing 
the stability of digital sequences, designing stable digital filters, and relating digital 
signal processing operations to the equivalent mathematics in the analog domain. 
The Laplace transform provides a systematic method for solving analog systems 
described by differential equations. Both the z-transform and Laplace transform 
map their respective finite difference or differential systems of equations in the time 
or spatial domain to much simpler algebraic systems in the frequency or 
wavenumber domains, respectively. We begin by assuming time 1 increases as life 
progresses into the future, and a general signal of the form e", s =0 + jru, is stuhlc. 
for as 0. A plot of our general signal is seen in Figure 1 .  

The quantity s=0+jco, is a complex frequency where the real part 0 represents 
the damping of the signal (0= - 10.0Neperslsec and c o  = 50n rad/sec, or 25 Hz, in 
Figure 1) .  All signals, both digital and analog, can be described in terms of sums of 
the general waveform seen in Figure 1. This includes transient characteristics 
governed by 0.For c = 0, one has a steady-state sinusoid. For 0 < 0 as seen in 
Figure 1, one has an exponentially decaying sinusoid. If  CT > 0, the exponentially 
increasing sinusoid is seen as unstable, since eventually it  will become infinite in 
magnitude. Signals which change levels over time can be mathematically described 
using piecewise sums of stable and unstable complex exponentials for various 
periods of time as needed. 

The same process of generalized signal modeling is applied to the s i g r w l  
r.e,sporzses of systems such as mechanical or electrical filters, wave propagation 
"systems," and digital signal processing algorithms. We define a "linear system" 
as an operator which changes the amplitude and/or phase (time delay) of an  input 
signal to give an output signal with the same frequencies as the input, independent 
of the input signal's amplitude, phase, or frequency content. Linear systems can 
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Figure 1 A "general" signal form of dflSAtf')'where (7 5 0 indicates a stable Liraveform for 
posit i time . 

be dispersive, where some frequencies travel through them faster than others, so long 
its the same system input-output response occurs independent of the input signal. 
Since there are an infinite number of input signal types, we focus on one very special 
input signal type called an impulse. An impulse waveform contains the same energy 
level at al l  frequencies including 0 Hz (direct current), and is exactly reproducible. 
For a digital waveform, a digital impulse simply has only one sample non-zero. 
The response of linear systems to the standard impulse input is called the . s ~ ~ . s t e n i  
irupirl.sc. r.c'.spom~.The impulse response is simply the system's response to a Dirac 
delta function (or the unity amplitude digital-domain equivalent), when the system 
has zero initial conditions. The impulse response for a linear system is unique 
and a great deal of useful information about the system can be extracted from 
its analog or digital domain transform. 

2.1 COMPARISON OF LAPLACE AND 2-TRANSFORMS 

Equation (2.  I .  1 ) describes a general integral transform where .I ' ( /)  is transformed to 
l'(s)using the kernal K ( s ,  I). 

Y(s )  = yK ( . s .  r ) 1 r ( r ) c i r  (2.1.1) 
--2 

The LaPlace transform makes use of the kernal K ( s , I )  = which is also in the form (I", 


of  our "general" signal as seen in Figure 1 above. We present the LaPlace transform 
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as a pair of integral transforms relating the time and “s” domains. 

+m 

~ ( s )= ~ { y ( t ) l =1 y(t>e-.\‘dl 

0 (2.1.2)
n+/x  

( Y ( s ) ]= - Y(s)e’“’clsy ( t )  = 9-1 2nj
a-,jx 

The corresponding z-transform pair for discrete signals is seen in Eq. (2.1.3)where t 
is replaced with rzT and denoted as [ n ] ,  and z =c’‘. 

t1=0 (2.1.3) 

The closed contour r in Eq. (2.1.3) must enclose all the poles of the function 
y[s] z” I .  Both Y(s )and v z ]  are, in the most general terms, ratios of polynomials 
where the zeros of the numerator are also zeros of the system. Since the system 
response tends to diverge if excited near a zero of the denominator polynomial. 
the zeros of the denominator are called the system poles. The transforms in Eq. 
(2.1.2) and (2.1.3) are applied to signals, but if these ”signals” represent system 
impulse or frequency responses, our subsequent analysis will refer to them as 
“systems,” or “system responses.” 

There are two key points which must be discussed regarding the LaPlace and 
z-transforms. We are presenting what is called a “one-sided” or “causal” transform. 
This is seen in the time integral of Eq. (2.1.2) starting at t = 0, and the sum in  Eq. 
(2.1.3) starting at 11 = 0. Physically, this means that the current system response 
is a result of the current and past inputs, arid . ~ p c c i f i ~ ~ ~ ~ l l ~ ~r i o t  .future iiipirts. Con-
versely, a current system input can have no effect on previous system outputs. Time 
only moves forward in the real physical world (at least as we know i t  in the 20th 
Century), so a distinction must be made in our mathematical models to represent 
this fact. Our positive time movement mathematical convention has a critical role 
to play in designating stable and unstable signals and systems mathematically. 
In  the LaPlace transform’s s-plane (s = a+jw),  only signals and system responses 
with a a s 0  are mathematically stable in their causal response (time moving 
forward). Therefore, system responses represented by values of s in the left-hand 
plane ( jw  is the vertical Cartesian axis) are stable causal response systems. As will 
be seen below, the nonlinear mapping from s-plane (analog signals and systems) 
to z-plane (digital signals and systems) maps the stable causal left-half .s-plane 
to the region inside a unity radius circle on the z-plane, called the i r r i i t  circle. 

The comparison of the LaPlace and z-transforms is most useful when consider- 
ing the mapping between the complex s-plane and the complex ,--plane, where := 
e\ 7’ , Tbeing the time interval in seconds between digital samples of the analog signal. 
The structure of this mapping depends on the digital sample rate and Ivhether real or 
complex samples are used. An understanding of this mapping udl  allow one to easily 
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design digital systems which model (or control) real physical systems in the analog 
domain. Also, adaptive system modeling in the digital domain of real physical sys- 
tems can be quantitatively interpreted and related to other information processing 
in the adaptive system. However, if we have an analytical expression for a signal 
or system in the frequency domain, it may or may not be realizable as a stable causal 
signal or system response in the time domain (digital or analog). Again, this is due to 
the obliviousness of time to positive or  negative direction. If we are mostly concerned 
uith the magnitude response, we can generally adjust the phase (by adding time 
delay) to realize any desired response as a stable causal system. Table I below gives 
a partial listing of some useful LaPlace transforms and the corresponding 
z-transforms assuming regularly sampled data every T seconds ( f ;= 1 / T samples 
per sec). 

One of the more subtle distinctions between the LaPlace transforms and the 
corresponding z-transforms in Table 1 are how some of the z-transform magnitudes 
scale with the sample interval T.  I t  can be seen that the result of the scaling is that 
the sampled impulse responses may not match the inverse z-transform if a simple 

Table 1 Some Useful Signal Transforms 

Time Domain s Domain z Domain 

1 
.v - .S() 

1 

(.s - .so)? 
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direct s-to-z mapping is used. Since adaptive digital signal processing can be used to 
measure and model physical system responses, we must be diligent to eliminate digi- 
tal system responses where the amplitude depends on the sample rate. However, in 
the next section, i t  will be shown that careful consideration of the scaling for each 
system resonance or pole will yield a very close match between the digital system 
and its analog counterpart. At this point in our presentation of the z-transform, 
we compare the critical mathematical properties for linear time-invariant systems 
in both the analog LaPlace transform and the digital z-transform. 

The LaPlace transform and the z-transform have many mathematical 
similarities, the most important of which are the properties of linearity and shift 
invariance. Linear shift-invariant system modeling is essential to adaptive signal 
processing since most optimization are based on a quadratic squared output error 
minimization. But even more significantly, linear time-invariant physical systems 
allow a wide range linear algebra to apply for the straightforward analysis of such 
systems. Most of the world around us is linear and time-invariant provided the 
responses we are modeling are relatively small in amplitude and quick in time. 
For example, the vibration response of a beam slowly corroding due to weather 
and rust is linear and time-invariant for small vibration amplitudes over a period 
of, say, days or weeks. But, over periods of years the beam’s corrosion is changing 
the vibration response, therefore making it time varying in the frequency domain. 
If the forces on the beam approach its yield strength, the stress-strain relationship 
is no longer linear and single frequency vibration inputs into the beam will yield 
nonlinear multiple frequency outputs. Nonlinear signals are rich in physical infor- 
mation but require very complicated models. From a signal processing point of view, 
it is extremely valuable to respect the physics of the world around us, which is only 
linear and time-invariant within specific physical constraints, and exploit linearity 
and time-invariance wherever possible. Nonlinear signal processing is still something 
much to be developed in the future. Below is a summary comparison of LaPlace and 
z- transforms. 

Linearity 

Both the LaPlace and z-transforms are linear operators. 

-Ip{c!f(t) + hg( t )}= ctF(s)+ hG(s) 

Z { u f [ k ]+ hg[k]}= nF[z]+hG[z] 
(2.1 A.)  

The inverse LaPlace and z-transforms are also linear. 

Delay Shift Invariance 

Assuming one-sided signals , f i r )  =J [ k ]= 0 for t ,  k < 0, (no initial conditions) 

(2.1.5) 
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Convolution 

Linear shift-invariant systems have the property a multiplication of two signals in 
one domain is equivalent to a convolution in the other domain. 

(2.1.6) 

A more detailed derivation of Eq. (2.1.6)will be presented in the next section. In the 
digital domain, the convolution integral becomes a simple summation. 

(2.1.7) 

I f ‘ f ’ [k ]is the impulse response of a system and g[k]is an input signal to the system, the 
system output response to the input excitation g [ k ]is found in the time domain by the 
convolution of g [ k ]  and . f ’ [k] .However, the system must be both linear and shift 
invariant (a  shift of k samples in the input gives a shift of k samples in the output), 
for the convolution property to apply. Eq. (2.I .7) is fundamental to digital systems 
theory and will be discussed in great detail later. 

Initial Value 

The initial value of a one-sided (causal) impulse response is found by taking the limit 
; is  ,s or I approaches infinity. 

lim /‘(I) = lini sF(,s) (2.1.8)/--to \ ” r L  

The initial ~ralue of digital impulse response can be found in an analogous m an ner . 

f“0]= “2: F[:] (2. I .9) 

Final Value 

The final k‘alue of a causal impulse response can be used as an indication of the 
stability of a system a s  well as to determine any static offsets. 

lim f ( i )= litn .sF(s) (2.2.10)
I - 2  \--0 

Equation (2.1.10)holds so long as s F ( s ) is analytic in the right-half of the ,\-plane(no 
poles on the j c l ,  axis and for (T 2 0). F ( s )is allowed to haix one pole at the origin and 
still be stable at i = x.The final value in the digital domain is seen in  Eq. (2.1.11 ). 

( 1  - :-I)F‘[z]must also be analytic in the region on and outside the uni t  circle on the 
:-plane. The region 1112 1 .  on and outside the uni t  circle on the :-plane. corresponds 
t o  the region ci 3 0, on the j ( o axis and i n  the right-hand s-plane. The .s-plane pole F ( s )  
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is allowed to have at s = 0 in equation maps to a =-plane pole for f l z ]  at z = 1 since 
z =e.'T. The allowance of these poles is related to the restriction of causality for 
one-sided transforms. The mapping between the s and r planes will be discussed 
in some more detail on pages 26-28. 

Frequency Translation/Scaling 

Multiplication of the analog time-domain signal by an exponential leads directly to a 
frequency shift. 

Y { e - ' ' Y ( t ) )  = F(s+ N )  (2.1.12) 

In the digital domain, multiplication of the sequence.flkJ by a geometric sequence x k  
results in scaling the frequency range. 

Ix 

2 { r k f [ k ] }= E f [ k ] ( : p  F[z/rx] (2.1.13)x 
k =O 

Differentiation 

The LaPlace transform of the derivative of the function f i t )  is found using inte- 
gration by parts. 

9 - = sF(s) - f ( O )  (2.1.14) 

Carrying out integration by parts as in Eq. (2.1.14) for higher-order derivatives 
yields the general formula 

,Y- I..($J = sNF(s )-E S N - ' - k f ( k ) ( 0 )  (2.1.15) 
k=O 

wheref("'(0) is the kth derivative offlt) at t = 0. The initial conditions for.f(t) are 
necessary to its LaPlace transform just as they are necessary for the complete sol-
ution of an ordinary differential equation. For the digital case, we must first employ 
a formula for carrying forward initial conditions in the z-transform of a 
time-advanced signal. 

N-l  

Z { x [ n+ NI)  = eYN;x[z ]- z.Y-k.Y[k] (2.1 16) 
k=O 

For a causal sequence, Eq. (2.1.16) can be easily proved from the definition of the 
z-transform. Using an approximation based on the definition of the derivatives, 
the first derivatives of a digital sequence is seen as 

1
i [ n+ I ]  = - ( s [n  + 11 - x [ n ] )  (2.1.16)

T 

where Tis  the sample increment. Applying the time-advance formula in Eq. (2.1.16) 
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gives the z-transform of the first derivative. 

1
Z ( i [ n+ 11) = -((I - l)X[:] - zs [O ] }  (2.1.18)

T 

Delaying the sequence by 1 sample shows the z-transform of the first derivative of 
.\-[II] at sample 1 1 .  

1
Z{.i.[IZ]}= -{( 1 - z-l)x[I]- .u[O]} (2.1.19)

T 

The second derivative can be seen to be 

1 
= -(( 1 - z - ' ) 'X[ z ]Z{.;;.[t?])

T' (2.1.20) 
- [ ( I  - 2,--').u[o] + z-'x[I]]] 

The pattern of how the initial samples enter into the derivatives can be more easily 
seen in the third derivative of s[iz], where the polynomial coefficients weighting 
the initial samples can be seen as fragments of the binomial polynomial created 
by the triple zero at z = 1 .  

Iz(s[iz]} 
T-7 

= __ (( 1 - z - ' ) 3 x [ z ]  

(2.1.21)
- ( 1  - 3 5 '  + 3Z--').Y[O] 

- (z- '  - 3z-').u[l] - z - ' s [2] )  

Putting aside the initial conditions on the digital-domain definitive, i t  is 
straightforward to show that the z-transform of the Nth definitive of X [ I Z ]  simply 
has .V zeros at  z = 1 corresponding to the analogous IV zeros at .Y = 0 in the analog 
domain. 

Mapping Between the s and z Planes 

As with the aliased data in section 1.1 above, the effect of sampling can be seen as a 
mapping between the series of analog frequency bands and the digital baseband 
defined by the sample rate and type (real or complex). To make sampling useful, 
one must band-limit the analog frequency response to a bandwidth equal to the 
sample rate for complex samples, or low-pass filter to half the sample rate for real 
samples. Consider the effect of replacing the analog t in z" = c"' with nT, where 
11 is the sample number and T = 1 /.f; is the sampling interval in seconds. 

As can be seen in Eq. (2.1.23), the analog frequency repeats every multiple of,f; 
( a  full f ,  Hz bandwidth is available for complex samples). For real samples 
(represented by a phase shifted sine or cosine rather than a complex exponential), 
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a frequency bandf; Hz wide will be centered about 0 Hz giving an effective signal 
bandwidth of only f F / 2  Hz for positive frequency. The real part of the complex 
spectrum is symmetric for positive and negative frequency while the imaginary part 
is skew-symmetric (negative frequency amplitude is opposite in sign from positive 
frequency amplitude. This follows directly from the imaginary part of c’” being j 
sin 0. The amplitude of the real and imaginary parts of the signal spectrum are deter- 
mined by the phase shift of the sine or cosine. For real time-domain signals sampled 
a t j ;  samples per sec, the effective bandwidth of the digital signal is from 0 to.f,/2 Hz. 
For CJ f0, a strip within 5 tuS/2for the left-half of the complex s-plane maps into a 
region inside a unit radius circle on the complex z-plane. For complex sampled 
systems, each multiple of.f, Hz on the s-plane corresponds to a complete trip around 
the unit circle on the z-plane. In other words, the left-half of the s-plane is subdivided 
into an infinite number of parallel strips, each w, radians wide which all map into the 
unit circle of the z-plane. As described in Chapter 1 ,  accurate digital representation 
requires that one band-limit the analog signal to one of the s-plane strips before 
sampling. 

For real sampled systems, the upper half of the unit circle from the angles from 
0 to 71 is a “mirror image” of the lower half circle from the angles of 0 to - 71. Figure 2 
shows a series of s-values (depicted as the complex values “A” through “ I ” )  and their 
corresponding positions on the complex z-plane for a real sampled system [2.2]. So 
long as the analog signals a filtered appropriately before sampling (and after 
D / A conversion for output analog signal reconstruction), the digital representation 
on the complex ,--plane will be accurate. The letters “A” through “ I ”  depict 
mappings between the analog s-plane and the digital z-plane in Figure 2. 

S-Plane Z-Plane 

I 

1. 

E.FmI 

Stable Signal Regions 

Figure 2 The region between &(14/2 (and its images) on the left-hand s-plane maps to a 
region inside the unit circle on the :-plane. 
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The mapping between the s and z planes can be seen as a straightforward 
implementation of periodic sampling. If one had an mathematical expression for 
the LaPlace transform H ( s ) of some system impulse response h ( t ) ,  the poles and 
zeros of H ( s ) can be directly mapped to the z-plane as seen in Figure 2, giving a 
digital domain system response H[=]with inverse z-transform h [ r z ] .  The sampled sys- 
tem impulse response h[n]should simply be the analog domain impulse response h ( t )  
sampled every 11 T sec, provided of course that the analog signal is first appropriately 
band-limited for the sample rate. 

While the mapping given here is similar to bi-linear transformation, the map- 
ping from the s-plane jw axis onto the z-plane unit circle in Figure 2 is actually 
linear i n  frequency. Bilinear transformations include a nonlinear mapping to the 
“)t~-plane” where the frequency part of the mapping follows a tangent, rather than 
linear. relationship. Only at very low frequencies on the rrv-plane do the two fre- 
quency scales approximate one another. The \\*-plane is typically used for stability 
analysis using techniques like the Routh-Hurwitz criterion or Jury’s test. In our 
work here, we simply map the poles and zeros back and forth as needed between 
the :-plane and a band-limited s-plane primary strip bounded by f ( u , / 2 .  The 
interior of the :-plane unit circle corresponds to the left-half (a< 0) of the s-plane 
primary strip. 

The approach of mapping between the s and z planes does have an area where 
some attention to physics is needed. The mapping of the s-plane and =-plane poles 
and zeros insures that the frequency response of the two systems is relatively accurate 
at low frequencies. But, an accurate digital system representation of a physical 
analog-domain system must have an impulse response that is identical in both 
the digital and analog domains. As will be seen below, the digital-domain impulse 
response will differ from the analog impulse response by a scale factor for any system 
with more than a single pole mapped directly between the s and :-planes. The scale 
tactor is found in a straightforward manner by comparing the analog and digital 
impulse responses from the inverse LaPlace and inverse z-transforms, respectively. 
Each system “mode” can be isolated using a partial fraction expansion and scaled 
independently to make the analog and digital domain systems very nearly identical. 
Because z = 0‘7 is not a linear function, the transition from analog to digital domain 
is not a perfect match. One can match the system modes which will give a nearly 
identical impulse response but will not match the spectral zeros (or nulls in the fre- 
quency response), or one can match the frequencies of the poles (spectral peaks 
or resonances) and zeros, but the modal amplitudes and impulse response will differ 
between the digital and analog system responses. The next section illustrates the 
process for a simple mass-spring-damper mechanical oscillator and its correspond- 
ing digital system model. 

2.2 SYSTEM THEORY 

Common systems such as the wave equation, electrical circuits made up of resistors, 
capacitors, and inductors, or mechanical systems made up of dampers, springs, and 
masses are described in terms of 2nd-order linear differential equations of the form 

M--- + R !!!I!!a’?!( t )  + Ky(t )  = As( t )  (2.2.1)
at’ at 
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where A s ( [ )is the applied input to the system for t > 0 and!?(/) is the resulting output 
assuming all system initial conditions are zero. If Eq. (2.2.1 ) describes a mechanical 
oscillator, A.v(t)  has units of force, y ( t )  is displacement in meters m, M is mass 
in Kg, K is stiffness in Kgis', and R is damping in Kg/s. Note that each of the 
three terms on the left side of Eq. (2.2.1) has units of force in nT, where 1 riT = 
1 Kg m/s2. Assuming the input force waveform A.u(t)  is a force impulse ,/id(/), 
the displacement output J*(1) of Eq. (2.2.1) can be seen as a system impulse response 
only if there are zero initial conditions on ) ' ( I )  and all its time derivatives. Taking 
LaPlace transforms of both sides of Eq. (2.2.I )  reveals the general system response. 

M{s' Y ( s )- s ~ ( O )- j(0))+ R { s Y ( s )-~ ( 0 ) )+ K Y ( S )=,/i) (2.2.2) 

Since the LaPlace transform offct)  =fo8(t) is F(s) =.f& 

F(s )+ ( M s+ R)J~(O)+ Mjf(0) 
{Ms' + Rs + K }

Y ( s )= 
(2.2.3) 

= H(s)G(s) 

where H ( s )  is called the system function 

1 
(Ms' + Rs + K }

H ( s ) = (2.2.4) 

and G(s) is called the system excitation function. 

G ( S )= F(s)+ ( M s+ R)lfO)+ M j ( 0 )  (2.2.5) 

Usually, one separates the initial conditions from the system response 

(MLy+ R)j'(O)+ Mji(0) 
{Ms' + Rs + K )

Y ( s )= F(s )H(s )+ (2.2.6) 

since the effect of the initial conditions on the system eventually die out relative to a 
steady state excitation F(s).Figure 3 depicts a mass-spring-damper mechanical oscil- 
lator and its LaPlace transform system model equivalent. 

Taking inverse LaPlace transforms of Eq. (2.2.6) gives the system displacement 
response y ( / )to the force inputfit) and the initial displacement y(0)and velocity jt(0). 
The inverse LaPlace transform of the s-domain product F(s)H(s)brings us to a very 
important relationship called the convolution integral. We now examine this import- 
ant relationship between the time and frequency domains. Applying the definition of 
the LaPlace transform in Eq. (2.1.2), to F(s)H(s)one obtains 

(2.2.7) 

We can re-arrange Eq. (2.2.7) to give 

(22.8) 
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1
H(s) = 

Ms2+Rs + K 

Figure 3 A mechanical oscillator and its equivalent LaPlace transform system inodel Ljtith 
Vorce input and displacement output.  

Equation (2.2.8) is now changed so = t - t 

(2.2.9) 

Finally, interchanging the order of integration we obtain 

(22.10) 

where the middle integral in parenthesis in Eq. (2.2.10) is the convolution off( / )  and 
/ I (  t ) . I t  can be seen that the product of two system functions in the frequency domain 
(.s-plane or :-plane) results in the convolution of the corresponding time domain 
functions. Conversely, the product of two time domain functions is equivalent to 
the convolution of their corresponding frequency domain functions. Also note that 
the conjugate product in the frequency domain is equivalent to a cross correlation 
of the two time domain signals. 

The inverse LaPlace transform of our mechanical oscillator system in Eq. 
(3.2.6)is therefore 

(2.2.11 )  

Ms' + Rs + K 

where I f ( / )is the inverse LaPlace transform of the system function H ( s ) .  
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I f  the initial conditions are both zero the second two terms in Eq. (2.2.1 1)  
vanish, and if the force input to the systemf(t) is a unity amplitude Dirac delta 
functionfit) =fo6(t);fo= 1 ,  the displacement output response j f t )  is exactly the same 
as the system impulse response h( t ) .The system impulse response h ( r ) can be seen as 
the solution to a homogeneous differential Eq. (2.2.1) while the first term of the 
right-hand side of Eq. (2.2.11) is seen as the forced response to a nonhomogeneous 
equation. The later two right-hand terms form the complete general solution to 
Eq. (2.2.1). In our chosen case of a unity impulse input force with zero initial con- 
ditions we can write the system response H(s )  as 

1 
H ( s )= 

Ms2 i-Rs+ K 
(2.2.12) 

which can be written as a partial fraction expansion as 

1H ( s ) =___ [- 1 -----I 1 (2.2.13)
$1 - s, s - SI s - s, 

where the two system poles sI and s 2  are simply 

-R 2
s1,2 =z*J/;-(5) 

2M (2.2.14) 

The inverse LaPlace transform of Eq. (2.2.13) is therefore 

(2.2.15) 

Equation (2.2.15) is the analog domain system impulse response h(t) .  This 
simple physical example of a system and its mathematical model serves us to show 
the importance of linearity as well as initial conditions. Given this well-founded 
mathematical model, we can transfer, or  map, the model to the digital domain using 
z-transforms in place of the LaPlace transform. The physical relationship between 
physical system models in the digital and analog domains is extremely important 
to understand since we can use adaptive digital signal processing to identify physical 
models in the digital domain. Generating information about a physical system from 
the digital models requires a seamless transition from the z-plane back to the s-plane 
independent of digital system sample rates, number of A / D  bits, and transducer 
sensitivities. In other words, if we build a processing algorithm which adapts to 
the input and output signals of an unknown system, and we wish to represent physi- 
cal quantities (such as mass, stiffness, damping, etc) from their digital counterparts, 
we must master the transition between the digital and analog domains. 
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2.3 MAPPING OF S-PLANE SYSTEMS TO THE DIGITAL DOMAIN 

We now examine the implications of mapping the s-plane poles in Eq. (2.2.14) to the 
:-plane using the bi-linear transformation z = e”. This transformation alone places 
the poles at the correct frequencies, but not necessarily the same amplitudes as 
the analog domain counterpart. 

(2.3.I )  

The mapped z-transform for the system is depicted as N”’[I]and written a s  

(2.32)  

where the negative powers of z are preferred to give a causal z-transform using some 
additional time delay. Expanding Eq. (2.3.2) using partial fractions gi iw a sum of 
two poles which will simplify the inverse z-transform. 

(2.3.3) 

The two terms in the braces in Eq. (2.3.3) can be re-written as an infinite geometric 
series. 

(2.3.4) 

By inserting the :-plane poles into Eq. (2.3.4) and substituting rz = k + 1 we have 

(2.3.5) 

From examination of Eqs (2.1.3) and (2.3.5) the inverse z-transform of the mapped 
poles is 

(2.3.6) 

Clearly, the mapped system impulse response has a scale factor ( in  the 
denominator of Eq. (2.3.6)) which is dependent on the sample interval 7‘. As 
(‘J(/ approaches tu,/2 or 0, h‘”[n] will have a large amplitude compared to the 
sampled analog domain impulse response h(nT).  The time delay of 1 sample is 
a direct result of causality constraints on digital systems. Figure 4 below shows 
the impulse response of our system with a poles near f 2 5  Hz and a damping 
factor of ;= 10 sampled at rates of 57 Hz, 125 Hz, and 300 Hz. At 57 samples 
per sec, is nearly n and the mapped impulse response of Eq. (2.3.6) is larger 
in amplitude than the physical system. At 125 samples per sec, the pole at 
co,,T is nearly n / 2 ,  making the sin function nearly unity and the two impulse 
responses to be a pretty good match. However, as we sample at faster and faster 
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Figure 4 An unscaled digital impulse response may be accurate depending on sample rate. 

rates, CL),,Tapproaches 0 and the unscaled digital impulse response becomes arti- 
ficially huge. Conversely, given a digital measurement of a real physical system 
impulse response, extracting physical information from the digital domain model 
mapped to the analog domain requires the proper scaling which depends on 
the sample rate as seen in Eq. (2.3.6). 

Since we want the digital impulse response to match the true physical system's 
impulse response as perfectly as possible, we must scale the digital system to remove 
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the sample rate dependence. 

(2.3.7) 

Figure 5 below shows that this scaling allows any sample rate to be used for our 
mechanical oscillator system's digital model. The scaling required is actually a result 
of the partial fraction expansions in the two domains. The time delay in the scaled 
mapped digital impulse response is unavoidable due to causality constraints on real 

2.00 

1.oo 

0.00 


-1.oo 

-2.00 

2.00 

1.oo 125 samples/sec 

0.00 b b-1.oo 

-2.00 
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0 0.1 0.2 0.3 0.4 0.5 
Time (seconds) 

Figure 5 An accurate digital impulse response is obtained through proper scaling. 
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digital systems. Since the sample interval is usually quite small, the delay is generally 
of little consequence. 

The scale factor in Eq. (2.3.6) allows the digital impulse response to very nearly 
match the analog system. For very 

(2.3.8) 

fast sample rates where w,I is small compared to 2?f;, Eq. (2.3.8) can be 
approximated by T = 1 /fsas presented in Ref. 3. The good news about the scaling 
between the z and s-planes is that i t  is always a constant factor (linear) regardless 
of the number of poles and zeros being mapped. 

Comparing the frequency responses of the system LaPlace transform H ( s )  
evaluated forjO 5 s 5jw, /2 ,  and the scaled and mapped digital system HI:] evaluated 
on the unit circle provides another measure of the importance of scaling. Evaluating 
the frequency response of a digital system H [ z ]  requires an additional scale factor of 
T, the digital sampling time interval which can be seen to be the counterpart of the 
differential “dt” in the LaPlace transform. The properly scaled frequency response 
of the digital domain H [ z ]  is seen to closely approximate that for the analog domain 
H ( s )  for any non-aliased sample rate as shown in Eq. (2.3.9). 

(2.3.9) 

Figure 6 below compares the frequency responses of H ( s )  and H[2]  in terms of 
dB-magnitude and phase in degrees. The case shown in Figure 6 is for two 25 
Hz conjugate poles with a damping factor of < = 10 Nepers and a sampling fre- 
quency of 300 samples per sec. Except for the linear phase response due to the 
delay of one sample in Wz],the magnitude and phase compare quite well, especially 
when considering the sensitivity of the log scale. For a high sampling frequency, or 
relatively low resonance, the net scale factor can be approximated by T2.But, if the 
resonance is near the Nyquist frequency, the scaling in Eq. (2.3.9) should be 
employed. 

As can be seen in Figure 6, the match is very close at  low frequencies. If we 
remove the sample delay from the digital system phase frequency response, the 
two phase curves almost exactly match. It can be seen that even with careful scaling 
of digital systems, the transference to the digital domain is not perfect. At the upper 
end of the spectrum where system features are observed through signals which 
are sparsely sampled, the system response errors are larger in general. From a system 
fidelity point of view, oversampling is the most common way to drive the dominant 
system features to the low digital frequency range where very precise system 
modeling can occur. Figure 7 shows the same H(s) system model but for a digital 
system H [ z ]  sampled at  only 57 samples per sec. Clearly, the scaling shown in 
Eq. (2.3.9) succeeds in providing a close match near the system resonance, but 
high-frequency problems exist nonetheless. In the high frequency range, scaling 
by p , rather than that shown in Eq. (2.3.9), actually produces a very significant 
gain error. 

Finding the precise scale constants becomes much more difficult for com- 
plicated systems with many system resonances, or modes. However, each mode 
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Figure 6 Comparison of the frequency responses of H(.s ) ( - )and the properly scaled H[:]  
(A) 
for  a sample rate of 300 Hz. 

(or  system resonance) can be scaled in the same manner as the simple oscillator above 
to give a reasonable match for both the time-domain impulse responses, and the 
frequency-domain system responses. But for systems with both high frequency poles 
and zeros (resonances and anti-resonances, respectively), a design choice must be 
made. The choice is between either matching the frequencies of the poles and zeros 
with an error in system response magnitude, or matching the impulse response 
and system resonances with an error in the zero (system anti-resonance) frequencies. 
As will be seen below, the only recourse for precise analog and digital system and 
impulse response matching is to substantially “over-sample” the digital system, 
where all the poles and zeros are at very low frequencies. 

Consider the following two-7er0, four-pole system with a real impulse response 
requiring that the poles and zeros be conjugate pairs. Let the two zeros z ;  be at 
(T= + 5,  j co / i z  = f130 Hz, the first pair of poles pi at 0 = -20, j m / 2 n  = f160 
Hz, and the second pair of poles pi at 0 = - 10, j w / 2 z  = f240 Hz on the s-plane. 
Note that the positive damping for the zeros does not cause an unstable system, 
but rather a non-r?iinimuni phiist. system, which will be discussed in more detail 
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Figure 7 The same analog system H ( s ) as in Figure 6 ,  but for a digital system sampled at 
only 57 Hz showing the difficulties of spectral matching at high frequencies. 

in the next section. Our s-plane system response function is 

H ( s )  = 
(s - Zi)(S - Zi*) 

(s -p ; ) ( s-pi*)@-&)(s -py) (2.3.10) 

where the impulse response is found using partial fraction expansions as seen in Eq. 
(2.3.11). 

h( t )  = A,,&';' + B,\epi;"+ C,,epi' + D,ePy' (2.3.1 1 )  

where 

(2.2.12) 
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Applying the mapping and modal scaling technique described previously in this 
section, the discrete impulse response which is seen to closely approximate Eq. 
(2,3.11) is 

where pi is the z-plane mapped pole corresponding to p ; .  etc. The discrete system 
frequency response is found following Eq. (2.3.9). 

(2.3.14) 

The spectral peaks in Eq. (2.3.14) will be well-matched to the analog system in Eq. 
(2.3.10)due to the modal scaling. Howeier, the change in relative modal amplitudes 
causes the zero locations to also change as will be seen graphically below. 

There appears to be little one can do  to match both the poles and zeros in 
general at high frequencies with an algorithm other than empirical means. However, 
a fairly close match (much closer than using the mapped poles and zeros alone) can 
be achieved by writing H [ z ]as a product of an all-zero system and an all-pole system. 
The two systems are then scaled separately where the zeros are each divided by Tand 
the poles are scaled according to the modal scaling described previously in this 
section. A compensated system response with separate “linear” scaling is depicted 
as H‘[z] in Eq. (2.3.15) below. 

( 2  - :,)(I - q*) A, .  +- 4, +---c‘, +--] D,“I] = T--------T ___T [r - p l  : - p i *  z - p ;  - py  (2.3.15) 

The partial fraction expansion coefficients A(. ,B,,  C,, and D,are seen in Eq. (2.3.16) 
for the all-pole part of the system response. 

.4, = 

B,. = 

(2.3.16) 
c,.= 

D, = 

The compensated “linear” scaling shown in Eqs. (2.3.15) and (2.3.16) are seen as a 
compromise between matching the peak levels and maintaining consistent pole-zero 
frequencies. Another linear scaling technique seen in the literature applies to the 
z-plane mapped impulse response 

where A-,  B,, C-,and D=are the unscaled mapped z-plane counterparts to the +plane 
coefficients given in Eq. (2.3.12) above. Linear scaling gives an approximate impulse 
response match which degrades as the system resonances increase in frequency. Con- 
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sider the impulse responses shown in Figure 8 for the system sampled at 600 Hz. As 
can be seen in Figure 8, the effect of modal scaling is to give a much closer match 
to the real system than simple linear scaling. Figure 9 compares the frequency 
responses for the same system and sampling rate. 

As clearly seen in Figures 8 and 9, modal scaling gives an accurate impulse 
response and spectral peaks but a significant error in the shifted location of the zero. 
Clearly, it is up to  the designer to decide whether an accurate match of the fre- 
quencies of the poles and zeros is needed more than an accurate impulse response. 
The important lesson here is that mapping from the s-plane to the z-plane (and 
z-plane back to the s-plane), is not without some trade-offs. For systems where accu- 
rate transient response is needed, one would prefer modal mapping. If accurate 
steady-state response is needed in terms of resonance and anti-resonance 
frequencies, linear scaled mapping is preferred. However, if high precision matching 
between the z-plane and s-plane systems is required, it can best be achieved by 
“over-sampling’’ the system. Over-sampling can be seen as using a digital system 
bandwidth much greater than that required for the dominant system features (poles 
and zeros). As can be seen in Figures 10 and 11, where the previous Figure’s system 
is over-sampled 5:1 at 3 kHz, an excellent spectral and impulse response match 
occurs for both digital systems using either type of scaling. 

2.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

The z-transform is a useful tool for describing sampled-data systems 
mathematically. It’s counterpart in the in the continuous signal analog domain 
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Figure 8 Comparison of the analog (-), modal scaled ( O ) ,and linear scaled (+) impulse 
responses sampled at 600 Hz. 
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Figure 9 Comparison of frequency responses for analog system ( ), modal scaled ( 0), and 
linear scaled (+) using a sample rate of 600 Hz. 
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Figure 10 Comparison of the analog ( -), modal scaled (o),and linear scaled (+)  impulse 
responses sampled at 3000 Hz. 
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Figure 11 Comparison of frequency responses for analog system (-), modal scaled (0). 
and linear scaled (+) using a sample rate of 3000 Hz. 

is the LaPlace transform. By using a linear frequency mapping between the analog 
s-plane of the LaPlace transform and the digital :-plane of the z-transform. one 
can model any physical system bandlimited to a frequency strip on the s-plane using 
a digital system. In general, the guarantee of a band-limited signal in the analog 
domain requires electronic filtering before A / D  conversion at a suitable rate high 
enough for the bandwidth to be represented without frequency aliasing. The par- 
ameters of the digital system model can be determined by mapping the s-plane 
analog system poles and zeros directly to the :-plane for the digital system. However, 
this mapping is not without accuracy limitations. I t  can be seen in this section that 
the mapping is only precise at relatively low frequencies compared to the sampling 
rate ji. In general, an accurate match is attainable in the 0 <.f < , f i ! 4  range, 
and only an approximate match is practical in the frequency range between.fi-/4 
and the Nyquist rate.fs/2 for real signals. For the frequency range approaching 
the Nyquist rate ( . fs  for complex signals), one must decide whether the impulse 
response match is more important than the match of the zeros in the steady-state 
frequency response. If so, each "mode" or system resonance for the digital system 
can be scaled independently to insure a match to their analog system counterparts. 
giving a very accurate impulse response in the digital domain. 

However, the modal scaling will effect the zero frequencies (or anti-resonances) 
in the digital domain since one can not control the phase of a digital pole-zero system 
at all frequencies. One could match both the magnitudes of the pole and zero fre- 
quencies in the digital system, but the phase at the system pole frequencies u.ould 
have to be altered in order to have the zeros in the right place. Therefore, uith 
the phases of the resonances adjusted, the digital impulse response ivould not match 
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the true physical system. I t  should be clear that one can not simultaneously match the 
impulse and frequency responses of a digital and corresponding analog pole-zero 
slstem unless one "oversamples" at a very high rate driving the spectral features 
of interest to low frequencies. 

PROBLEMS 

1 .  Prove the properties of linearity and shift invariance for both the LaPlace 
transform and z-transform. 

3-. Show that for positive-moving time, the stable region for the z-transform 
is the region inside the unit  circle and the stable region for the LaPlace 
transform is the left-half s-plane. 

3 .  Show that for the frequency scaling in Eq. (2.1.13)where 1x1 = 1 .  the digital 
domain scaling is actually the same as the analog domain frequency 
shifting in Eq. (2.1.12) where a is imaginary. 

4. Assuming zero initial conditions, show the equivalence of differentiation in 
the analog and digital domains by mapping the LaPlace transform i n  Eq. 
(2.1.15) to the z-transform in Eq. (2.1.22). 

5 .  Build a digital system model for a mechanical oscillator as seen in Figure 3 
where the system resonance is 175 Hz, with a damping of 40 Neperslsec, 
using a digital sample rate of 1000 real samples/sec. Find the _-plane poles 
and scaled impulse response as described in Eqs (2.3.3)-(2.3.7). 

BIBLIOGRAPHY 

W. E. Boyce. R .  C. DiPrima Elementary Differential Equations and Boundary Value 
Problems, 3rd ed., New York: Wiley, 1977. 

C,  L. Phillips, H .  T. Nagle J r .  Digital Control System Analysis and  Design, Engleuood Cliffs: 
Prent ice-Hall, 1 984. 

H .  F. VanLandinghani Introduction to Digital Control systems, N N  York: MacMillan, 1985. 

TLFeBOOK



Digital Filtering 

Digital filtering is a fundamental technique which allows digital computers to pro- 
cess sensor signals from the environment and generate output signals of almost 
any desired waveform. The digital computer in the 1990s has either replaced, or 
begun to replace, the analog electronics commonly found throughout the earlier 
part of the 21st Century. For electronic control systems, the advent of the digital 
computer has meant the replacement of analog circuitry with digital filters. 
Microprocessor-based digital filters have the advantages of incredible versatility. 
repeatability, reliability, small size, and low power requirements. During the last 
quarter of the 20th Century, digital signal processors have replaced even 
low-technology electronics and mechanical systems such as thermostats, 
clocks/timers, scales, and even the mechanical control systems on the internal com- 
bustion engine. Digital filters are generally used to detect important information 
from electronic sensors, provide precision output signals to actuators in the 
environment, or to form a control loop between sensors and actuators. The most 
sophisticated kind of signal processing system makes use of additional information, 
human knowledge, sensor data, and algorithms to adaptively optimize the digital 
filter parameters. Before we engage the full potential of adaptive signal processing, 
we will first examine the fundamentals of digital filtering and its application real 
physical systems. 

In  this section we first describe the two most fundamental types of digital filter: 
the finite impulse response (FIR); and infinite impulse response (IIR) filters. Using 
results from system theory, FIR and IIR filter design techniques are presented with 
emphasis on physical applications to real-world filtering problems. Of particular 
importance are the techniques for insuring stable IIR filters and the effects of delay 
on the digital system parameters. Digital systems can also be designed based on 
state variables and this relationship to IIR filtering is presented. Generally, state 
variables are used when the information of interest is directly seen from the system 
state equations (position, velocity, acceleration, etc.). For processing 2-dimensional 
(2D)data such as images or graphs, 2D FIR filters are presented. Image processing 
using 2D FIR filters (often referred to as convolution kernels) allows blurred or 
out-of-focus images to be sharpened. Finally, a set of popular applications of digital 
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filters ;.ire given. Throughout the rest of this book, we will relate the more advanced 
xiaptive processing techniques to some of these basic fitmilies of applications. 

3.1 FIR DIGITAL FILTER DESIGN 

There are many techniques for digital filter design which go far beyond the scope of 
this book. In  this section we will concentrate on the fundamental relationship 
between a digital filter and its frequency response. In subsequent chapters, we will 
also examine several more sophisticated design procedures. Consider the 
z-transform of Eq. (2.l.3),but with :restricted to the unit circle on the :-plane 
(: = ( , l W  / \  ) ;is ii means to obtain the frequency response of some digital signal j - [ r i ] .  

(3.1.1) 

The infinite sum in Eq. (2.1.3) is made finite for our practical use where N is large. 
Eq. (3.1.1) is a discrete time Fourier transform (DTFT), the details of which will 
be explained in much greater detail in Chapter 5.  I f  ~ “ 1 2 1is the output of it digital 
tiltcr driven by it broadband input signal s [ n ]containing every frequency of interest. 
the frequency response of the filter is found from system theory. 

(3.1.2) 

The impulse response of our digital filter is found most conveniently by computing 
the inverse discrete time Fourier transform (IDTFT)using the sum of the responses 
a t  K frequencies of interest. 

(3.1.3) 

I f  jfn] and .u[rz] are real (rather than complex-sampled data), h [ r i ]  must also be 
real. The DTFT of ii real signal gives both real and imaginary frequency response 
components in what are known as Hilbert transform pairs. The real part of the fre- 
quency response is symmetric for positive and negative frequency; Re [ H [ R ] != 
Re IN[-a]).The imaginary part of the frequency response is skew-symmetric; 
where Im[H[Q]l = - Im(H[-Q] ) .  I t  follows from the fact that e’” has the same 
symmetry of its real and imaginary components. In  order to have / 1 [ 1 1 ]  real. both 
positive. and their corresponding negative. frequencies must be included in  the 
IDTFT i n  Eq. (3.1.3). For complex time domain sampled data, the frequency range 
nced only bc from the lowest to highest positive frequency of interest. Any number 
o f  samples for / 2 [ 1 1 ]  can be generated using the IDTFT in Eq. (3.1.3). The most 
important aspect of using the IDTFT to design it digital filter is that 1iri.1‘ frequency 
response may be specified and inverted to give the filter impulse response. 

Finite Impulse Response (FIR)digital filters are usually designed by specifying 
;i desired frequency response and computing an inverse Fourier transform to get the 
impulse response. This highly convenient approach to filter design is limited o n l y  bj’ 
the number o f  samplcs desired in the impulse response and the corresponding 
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spectral resolution desired in the frequency domain. The finer the desired spectral 
resolution is, the greater the number of samples in the impulse response will need 
to be. For example, if the desired resolution in the frequency domain is 8 Hz, 
the impulse response will have to be at  least 1/8th sec long. At a sample rate of 
1024 Hz, the impulse response would have at least 128 samples. 

The method for implementing a digital filter in the time domain is to use a 
difference equation based on the inverse z-transform of Eq. (3.1.2). 

(3.1.4) 

Noting the delay property in Eq. (2.1.5) where z 'X[z]transforms to . ~ [ n - l ] .  the 
inverse z-transform is seen to be 

(3.1.5) 

k =O 

where the output ~ " 1 1 1  is the discrete convolution of the input . ~ [ r 1 ]with the filter 
impulse response / z [ r z ]  as also seen in Eq. (2.1.7). The impulse response is finite 
in Eq. (3.1.5)due to the truncation at  N samples. This type of filter is called a finite 
impulse response, or FIR, digital filter and has a convenient design implementation 
using the DTFT. 

The question arises as to what penalty one pays for shortening the impulse 
response and simplifying Eq. (3.1.5). In  Figure 1 the response of a mass-spring- 
damper system, with a damped resonance at 375 Hz and damping factor 10 Nepers, 
is modeled using an FIR filter and a sampling rate of 1024 samples per sec. This 
system is similar to the one in Figure 3 of the previous chapter. The frequency 
responses for 1024, 128, 16 sample impulse responses are given in Figure 1 to 
graphically show the effect of truncation. The 8 sample FIR filter has only 128 
Hz resolution, while the 32 sample FIR has 32 Hz, and the 1024 sample filter 
has 1 Hz resolution. Clearly, the resolution of the FIR filter in the frequency domain 
should be finer than the underlying structure of the system being modeled, as is the 
case for the 1024 sample FIR filter. A11 one needs to do to design a FIR filter is 
to specify the magnitude and phase and the desired frequency resolution and sample 
rate will determine the length of the FIR impulse response. Given a long enough FIR 
filter, N I I ~ ~j k y r t c r i c J ~I-tisporzsc~C ' N I I  he rcw1ist.d. 

However, if the desired frequency response contains only anti-resonances. or 
"dips", an FIR filter can model the response with absolute precision. Consider 
the case of multipath cancellation as shown in Figure 2. A distant transmitter 
radiates a plane wave to a receiver a distance "d" away from a reflecting boundary. 
The two different path lengths from source to receiver cause cancellation at fre- 
quencies where they differ by an odd multiple of half-wavelengths. From the 
geometry seen in Figure 2, i t  can be seen that the path difference for some angle 
0 measured from the normal to the reflecting boundary is 

AI = 2ticosO (3.1.6) 
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Figure 1 Comparison of 1024, 32, and 8 sample FIR filter models fhr ii system kvith ;I 
damped resonance at 374 Hz. 

Figure 2 Miiltipiith from ;i distant source g i iw a path difference scen along H A €  hich 
c :I 11 \e s c ii [iceI Ia t ion o f  some frequencies and enha ncenien t of others. 

TLFeBOOK



47 Digital Filtering 

The geometry in Figure 2 is straightforward to solve. The segment A D  is “d” 
meters long. Therefore, segments AC and AE are each dlcosO long. The angles 
in BAD, DAE, and BED are all 8, making the segment CE be 2dtanO long. 
Therefore, BC is 2dtanOsinO long and the path difference along BAE is 
(2 dlcos O)(  I - sin20 ) ,  or simply 2 dcos 0. If we consider an acoustic wave where 
d is 0.3 m, 0 is 30‘, and the reflecting boundary has a reflection coefficient of 
+1,  the direct plus reflected waves combine to give the following analog system fre- 
quency response 

(3.1.7)
C 


where c is the speed of sound in air (about 343 m/sec at 20C). The path difference 
computes to be 0.5196 m giving a time delay between the direct and reflected paths 
of approximately 1.5 msec. If we are interested in frequencies up to 5 kHz, the digital 
sample rate is set to 10 kHz making the time delay approximately equal to 15 sample 
periods. The z-transform for a digital filter with a direct output plus a 15-sampled 
delayed output is simply 

H [ z ]= 1 + z-I5 (3.1.8) 

The digital filter model output ~ “ 1 2 1  is found for the input s[n]to be 

jf113 = S [ I I ]  + .U[/?- 151 (3.1.9) 

As can be seen in Eq. (3.1.9), there’s no need to include more samples in the 
FIR filter! Eq. (3.1.8) is nearly an exact representation of the analog system its 
modeling in Eq. (3.1.7) and Figure 2. Figure 3 gives the frequency response of 
the system. Note that the acoustic pressure-squared doubles for all multiples of 
666 Hz and cancels for odd multiples of 333 Hz. This frequency response structure 
is generally referred to as a comb filter, (affectionately named after the basic personal 
hygiene tool many signal processors used to be acquainted with). Comb filter effects 
are common ailments for sensors placed in multipath environments or near 
reflectors. 

There is little one can do  to correct comb filtering problems that is more effec- 
tive than simply moving the sensor to a better location. However, the comb filter 
is the natural match for the FIR filter model since both systems contain only “dips” 
or “anti-resonances” in their frequency responses. The FIR polynomial in the 
:-domain can be factored into complex zeros which are located near the unit circle 
at the appropriate frequency angle. FIR filters are often referred to as “all-zero“ 
filters, or even Moving Average (MA) filters since their outputs appear as a weighted 
average of the inputs. 

3.2 IIR FILTER DESIGN AND STABILITY 

Infinite Impulse Response ( I IR)  filters are essentially the spectral inverse of FIR 
filters. IIR filters are described by a ratio of polynomials in z and can have poles 
and zeros or only poles. The all-pole form of an IIR filter is often referred to as 
an Auto-Regressive (AR)  filter. The pole-zero form of an IIR is called 
Auto-Regressive Moving Average (ARMA). We’ll first examine the structure of 
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Figure 3 Frequency response of the multipath system in Figure 2 for 0 = 30 . d = 0.3m. 
( sand = 343 ni/st.c. 

an  AR filter and its difference equation to establish a straightforward rule for I IR 
stability. Consider the following Mth-order AR filter. 

(3.3.1) 

For i in  IIR filter input .v[n] and output j l [ n ] ,  taking z-transforms gives the relation 

(3.2.2) 

Rearranging Eq. (3 .2 .2)  one has 

ivhere taking inverse z-transforms gives the AR difference equation 

(3.2.4) 

Equation (3.2.4)clearly shows that an  infinite impulse response is generated for 
; in  arbitrary input .Y[u]. However, because o f  the feedback of past outputs back into 
the current output, we must be very careful not to create an unstable system. In 
addition. for the I IR filter to be realizable in the time-domain, the current output 
1 3 [ 1 1 ]  must not contain a n y  future inputs or  outputs. A straightforwxrd \+ay to e'~;ini- 
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ine stability is write If[:] as a partial fraction expansion. 

(3.2.5) 

Applying the inverse transform techniques described in Eqs (2.3.3-2.3.4) i t  can be 
seen that the AR impulse response is a sum of M geometric series. 

( 32.6) 

Clearly, for h[n] to produce a stable output jfn] from a stable input s [ n ] , the 
magnitude of the quotient z , / z ;i = 0,1,2,...,M must be less than unity (i.e. l z , / z [ < l ) .  
Therefore, it can be seen that the zeros of the denominator polynomial of H [ z ] .or the 
poles of W z ] ,must all have magnitude less than unity requiring them to all lie within 
the unit circle on the complex z-plane to guarantee stability. 

Consider the mass-spring-damper system modeled with FIR filters in Figure 1. 
We can derive an IIR filter with a very precise match to the actual system in both 
frequency response and impulse response using the s-plane to :-plane mapping tech- 
niques of the previous section. From examination of Eqs (2.3.1-2.3.7), the niapped 
and scaled IIR filter is 

(3.2.7) 

where coci = 750n, T = 1 / 1024 sec, and i= 10 Nepers. The IIR coefficient u I  = -
(21 + z.) = 2e ‘%os(tuliT) and N. = e 2cT.  Numerical calculations reveal that the pole 
magnitudes are approximately 0.99 giving a stable IIR filter. The scale factor, 
defined as ho, works out to be 3.19 x 10 while a l=  - 1.32 and = 0.98. 

(3.2.8) 

The IIR finite difference equation is simply 

J“121 = h()s[rz- 21 - a1y[12 - 13 - a2y[n - 21 (3.2.9) 

The three term sum in Eq. (3.2.9) is actually more accurate than the 1024 term 
sum shown in Figure 1 .  IIR filtering is very precise when the actual physical system 
being modeled is composed of spectral peaks which are easily modeled using poles 
in a digital filter. The same is true for pole-zero systems modeled by ARMA digital 
IIR filters. However, a serious question to be answered is how one can determine 
the ARMA numerator and denominator polynomial orders in the model. Most tech- 
niques for ARMA system identification provide a “best fit” for the model, given the 
number of poles and zeros to be modeled. Guessing the model orders wrong may still 
lead to a reasonable match between the desired and actual filter responses, but i t  may 
not be the best match possible. In general, a pole-zero difference equation for an 
ARMA model with Q zeros and P poles is seen in Eq. (3.210). ARMA models 
derived from mapped .s-plane poles and zeros are also subject to the limitations 
of matching both the impulse and frequency responses simultaneously at high fre- 
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quencies a s  described in detail in Chapter 2. Figure 4 gives a block diagram for a n  
A R M A  IIR filter. 

0 P 

h,s[ri- i]-cq y [ i 1  - j ]  (3.2.10))’[ill = 
r = o  / = I  

3.3 WHITENING FILTERS, INVERTIBILITY, AND MINIMUM PHASE 

The wrhitening filter for the A R M A  IIR system H[r] = B[z]/.-I[r] is its spectral 
inLerse. H”[3]= A[z] i ’B[: ] .The spectral product of H [ z ]and H ” [ z ] is uni ty .  or a 
spectral]) “white“ flat frequency response with un i ty  gain. I f  both W[:] and its 
inverse H ” [ r ]exist as stable filters, both filters must have a property knoun iis i ~ i i i i -
u i i u ~pliusc. While IIR filters are fdr more flexible in modeling transfer functions 
of phqsical systems u.ith spectral peaks than FIR filters, the major design concern 
is stability. This concern is due to the feedback of past IIR filter outputs into 
the current output a s  seen in the last term in  Eq. (3.2.10). This feedback must 
be ( W U W / ,  meaning that the current output j * [ i i ] must be a function o f  onlj current 
and past inputs and past outputs. From Eq. (3.2.6), i t  can be seen that the 
denoniinator polj~nomial .4[z] of an IIR system must ha\,e all of its 7eros inside 
the unit circle on the r-plane for a stable impulse response. A polqnomial mith 
it11 its zeros inside the unit  circle is said to be a i i i i i i imi i tu  p / i ( i s o  polynomial. For 
H [ z ]to be stable, A[:] must be minimum phase and for H”[z]to be stable B [ z ]must 
also be minimum phase. For both H [ z ] and W [ : ]to be stable, both sqstems must 
bc minimum phase i n  order to be invertable i n t o  a stable causal 
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Consider the effect of a delay in the form of H [ z ]  = z '*B [ z ] / A [ z ]where both 
B[z]and A[z ]are minimum phase. H[z]is stable and causal, but H"'[z]= r'"A[z]/B[z] 
is not causal. Applying the ARMA difference Eq. (3.2.10) i t  can be seen that for 
output s [n]and input y[n] ,the whitening filter H"[z ]is unrealizable because future 
inputs + d - j ]  are needed to compute the current output ~ [ I I ] .  

(33 .1 )  

Non-minimum phase numerator polynomials can be seen to contribute to the 
system delay. To examine this further, we conside a simple FIR system for real 
signals with a pair of conjugate-symetric zeros corresponding to 60 Nepers 300 
Hz. With a digital sample rate of 1000 Hz, the two zeros map to a magnitude 
of e+Ooh,or 1.062, and angles f0.67t, or f log", on the z-plane. Since the zeros 
are slightly outside the unit circle, the inverse filter (which is an AR IIR filter) 
is unstable. However, we can minimize the FIR filter's phase without affecting 
its magnitude response by adding an all-pass filter H""[z]in series. As seen in Figure 
5, the all-pass filter has a pole to cancel each zero outside the unit circle, and a zero in 
the inverse conjugate position of the pole to maintain a constant frequency response. 

The all-pass filter is by itself unstable due to the poles outside the unit circle. 
However, its purpose is to replace the non-minimum phase zeros with their minimum 
phase counterparts. The unstable poles are canceled by the non-minimum phase 
zeros, and therefore are of no consequence. The resulting minimum phase system 
H"'"'[z],will have the same magnitude frequency response, but a very different phase 
response. We should also expect the impulse response to be significantly affected by 
the imposition of a minimum phase condition. Figure 6 compares the magnitude 
and phase of the original 2-zero FIR system, the all-pass filter, and the resulting 
2-zero FIR minimum phase filter. As the non-minimum phase zeros move towards 
infinity, the amount of phase lag in the FIR filter increases. Iii the i'.utrrnic C'USI' with 
U pair of' cmjugute zeros ut irifiiiitj~,the all-passJilter itqill lraw u puir  of' zrros ut 
tlic' origin \i*hich corwspond to a delay of 2 samples in the r?iiriir?iiri?ipIiuscj sjTstcni. 

Minimum phase filters are also referred to as minimum delay filters since phase 

Figure 5 The all-pass filter H'"'[z] replaces non-minimum phase zeros with their in\rerse 
conjugates maintaining the same magnitude response and minimizing the phase response. 
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Figure 6 The all-pass filter has the effect of minimizing the phase o f  the original FIR sys-
tem without causing a significant change to the magnitude response. 

is also defined iis radian frequency times delay. I t  follows then that constant delay 
filters have a linear phase response with negative slope. 

As can be seen in Figures 5 and 6, the minimum phase system is invertible and 
differs on ly  in phase from the non-minimum phase system (the less than 1 d B  anipli-
tilde difference is of little consequence). I f  we wish to design an all-pole IIR filter to 
model an arbitrary frequency response where the spectral peaks are of  primary 
interest, uye could estimate an FIR model from the in\,erse Fourier transform of 
the spectral inverse of the IIR system. The FIR model is seen as a urhitening filter 
because the product o f  its frequency response times the original frequency response 
o f  interest is ;I constant (spectrally flat o r  "white"). One would invert the spectrum 
of interest and compute the FIR whitening filter model from the inverse Fourier 
transform of the inverted spectrum. Because the phase of the original spectrum 
is arbitrary, the phase of the FIR whitening filter may or may not be minimum. 
gii ing one o r  more 7eros outside the unit circle. This is typically the case ivhen large 
numbcrs o f  zeros are modcled with long FIR filters. To invert the FIR uhitening 
filter to get the desired stable IIR filter model, a minimum phase condition is imposed 
t o  insure stability o f  the IIR filter. One estimates the zeros ofthe FIR polynomial and 
"reflects" any non-minimum phase zeros into their respective inverse conjugate pos-
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ition to obtain an invertible minimum phase FIR filter. The phase of an FIR filter 
used as an FIR filter can be arbitrarily defined in its Fourier transform, but the 
phase of an IIR is significantly restricted by the fact that its denominator polynomial 
must be minimum phase. 

3.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

In this chapter, we presented two main linear digital filter structures in the form of 
FIR and IIR filter systems. There is far more to digital filter design than is presented 
here and the interested reader should refer to some of the excellent texts available on 
the subject. In  order to achieve the best possible results in designing linear digital 
filters which model real physical systems, one must be driven by the underlying 
physical structure of the real physical system of interest. For example. if a relatively 
short impulse response is required where the system frequency response is composed 
mainly of spectral dips (antiresonances), an FIR filter design is generally the best 
choice. If the system of interest has a long impulse response, or has a frequency 
response characterized by dominant spectral peaks (resonances), a stabilized IIR 
filter should give the best results. However, the phase of the IIR filter will be very 
strictly constrained by the causality and minimum phase requirements for stability. 
If  both the magnitude and phase of the physical system and its corresponding digital 
filter must be precisely matched with resolution Af Hz, then one should specify an 
FIR filter with impulse response duration 1/Af  seconds. The main advantage for 
IIR digital filters is that they can represent spectral peaks accurately using a low 
number of coefficients. Furthermore, if one can specify the physical parameters 
and map them to the s-plane (as done in the previous section), one can obtain accu- 
rate impulse responses through modal scaling or oversampling techniques. Digital 
filters are the building blocks of real-time control systems and many signal 
processing operations. 

PROBLEMS 

I .  For a sampling frequency of 44,100 Hz and real digital signals. design a 
FIR “notch” filter to reject 8000 Hz. Write the difference equation for 
computing the filtered output sequence. 

2. How many coefficients are needed for a FIR filter to precisely model a 
system with sharp resonances approximately 10 Hz wide around 10 
kHz where the sample rate is 50 kHz? 

3.  For modeling real physical systems with both poles and zeros, what is the 
best strategy for matching the frequency response as closely as possible. 
(a) scaling each mode appropriately 
(b) scaling the digital system by the sample period T 
(c) significantly oversampling the digital system and scaling appropriately 

4. To match the impulse response of a physical system using a minimum 
bandwidth digital filter, which of the listed strategies in problem 3 makes 
the most sense? 
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5.  Show that as a conjugate pair of zeros of an ARMA filter moves further 
outside the unit circle, the net system delay increases. 
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Linear digital filters have as a typical application, temporal frequency filtering for 
attenuation of certain frequency ranges such as high-pass, lon.-pass, band-pass, 
and band-stop filters. In this section, we explore some important applications of 
digital filtering which will be used later in this book and are also widely used i n  
the signal processing community. State variable theory is presented for applications 
where the system state (position, velocity, acceleration, etc.) is of interest. Any s l w  
tem (modeled as a mathematical function) can be completely described provided 
sufficient samples of the function are known, or if the function output and all 
its derivatives are known for a particular input. The mass-spring-damper oscillator 
is formulated in a state variable model for comparison to the IIR models deLFeloped 
in the previous sections. I t  will be shown that for discrete state lrariable filter, 
oversampling must be employed for an accurate system impulse response. Tracking 
filters are introduced for smoothing observed system output data and for examining 
unobservable system states using the non-adaptive I X - ~tracker. 

Next we present 2-dimensional (2D) FIR filters which are widely used in  image 
and video processing. Almost all image filtering involves FIR rather than IIR filters 
because the spatial causality constraints must be relaxed in order for a small 2D 
FIR convolution filter to process a much larger image by scanning and filtering. 
Perhaps the most common 2D filter in most households is an auto-focus sqrsteni 
in a video camera. A high-pass 2D filter produces a maximum output signal M.hen 
the image is in focus and giving many sharp edges. By constantly adjusting the Icns 
system using a servo-motor to maximize the 2D high-pass filter output, the image 
stays in focus even as the camera moves about. In poor light or for very low contrast 
images, the high-pass filter approach to auto-focus has difficulty finding the maxi- 
mum output point for the lens. Many other applications of 2D filters to image 
processing can be done including nonlinear operations such as brightness 
normalization, edge detection, and texture filtering. 

One of the most important and often overlooked applications for digital filters 
is in  the area of high fidelity analog signal reconstruction. Most systems wherc an 
analog signal is to be created simply use a straightforward digital-to-analog ( D  A )  
conversion device to produce the corresponding analog Voltilge for each sample 
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i n  the digital signal. The voltage is simply held constant between samples in what is 
knotvn ;is a zero-order hold. The "staircase-like" shape of the analog signal is then 
smoot hed using standard low-pass filters constructed from analog electronics. In 
the high frequency region near the Nyquist rate. the response of the zero-order hold 
and analog low-pass filters can be an issue if one desires low distortion. By creating 
neu D A samples (between the original samples), one can push the distortion 
and tidelity problems to higher frequencies which the analog filters suppress with 
greater efficiency. For example, one could simply compute the slope betueen samples 
and compute 3 additional samples to give a 4-times oversampled output with a 
first-order hold. Higher-order holds such a s  parabolic (2nd order hold), or e t m  
sinusoidal. are possible with very high oversampling rates to produce D A signals 
t+ hich actually need no additional analog filtering. Oversampled D A systems 
arc quite common o n  modern compact disc audio recording plaqrback systems 
and I+ i l l  likely be common for future digital television systems. 

4.1 STATE VARIABLE THEORY 

A popular formulation for digital systenis is state variable formulation wThere the 
state 1 ariables completely describe the dynamics of the system. State krariables 
can represent almost any physical quantity, so long as the set of state tariables rep- 
resent the minimum amount of information which is necessary to determine both 
future states and system outputs for the given inputs. State variable formulations 
i n  digital systems can be seen as a carryover from analog electronic control systems. 
Linear time-intvariant systems can be described a s  parametric models such as A R M A  
systems. or iis linear differential equations such as a state variable formulation. A 
function polynomial of order N can be completely described by A ' +  1 samples 
o f  its input and output, or by the value at one sample point plus the t d u e s  of 
,I'derivatives at that point. Early analog control systems used state t,ariables in 
the form ofderivatives because the individual state elements could be linked together 
using integrators (single pole low-pass filter). 

The design of analog control systems is still a precise art requiring ;i great deal 
of skill an  inventiveness from the designer. However, the digital age has almost com- 
pletely eclipsed analog controllers due to the high reliability and consistent 
producability of digital controllers. The state variable in a digital control sq'stern 
can be some intermediate signal to the system, rather than specifically a represen-
tiition of the system derivatives. The exceptions to this are the so-called alpha-beta 
non-adaptive position tracking filter and the adaptive Kalman tracking filter M hose 
\tates are the deriktatives of the underlying system model. Tracking filters k+TiIl be 
COL ered i n  some detail later in the book tvith particular attention g i i w  to position 
tracking. 

We now consider a general form of a state variable digital filter at iteration k 
U i th  "r" inputs f i ( k ) ." ~ i "  outputs *?(k)and " H "  system states .i-(k).The sq'ctetn state 
at time k + 1 has the functional relationship seen in Eq. (4.1.1). 

. i (k  + 1 )  =,f".i-(k),f i (k) ]  

= ,4. i(k)+ Blc(k) 
(4.1.1) 
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The system output also has a functional relationship with the state and input signals. 

J ( k )= g[.v(k),i(k)] 
= C.t(k)+ Dii(k) 

(4.1.2) 

The dimensions of A is n x n, B is n x Y, C is yt.2 x n, and D is nz x I’. For single-input 
single-output systems, B is a n x I vector and C is a 1 x rz vector, while D becomes 
a scalar. 

Consider the following ARMA filter system to be represented in a state vari- 
able model. 

(4.1.3) 

The ARMA system in Eq. (4.1.3) will need P states making A P x P, B P x 1 ,  
C 1 x P,  and D 1 x 1 in size. An expanded Eq. (4.1.1) is 

~ l [ k+ 13 0 1 0 
0 0 1 0 . . .  

44 
S p [ k  + 11 -aP -ap - 1 . . .  

(4.1.4) 

and the system output is 

J”k]= [bphp-l . . .ho] (4.1.5) 

Equation (4.1.5) is valid for P = Q as written. If P > Q, P -Q zeros follow to the 
right of bo in Eq. (4.1.5). If Q > P,Q -P columns of zeros are added to the left 
of a p in Eq. (4.1.4). State variable formulations are usually depicted in a signal flow 
diagram as seen in Figure 1 below for the ARMA system described in Eqs (4.1.4) 
and (4.1.5). The state variable implementation of the ARMA filter in Figure 1 is 
numerically identical to the IIR digital filter presented in the previous section. 
However, when the state vector elements represent derivatives rather than delay 
samples, the state variable formulation takes on an entirely different meaning. 

Continuous State Variable For mu la tion 

It is straightforward and useful for us to derive a continuous state variable system for 
the mass-spring-damper oscillator of Figure 3 in Chapter 2. Letting the force input 
f i t )  be denoted as u( t )(so our notation is consistent with most publications on state 
variable filters), we have the 2nd-order differential equation 

u(t)= Mj;(t)+ Rj,(t)+ Ky(t)  (4.1.6) 

where ,j = a2y/i3t2and j= ay/t write the 2nd-order system in Eq. (4.1.6), as well as 
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Y tkl 

1 XP / Xn 

Figure 1 A flou diagram for the state variable formulation of an ARMA sjrstem shoLirs a 
single tapped delay line propagating the state variables .u,[k]. 

much higher order systems, as a first-order system by defining the necessary states in 
ii vector which is linearly proportional to the observed output ) ? ( I ) .  The updates for 
the state vector are defined by the differential equation in j - ( l ) ,but the state \rector 
itself is only required to be linearly proportional to j f ( l ) .  

(4.1.7) 

The 1st-order differential equation for the state vector is simply 

(4.1.X) 

= A'.i-(t) + B'zt(1) 

The state variable system's frequency and impulse responses are derived using 
L ;I P1ace t ra nsforms 

S X ( . S )  - S ( O + )  = A ' X ( s )  + BCIy(.y) (4.1.9) 

gi\,ing the state vector s-plane response as 

X ( s )  = [ s /  - A']-'.i-(O+) + [sl- A']-' B'U(s) (4.1.10) 

The time-domain system response for arbitrary initial conditions -<-(Of ), and input 
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forcing function u ( t )  is 

(f).(O+) ( t  - T)BCu(t)nt (4.1.11)S(t )  = 6"' + I 6"' 0 

where $"'( t )  = Y '{[slA"] ' } .  response, the initial position and velocity are both 
zero and u( t )  is a Dirac delta function. The system impulse response is therefore 

(4.1.12) 

Note that the impulse response signal is a 2 x 1 vector with the first element 
linearly proportional to the output j ( t )  and second element linearly proportional 
to the output velocity. The proportionality constants are elements of the C matrix 
in Eq. (4.1.2) and are derived by equating the state vector impulse response to 
the actual response for the physical system. 

k ( t )  = 9-*- (4.1.13)jPs 
The mass position given in Eq. (2.2.15) turns out to be - M 2 / K  times s l ( t )and the 
velocity of the mass is simply A4 times xZ( t )where o,,and < are defined in Eq. (2.2.14). 

(4.1.14) 

Both an output position and velocity are available from the state variables using 
*?(t)= C"-i-(t). 

Discrete State Variable Formulation 

To implement a discrete state variable digital filter and example the effects of sam-
pling we start with the continuous system sampled every T seconds. The state vector 
elements are defined the same as for the continuous case. 

(4.1.16) 
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The discrete estimate for the derivative given in Eq. (2.1.17) is used to obtain 

(4.1.17) 

M,here 2 and b are the state transition and control input matrices for the digital 
system. To examine the digital frequency response, the z-transform is used to yield 

(4.1.18) 

The digital time-domain state response to the input I I A  is therefore 

k - I 

(4.1.19) 
i=o 

and the system impulse response is 

A plot of the true position impulse response for the case of M = 1 Kg, R =4 K g /  s, 
and K =  314 Kg/s' where the sample rate f ;  is 500 Hz is seen in Figure 2. For 
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Figure 2 Comparison of state variable impulse responses in the analog and digital domain 
sampled at 500 Hz.  
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500 samples per sec, or T = 2 msec, there is clearly a reasonable, but not perfect, 
agreement between the continuous and digital state variable systems. 

The reason for the difference between the two systems is that A scales with the 
sample rate. As the sample rate decreases ( T  increases), the error between the 
two systems becomes much larger as seen in Figure 3 for a sample rate of only 
75 Hz. 

The instability in the example shown in Figure 3 illustrates an important design 
criteria for discrete state variable filters: signijicant oversaniplirzg is required-fornn 
accurate andstable irwpulse response. It can be shown that for the impulse response 
to be stable, the determinant of the discrete state transition matrix must be less than 
unity. 

(4.1.21 )  

After some algebra, 0 < T < R I K ,  or  since T > 0 always, T < 2C/o; ,  where fo = 
~4,127~is the undamped frequency of resonance in Hz. Clearly, the sampling fre- 
quency f,> 0;/25 for stability. For the example in Figure 3, fo = 27.65 Hz and 
the minimum stablef, is 78.75 Hz. It can be seen that while.f, = 75 Hz is easily 
high enough to represent the signal frequency properly, i t  is not high enough for 

Force Unit Impulse Response 
1 I 1 I 1 I0.15 

0.1 

0.05 

0 


-0.05 

-0.1 

1 I I I I I-0.15
0 1 2 3 4 5 6 7 

sec 

Figure 3 At a sample rate of 75 Hz the digital system is actually unstable. 
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a stable state variable system. Note that the sample rate must be even higher as the 
real physical system’s damping decreases, and / or undamped frequency of resonance 
increases. An approximate guideline for mcurcrtc’ impulse responses can be seen to be 
f ;  >(05/20[ or higher. The cause of the error is seen to be the finite difference 
approximation for the derivative of the state vector in Eq. (4.1.17). Contrast the 
state variable filter oversampling requirement to a properly-scaled IIR digital filter 
(which matches the impulse response for any unaliased sample rate) and one might 
wonder why one would use a digital state variable system. However, the reason state 
variable systems are important can be seen in the simple fact that in some adaptive 
signal processing applications, the state variables themselves are the main point 
of interest. 

4.2 FIXED-GAIN TRACKING FILTERS 

Perhaps the most important and popular use of digital state variable systems is in 
tracking systems. Common examples of tracking filter use include air-traffic control 
sqrstems, stock / fut ures market programmed trading, autopilot controllers, and even 
Some sophisticated heating, ventilation, and air conditioning (HVAC) temperature 
and humidity controllers. What makes a tracking filter unique from other digital 
filters is the underlying kinematic model. Rather than a state transition matrix based 
on the specific parameters of the physical system, such as the mass, stiffness, and 
damping in Eq. (4.1.16), a tracking filter’s state transition matrix is based on 
the Newtonian relationship between position, velocity, acceleration, jerk, etc. 
The “jerk” is the term used for the rate of change of acceleration with time. However, 
our discussion here will be mainly limited to “position-velocity” states with no input 
signal i l k  to simplify presentation of the tracking filter concept. 

A tracking filter can have input signals i l k ,  but the more usual case involves just 
passive observations to be smoothed and predicted in the future. The position state is 
predicted based on last time’s position and velocity and the Newtonian kinematic 
model. The prediction is then compared to an actual measurement of the position, 
and the resulting prediction error is weighted and used to correct, or “update” 
the state variables. The weights for the state updates are r for the position, /) 

for the velocity, and 1’ for acceleration. The effect of the tracking filter is to “follow” 
the measurements and to maintain a kinematic model (position, velocity, 
acceleration, etc.) for predicting future positions. If  the true kinematic system 
for the target has position, velocity, and acceleration components, and the tracking 
filter only has position and velocity, the a-/) tracker will eventually “lose” a target 
under constant acceleration. However, if the target stops accelerating an cx-/) tracker 
will fairly quickly converge to the true target track. Clearly, the usefulness of 
tracking filters can be seen in the air traffic control system where collision avoidance 
requires estimates of target velocities and future positions. 

An additional benefit of tracking filters is to reduce the noise in the measure- 
ments and estimated velocities, accelerations, etc. All measurement systems have 
inherent errors due to signal-to-noise ratio and unmodelcd physics in the measure- 
ment environment. The underlying assumption for tracking filters of all types is that 
the measurement errors are zero-mean Gaussian (ZMG) with a known standard 
deviation of o,,. This is a fairly broad and occasionally problematic assumption par- 
t icularly when unmodeled environment dynamics produce occasional biases or peri- 
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odic (chaotic), rather then ZMG random measurement errors. However, if the meas- 
urement is affected by a large number of random processes (such as from signal 
propagation through atmospheric turbulence), the measurement noise statistics will 
tend to be Gaussian, following the central limit theorem. 

If one has an unbiased measurement system, the ZMG assumption is very prac- 
tical for most applications. The amount of position noise reduction is equal to a, the 
weighting factor for the position state updates. Therefore, if x = 0.10, one would 
expect a 90% reduction in noise for the predicted position state as compared to 
the raw measurements. For CI > 1 one would expect noise amplification. Let the 
raw measurements be depicted as z k  

(4.2.1) 

where H i s  a matrix (analogous to C above) which relates the components of the state 
vector x k  to the measurements, while H V ~is the ZMG measurement noise. Using the 
Newtonian kinematic model one can predict the state vector one time-step in 
advance 

(4.2.2) 

where xklk is a position-velocity-acceleration state vector updated at time step k .  
Examining the top row of the Fmatrix it can be clearly seen how the new position 
state is predicted for step k + 1 given updated data at step k from Newton’s laws 
of motion. 

(4.2.3) 

The updated state vector elements from time step k are A$,,,,for position, x;:Ikfor 
velocity, and xEIkfor acceleration, and the time interval between steps is T seconds. 
The error between the predicted measurement from the predicted state vector 
and the actual measurement is 

One then produces an “updated” state vector, separate from the “predicted” state 
vector, using the r-P-1~weights on the error. 

I 

(4.2.5) 

The updated state vector will tend to follow the measurements slightly more closely 
than the predicted state vector. Hence, the predicted state x k + I I k ,  is often referred 
to as the “smoothed” state estimate, although both state estimates will be less 
reactive to measurement noise (as well as target maneuvers) as x decreases. 

The task of optimally setting r ,  0, and y is yet to be presented. Choosing the 
tracking filter gains requires additional information in the form of the tolerable state 
vector process noise. Unlike the measurement noise, the process noise has nothing to 
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do with the environment or measurement system. I t  is determined by some under- 
lying assumptions in the kinematic model. For example, for an 2-B tracker there 
is an implicit assumption of a ZMG acceleration process with standard deviation 
0,.The underlying assumption of an unpredictable acceleration from step to step 
;illows the tracking filter to follow changes in velocity from target inaneuvers. 
Therefore. the state prediction equation is actually 

(4.2.6) 

mrhere vA is a ZMG random process with standard deviation 0,. substituting for the 
U n m ode 1ed dynamics. 

For the x - p  tracker, the process noise would nominally be set to be on the order 
o f  the maximum expected acceleration of the target. For the x-p-;? tracker, one 
assumes an unpredictable white jerk (not to be confused with an obnoxious 
Caucasian), to allow for ZMG changes in the rate of change in acceleration. Similar 
to the x- /I  tracker, the process noise for the Ix-[I-j* tracker would be set on the order of 
the biggest jerk (no comment this time) expected from the target track. The process 
noise assumptions lead us to a very important parameter in fixed-gain tracking filters 
c:illed the target maneuvering index ;.,\[. 

(4.2.7) 

The RMS position noise due to the assumed process noise B, is seen to be o,T’i2. 
Choosing ii smaller target maneuvering index (reducing the tolerated process noise 
for the available measurement noise) for the tracker will give a “sluggish” target 
track Nhich greatly reduces track noise but is slow to respond to target maneuvers. 
Low target maneuvering indices are appropriate for targets such as large aircraft, 
ships, o r  very stable, slow moving, systems. Larger maneuverability indices may 
be appropriate for cases where one is not as interested in smoothing the states, 
but rather having low bias for real time dynamic state tracking. 

In Chapter 10 we will present a derivation of the optimum least-squared error 
tracking gains based on the underlying statistics and kinematic model. Below we 
simply provide the solution for the tracking filter weights based on either of two 
s i m pl e design c r i t er i a : const a n t maneu vering index ; and non -co ns t an t n~easu r em en t 
noise. For both cases the target process noise is assumed to be constant and set 
based on the target kinematics. The constant maneuvering index case is therefore 
most appropriate when the measurement noise variance is assumed constant. 
One might then simply choose an a based on the amount of noise reduction desired. 
The smoothed position state will have a variance of ro;. The /j gain can be derived 
directly from x .  

/j = 2(2 - I X )  - 4 6 (4.2.8) 

The gain for 7 is then set as [ j ‘ i r  if an acceleration state exists. The target 
maneuvering index in terms of x and /j is therefore 

( 4.2.9) 
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One can evaluate the resulting process noise o,,from the choice of x ,  but the 
more typical way to design a fixed gain tracking filter is to choose c,,based on 
the known target kinematics, determine o,,.objectively for the particular measure- 
ment sensor system in use, and compute the optimal a, /?,and 7 gains from the result- 
ing target maneuvering index. 

(4.2.10) 

The a gain can then be determined directly from A M ,  or more conveniently from p. 

If an acceleration state is used, 7 = p2/aas previously noted. The optimal tracking 
filter fixed gains are determined from the algebraic solution of several nonlinear 
equations derived from the least-squared error solution. The solutions for cc, p, 
and j’ presented here assume a piecewise constant ZMG acceleration for the 2-B 

tracker and piecewise constant ZMG acceleration increment (the jerk) for the 
x - p - ; ~tracker. 

Consider the following example of an elevation tracking system for a small 
rocket which launches vertically from the ground, burns for 5 sec, and then falls 
back to earth. Neglecting changes in the mass of the rocket, the thrust would produce 
an acceleration of 15 m/sec’ in a zero gravity vacuum. The rocket is also assumed to 
be subject to a drag deceleration of 0.25 times the velocity. During liftoff, the rocket’s 
acceleration slowly decreases as the drag forces build up with velocity. At burnout, 
the maximum deceleration is imposed on the rocket from both gravity and drag. 
But as the rocket falls back to earth the drag forces again build up in the other 
direction, slowing the rocket’s acceleration back towards the ground. Our measure- 
ment system provides altitude data 10 times per sec with a standard deviation of 
3 m. It is estimated that the maximum deceleration is around 13 m/sec2 which occurs 
at  burnout. Therefore, we’ll assume c,,= 13, o,,=3, and T=0.1 giving a target 
maneuvering index of iM=0.0433, and tracking filter gains of a =0.2548, 
f l  =0.0374, and -y = 0.0055. Figure 4 shows the results of the U-/?-? tracking filter. 

Figure 4 clearly shows the benefits of tracking filters when one needs a good 
estimate of the target velocity. The velocity measurements shown in Figure 4 
are computed by a simple finite difference and show significant error as compared 
to the tracking filter’s velocity estimate. The measurement errors for acceleration 
based on finite difference are so great that they are omitted from the acceleration 
graph. Once the acceleration begins to settle into a nearly constant range, the accel- 
eration states start to converge. The underlying assumption for the a-p-,, tracker 
is that the acceleration increment, or jerk, is ZMG. For our real physical problem 
this is indeed not the case, so it is not surprising that the acceleration losses track 
during changes in the target’s acceleration (maneuvers). If one were to choose a 
process noise too small for the expected target maneuvers, such as o,,= 3 rather 
than 13, the sluggish track ( A M  =0.01) contains significant errors in position velocity 
and acceleration as seen in Figure 5 .  Choosing too large a process noise produces a 
very reactive track to target maneuvers, but the value of the estimated velocity 
and acceleration is greatly diminished by the huge increase in unnecessary tracking 
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Figure 4 Typical x p-7 results for a constant measurement error standard deviation of  3 m 
and ;i process noise set to be on the order of the maximum acceleration of 13 m .  Time steps are 
100msec, true states are ( - - -), measurements (O),and tracking filter states are the solid line. 

noise as seen in Figure 6 (U,, = 100, = 0.333). The acceleration and velocity esti- 
mates from the tracking filter are almost useless with high track maneuverability 
but. they're still much better than the finite difference estimates. 

The technique of determining the maneuvering index based on the target kin- 
ematics and measurement system noise can be very effective if the measurement 
error variance is not constant. Computing A,,%{, 2, p, and i'for each new estimated 
measurement noise o,,allows the tracking filter to "ignore" noisy measurements 
and pay close attention to accurate measurements. In Figure 7, a burst of extra 
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Figure 5 Tracking filter response using a sluggish CJ,, = 3 rather than 13 for the same meas- 
urement data as seen in Figure 4. 

measurement noise occurs between 7 and 8 sec during the simulation where o,,,goes 
from 3 m to 40 m and then back to 3 m. With the tracking filter assuming a constant 
measurement noise standard deviation of 3 m, a significant “glitch” appears in the 
state estimates. Figure 8 shows the performance possible when the target 
maneuvering index and filter gains are updated at  every step to maintain optimality 
during changes in measurement noise. 

It can be seen that the varying maneuvering index which follows the 
varying measurement noise is similar to the fully adaptive gain Kalman tracking 
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Figure 6 Tracking filter response using a hyperactive 0,= 100 rather than 13 for the same 
measurement data as seen in Figure 4. 

filter. However, the big difference in the Kalman filter (as seen in Chapter 10) is 
that the adaptive gains are determined from the state vector error variances as 
well as the measurement and process noises. In other words, the sophisticated 
Kalman filter considers its own estimates of the state error uncertainty when 
adapting to a new measurement. If the new measurement noise error variance 
is bigger than the estimated state error variance, the Kalman filter will place 
less emphasis on the new measurement than if the state error were larger then 
the measurement error. The much simpler fixed-gain tracker presented above 
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Figure 7 Tracking filter response for the same measurement data as seen in Figure 4 except 
a measurement noise burst of n,,. = 40m occurs between 7 and 8 sec where the tracking filter 
assumes a constant U,,, = 3m.  

simply determines the tracking filter gains based on the assigned target 
maneuvering index. 

4.3 2D FIR FILTERS 

Two-dimensional (2D) FIR filters are most often used to process image data from 
camera systems. However, the techniques of sharpening, smoothing, edge detection, 
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Figure 8 Tracking filter response for the same measurement data as seen in Figure 3 except 
a measurement noise burst of (T,,= 40m occurs betureen 7 and 8 sec uihere the tracking filter 
follows the changes in c,,and r , [j. 7 and i . 2 , .  

and contrast enhancement can be applied to any 2D data such as level vs. frequency 
vs. time for example. Image processing techniques applied to non-image data such 
as acoustics, radar, or even business spreadsheets can be very useful in assisting 
the human eye in extracting important information from large complicated and/or  
noisy data sets. Data visualization is probably the most important benefit of modern 
computing in science. The amount of information passed through the human optic 
nerve is incredible but, the human brain's ability to rapidly process visual infor- 
mation completely eclipses all man-made computing machines. A robot can select, 
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assemble, and manipulate nuts and bolts with efficiency well beyond that of a human. 
But if the robot drops a bolt into a pile of screws and has to recover it, the required 
computing complexity increases by an almost immeasurable amount. Even a child 
only a few years old could find the bolt with ease. One should never underestimate 
the value of even unskilled human labor in automated industries, particularly in 
the area of visual inspection. 

Ultimately, one would like to develop algorithms constructed of relatively 
simple 2D processes which can enhance, detect, and hopefully recognize patterns 
in the data indicative of useful information. This is an extremely daunting task 
for an automatic computing system even for the simplest tasks. However, we 
can define a few simple operations using 2D FIR filters and show their usefulness 
by examining the effects on a digital 256-level grey-scale image of a house (the 
author’s), as seen in Figure 9. 

Each picture element (pixel) in Figure 9 is an 8-bit number representing the 
brightness of the image at the corresponding location on the camera focal plane. 
It is straightforward to see that if one were to combine adjacent pixels together, 
say in an weighted average, the sharpness, resolution, contrast, even texture of 
the image can be altered. Even more interesting is the idea that the signal processing 
system can apply a filter to the image in the form of a template detector to search for 
features such as windows, roof lines, walls, trees, etc. The template detector filter will 
have high output for the regions where there is a good match between the template 
and the local pixel distribution. These “vision” features can be used by a computer 
to recognize one house from another (depending on the diversity of house designs 

Figure 9 Test image for 2D filtering tests consisting of a 256-level grey scale 
640 x 480pixels. 
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in the neighborhood). The process of developing computer algorithms which enable 
a signal processing system to have visual recognition capability is awesome in scope. 
The fundamental processing element for computer vision is the 2D digital filter, or 
convolver. We denote the grey-scale image brightness as B(.Y.J,),where -v represents 
the row and j *  the column of the pixel. A 2D filter which combines regional pixels 
using weights w,,to produce the filtered output image brightness B’(.Y-,J.)can be seen 
in Eq. (4.3.1). 

(4.3.1) 

The process of computing a brightness output based on a weighted average of 
the adjacent pixels is likely where the term “moving average” for FIR digital filters 
originates. A wide range of visual effects can be implemented using simple 2D filters 
to alter the image focus, contrast, sharpness. and even color. 2D FIR filters can be 
designed to enhance or reduce various types of texture in an image. However, rarely 
mrould one try to implement an IIR filter since causality constraints would limit 
severely the direction of movement for some types of image patterns. For example, 
if the 2D filter moves in the +s direction, “future-scanned” inputs B(.Y+;.J*) 
are used to compute the current output B’(x , j - ) .This is acceptable for an FIR filter. 
However, an IIR filter must only use past outputs to avoid a noncausal instability. 
In general, one only uses FIR filters for image processing since the direction of scan 
for the filter should not be a factor in the processed output image. To simply illustrate 
the 2D FIR filtering process, Figure 10 shows a process often referred to as 
”pixelation“ where all the pixels in a block are replaced with the average of the 
higher-resolution original image pixels. Essentially the image sampling rate is 
reduced or c/essinrcrtrd. This process can often be seen in broadcast television to 
obscure from view offensive or libelous material in a section of an image while 
leaving the rest of the image unchanged. Figure 10 shows an 8 x 8 pixelation of 
the original image in Figure 9. 

Another interesting application of 2D filters to image processing is edge 
enhancement and detection. Edges in images can provide useful features for 
determining object size and dimension, and therefore are very useful elements in 
computer recognition algorithms. The most basic edge detector filter is a simple 
gradient which is shown in the positive s-direction (to the right) below. Since it 
is usually undesirable for a filtering operation to give an output image offset by 
‘ 2  a pixel in the direction of the gradient, one typically estimates the gradient using 
a symmetric finite difference approximation. 

(4.3.2) 

The negative gradient in the x-direction in Eq. (4.3.2) can be seen in Figure 1 1  below 
giving the digital image an “embossed” look. Examining the area between the tree 
trunk and house, one can clearly see that the transition from the black shadow 
to the white wall in the original image produces a dark vertical line along the edge 
of the house wall. The image is normalized to a mid-level grey which allows the 
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Figure 10 Test image after replacing each pixel in a 8 x 8 pixel group with the average 
brightness of the pixels in that group. 

transition from bright to dark (seen in the left edges of the windows) to be rep- 
resented as a bright vertical line. Note how the horizontal features of the image 
are almost completely suppressed. Figure 12 shows the test image with a negative 
gradient in the positive y-direction (upwards). 

Derivatives based on a finite-difference operation are inherently noisy. The 
process of computing the difference between two pixels tends to amplify any ran- 
dom noise in the image while averaging pixels tends to “smooth” or suppress 
image noise. Generally, one can suppress the noise by including more pixels in 
the filter. A easy way to accomplish this is to simply average the derivatives 
in adjacent rows when the derivative is in the x-direction, and adjacent columns 
when the derivative is in the y-direction. A 2 D  FIR filter results with N = M 
= 1 for Eq. (4.3.1) where the filter weights for the negative gradient in the 
x-direction are given in Eq. (4.3.3). 

W O .+1 ;”’;.‘I 1 0 -1 
W0,O = 2 0 (4.3.3) 

1.m-1 Jt’+l,-l 

[
1 0 -1 

The 2 D  filter weights in Eq. (4.3.3) are known as a kernel because the weights can 
be rotated along with the direction of the desired gradient. For example, a negative 
gradient in the positive y-direction (upwards) can be realized by rotating the 
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Figure 11 Test image with a negative gradient applied in the x-direction to enhance 
vertical lines. 

Figure 12 Test image with a vertical negative gradient filter applied to enhance horizontal 
image features. 
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weights in Eq. (4.3.3) counter-clockwise 90". 

(4.3.4) 

The kernel as written above can be conveniently rotated in 45' increments since the 
pixel in the center has eight neighbors. There are many possible kernels for a 2D 
gradient including larger, more complex, filters based on higher-order finite dif- 
ference approximations. However, i t  is also useful to take the eight neighboring 
pixels and estiniute the vector gradient for the local area. Gradient information 
from the 2D image data is very useful for simplifying the task of automated detec- 
tion of geometrical features. These features of the image can subsequently be com- 
pared to a computer database of features as a means of automated detection of 
patterns leading to computer image recognition algorithms. 

While directional derivatives can be very useful in detecting the orientation of 
image features such as edges, sometimes it is desirable to to detect all edges 
simultaneously. The geometry of the detected edges can then be used to identify 
important information in the image such as shape, relative size, and orientation. 
A straightforward edge detection method, known as Sobel edge detection, computes 
the spatial derivatives in the x and y directions, sum their squares, and compute the 
square-root of the sum as the output of the filter. A less complex operator, known 
as the Kirsh operator, accomplishes a more economical result without the need 
for squares and square-roots by estimating all eight gradients and taking the maxi- 
mum absolute value as the edge detection output. The application of Sobel edge 
detection to our test image in Figure 9 can be seen in Figure 13 below. 

While edge detections useful for extracting various feature from the image for 
use in pattern recognition algorithms, it can also be used to enhance the visual qual- 
i ty of the image. The edge detector operator can easily be seen as a type of high-pass 
filter allowing only abrupt changes in spatial brightness to pass through to the 
output. I f  one could amplify the high frequencies in an image, (or attenuate the 
low frequencies), one could increase the sharpness and apparent visual acuity. 
Typically, sharpness control filtering is done using a rotationally-invariant 
LaPlacian operator as seen in Eq. (4.3.5). 

7 a'B a'B 
V - B  7+ - (4.3.5)

a s - a),' 

The LaPlacian, like the gradient, is approximated using finite differences. The sum of 
the s and ?--direction second (negative) derivatives are seen in Eq. (4.3.6). 

(4.3.6) 

Since we prefer to suppress noise by including all eight neighboring pixels in the edge 
detection operator, we simply add in the diagonal components to the LaPlacian as 
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Figure 13 Edge detection using a Sobel operator on the Test image from Figure 1. 

seen in Eq. (4.3.7) 

-1 - 1  -1 
-V2B= -1 +8 - 1 1  (4.3.7)[ 

-I -1 -1 

Note that both Eqs (4.3.6) and (4.3.7) are normalized operators, that is, they do 
not cause a shift in the average brightness of the image. However, the operator will 
cause a slowly varying brightness to be nearly canceled since the sum of the eight 
neighbors will be nearly the same value as 8 times the central pixel. We can define 
a “sharpness operator’’ by simply subtracting the LaPlacian estimated at the central 
pixel from the central pixel value as seen with the 2D FIR filter operator in Eq. 
(4.3.8). 

w3= +1 -7 + I  (4.3.8)[::::::I 
Figure 14 has a sharpness operator applied to enhance the clarity of the test image. 

The image can also be softened by a simple low pass moving average filter like 
the one used in Figure 10, but with the average value applied to each pixel rather 
than the 8 x 8 block, as seen in Figure 15. 

As noted earlier in this section, 2D FIR filtering can be applied to non-image 
digital data such as the common spectrogram seen in Figure 16 below. A 
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Figure 14 A sharpness operator Wyapplied to the test image. 

Figure 15 Test image with low pass filtering to soften edges an enhance smoothness. 
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spectrogram is very common to speech signal analysis and sonar processing. 
Essentially, it is a plot of signal intensity displayed as a color vs. frequency vs. time. 
High signal intensities of a given frequency are seen in Figure 16 as bright vertical 
lines. Any “wiggles” in the bright lines indicate shifts in frequency over time. 
The data seen in Figure 16 is from the acoustic noise emitted by a large diesel engine 
on a slowly moving vehicle. The horizontal axis is frequency and the vertical axis is 
time. The spectrogram in Figure 16 is made by “stacking” Fourier transforms 
of the raw acoustic signal on successive time sections of the data. The many parallel 
lines are harmonics of the engine cylinder firing frequency and the variability of 
the frequencies gives some indication of the vehicle’s movements. 

However, the raw spectrogram is somewhat difficult to view and is also difficult 
for a computer to detect some of the more interesting patterns. Figure 17 shows the 
same spectrogram with a sharpening operator and re-scaling of the gray-scale data. 
The information content is basically the same in the two spectrograms except some 
of the noise randomness has been suppressed relative to the harmonic signals by 
the sharpening operator. The scaling operation simply adds contrast between the 
signal levels we want to see and the background noise (mainly from wind) which 
we don’t care about. 

Clearly, one can see how low pass and high pass 2D filters can be used for 
controlling image focus, signal-to-noise enhancement, and detecting orientation fea- 
tures and edges. The rather simple 2D filters presented here are the fundamental 
building blocks of much larger and more complex systems which comprise man’s 
more recent attempts at computer vision. The 2D filter is presented here because 

Figure 16 A spectrogram of acoustic noise from a large diesel engine of a construction 
vehicle where the horizontal axis is frequency and the vertical axis is time. 

Figure 17 The spectrogram in Figure 4 with a sharpening operator and re-scaling of the 
grey-scale data to enhance the finer structures of the acoustic harmonics. 
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it is a fundamental tool in modern digital signal processing which extends well 
beyond image processing into the frontiers of computer visualization of complex 
data sets. The 2D filter can be made adaptive, it can be applied in the frequency 
domain as well as time or spatial domain, and in concert with a thorough under- 
standing of the application’s physics and geometry, can be made to extract the essen- 
tial features necessary for computer vision. 

Finally, a medical example of image enhancement is seen in Figure 18 for a 
magnetic resonance image (MRI) scan showing a medial slice along the spine. 
The spinal cord is easily seen as a tube structure running vertically alongside the 
vertebrae. In the original MRI image on the left the damage is barely visible. 
By applying some adjustments in brightness, contrast, and gray-scale adjustments, 
the obvious damage to the disc is seen on the right. The telltale feature of the 
ruptured disc is the break seen in the disc wall near the spinal canal. The damaged 
disc is the author’s, giving the phrase “pain in the butt” a new and deeper meaning. 
Microsurgery corrected the problem brilliantly. A few “extra” images were 
obtainable from the MRI technician after explaining CAT scans to him as described 
in Section 7.3. An MRI device is quite clever and complicated. A high frequency 
electromagnetic pulse in a very intense static magnetic field energizes the tissue 
by inducing spin on the electrons of the tissue atoms. The various tissues re-radiate 
the electromagnetic energy at a frequency and damping factor unique to the indi- 
vidual molecules. With a high-frequency plane wave pulse incident on the body 
at some angle 8, the body re-radiates the energy differently in all directions 
depending on the distribution of the tissue molecules. By scanning many angles 
and inverse Fourier processing the re-radiation patterns, the spatial distribution 

Figure 18 Original and enhanced detection MRI showing herniated and ruptured disc. 
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of tissue can be then reconstructed using a technique called back propagation as 
described in Section 7.3. Since the MRI transmitter and receivers can be "tuned" 
to enhance detection of a particular tissue type, body structures such as cartilage 
and nerves can be imaged, which is not easily done with low levels of X-rays. 

4.4 D/A RECONSTRUCTION FILTERS 

For signal processing and control systems where digital outputs are to be converted 
back t o  analog signals, the process of signal reconstruction is important to the 
tidelity of the total system. When an analog signal is sampled, its frequency range 
is band-limited according to the well-known rules for avoiding aliased frequencies. 
The analog-to-digital ( A /  D )  process simply misses the signal information between 
samples (this is actually insignificant due to the anti-aliasing filter's attenuation 
of high frequencies). However, upon reconstruction of the output signal using 
digital-to-analog ( D / A )  conversion, no information is available to reconstruct a 
continuous signal in-between digital samples. Therefore, one must interpolate 
the continuous signal between samples. The simplest approach electronicalljr is 
to simply hold the output voltage constant until the next digital sample is converted 
to analog. This holding of the voltage between samples is known as a zc~ro-ortlc~r. 
hold Di' A conversion and is the most straightforward way to produce analog signals 
from a sequence of digital numbers. In fact, if the frequency of the signal is kery low 
compared to the sample rate, the reproduction is quite accurate. 

One can visualize a DIA convertor as a simple bank of analog current sources, 
each allocated to a bit in the binary number to be converted and with corresponding 
current strength. where the total output current across a resistor produces the desired 
D A voltage. A simple digital latch register keeps the DIA output Loltage constant 
u n t i l  the next digital sample is loaded into the register. This practical electronic cir- 
cuitry for DIA conversion results in a "staircase" reproduction of the digital 
1s a c  eforni a s  seen in Figure I9 below where the frequency is approximately Js !' 5 .  

The zero-order hold circuitry has the effect of low-pass filtering the analog 
output. I f  one were to reproduce each sample of the digital sequence as a short pulse 
o f  appropriate amplitude (analogous to a weighted Dirac delta function), both the 
positive and negative frequency components of it real sampled signal will have 
aliased components ii multiples of the sampling frequency. For example, if the 
sample rate is 1000 Hz and the signal of interest is 400 Hz. D / A  reproduction with 
impulses would produce the additional frequencies of f 6 0 0  Hz (from f 4 0 0  
f IOOO), f1400 Hz, etc. With the zero-order hold in place, the higher aliased fre- 
quencies will be attenuated somewhat, but generally speaking, additional analog 
Ion pass filtering is required to faithfully reproduce the desired analog signal. In  
the carly 1980s when digital music recording and playback equipment were in their 
commercial infancy, the quality of digital music reproduction came into controlwsy 
from an initial negative reaction by many hifi enthusiasts (many of whom still today 
su~earby their vacuum tubes). There was little controversy about the elimination of 
tape hiss arid phonograph rumble and the wear improvement for digital recordings. 
H u t  many music enthusiasts could hear subtle effects of the aliased digital fre- 
quencies and low-pass filters in the D / A  systems. By the mid 1980s most digital 
audio players employ a technique known a s  o \ . c . r . . ~ r i i ? i p l i ~ I gon the output wrhich is 
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Figure 19 Unfiltered digital signal to analog signal conversion results in a "staircase" 
effect which contains many undesirable high frequency components. 

an extremely useful method for achieving high fidelity without increasing the system 
sample rate. 

Perhaps the most common example of sophisticated oversampling for analog 
signal reconstruction is in the modern audio compact disc player. Often these devices 
are marketed with features noted as "4 x oversampling" or even "8 x oversampling" 
Some ultra high fidelity systems take a direct digital output from a compact disc 
(CD) or digital audio tape (DAT) and using about 100 million floating-point oper-
ations per sec (100 MFLOPS), produce a 32 x oversampled audio signal. For a typi-
cal C D  with 2 channels sampled at 44,100 Hz a 32 x oversampled system produces 
over 2,822,400 samples per sec! Where do the other 2,778,300 samples come from? 
To clearly illustrate what D / A  oversampling is and how it  works we will present 
below cases for 2 x, 4 x, and 8 x oversampling below. 

Figure 20 shows the process of adding zeros to the digital sequence betureen the 
samples. One zero is added if 2 x oversampling is desired, 3 zeros if 4 x is desired, 7 
zeros if 8 x oversampling is desired. The zero-filled digital sequence is then digitally 
processed by a FIR  interpolation filter. The output sequence of the interpolation 
filter has the added zeros replaced by synthesized samples which "smooth out" 
the staircase effect seen with a zero-order hold. A 1st-order hold (connect the 
two actual samples with a straight line) is achieved by an FIR interpolation filter 
which moves the added zero sample to the average of the two adjacent actual samples 
for 2 x oversampling. A 3rd-order hold is achieved with an  FIR filter which 
approximates a cubic function for 4 x oversampling, and so 01,. Figure 21 shows 
the FIR impulse responses for the zero, lst, 3rd, and 7th order holds corresponding 
to 1 x, 2 x ,  4 x, and 8 x oversampling. 
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Figure 20 .4ddIllg zeros between actual output samples is thc first step towards producing 
; i n  o\~ersampledD A signal ( the original samples ;ire seen ;is black dots). 

The sjnibols in Figure 21 depict the samples of the F I R  impulse \+hen the 
corresponding otwsanipled rate is chosen. Doing 8 x oversampling using ;I 1 st-order 
filter can be done, but one would be better advised to use the 7th order FIR filter 
instead t o  get much better oversampling results. Note that once the o\fcr-sampled 
sequence is produced. the analog output is still produced by ii analog electronic 
m-o-order hold. However. since the Di'A sample rate is increased to a !.er>' high 
rate. the aliased components are well out of the bandwidth of' interest and almost 
completely eliminated by the low-pass filter properties of the interpolation filter 
and electronic zero-order hold. Figure 22 shows ;I comparison betb\-een the original 
\+';I\ eform, ii zero-order hold, and 1 st-order hold Lvitli 2 x oversampling. Figure 
2 3  compares the 3rd-order uith 4 x ,  and 7th-order holds with 8 x o\ersampling 
t o  the analog u~ateform. 

Figures 22 atid 23 show a significant iniprovenient in  the 3 x o\.rersaiiiplcd 
~ ~ 1 u c n c esmoothing urhen comparing to 1 x and 2 x , but little improtwnent \+Then 
going to X x o\.ersanipling with the 7th-order FIR interpolation filter. Honcver,  
i t  one c\we to go to ii higher frequency, the 8 x cn-ersanipled sequcnce \ ~ o u l dl o o k  
inuch better than the 4 x sequence. The iniprovctnent in fidclity can also be seen 
in the higher-order FIR interpolating filters bjc examining their frequency responses 
;IS seen in Figure 24. 

At first glance Figure 24 might indicate that the oLrersampling E IK filters leak 
more undesirable high frequencies in the range above the Nyquist rate (depicted 
M i t h  ;i dotted line). However, sincc these filters are proccssiiig o\ er\ampled 
wquciices, the aliased components appear at much higher frequencies and :ire actu-
;i l l )  inore attenuated than the m-o-order hold case. Also o f  importance to high 
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Figure 21 FIR interpolation filters for producing oversampled D/A output sequences 
from digital signals with added zeros. 
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Figure 22 Comparison of the zeroth-order hold and the 2x  oversampied Ist-order hold to 
the analog waveform. 
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Figure 23 Comparison of the original analog uaceform t o  the 3rd-order 3 x ocerwmpled 
and 7th-order Xx ocersampled output.  
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Figure 24 While the frequency responses of the 3rd and 7th-order filters ;ire flatter in the 
pass-bilnd, their alinsed components are much higher in frequency and more attenuated. 
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fidelity D/A conversion is the observation that the higher oversampled filters are 
actually much flatter in frequency response within the pass band below the Nyquist 
rate. Clearly the zero-order hold is nearly 14 dB down at the Nyquist rate but 
has leakage above the Nyquist rate of about the same amount. The 8 x oversampled 
system is barely 1 dB down at  the Nyquist rate and the nearest aliased frequency 
components will appear 8 times the sample rate away where they are well attenuated. 
The addition of a very simple low pass filter such as a capacitor and resistor com- 
pletely suppresses the ultra-high frequency aliased components of the 8 x 
oversampled outputs. Clearly, oversampling for D/A conversion is very important 
to fidelity and may also have a significant impact on digital broadcast television 
as well as other systems. 

4.5 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

Linear digital filters have many applications beyond simple frequency suppression of 
the time-domain signals. We have shown formulations of the digital state vector and 
the difference between a tapped delay line state vector and a differential state vector 
which can be used to model many physical systems. Conspicuously, one must have 
either a firm grasp of the underlying physics behind the modeling problem, or a 
firm grasp of a physicist to make sure the model inputs and outputs are reasonable. 
However, what is often overlooked in applications of digital filtering to real physical 
problems is the physics of the digital system's operation. Converting analog signals 
to digital data for computer processing, while extremely powerful and versatile, does 
carry with it  some undesirable artifacts. For example, sampling without 
bandlimiting the analog signal leads to aliased frequencies. Mapping analog domain 
system poles and zeros to the digital domain requires modal scaling to obtain a 
reasonable, but not perfect, match between analog and digital impulse and frequency 
responses. Unless one significantly oversamples the signals, one cannot simul- 
taneously match both poles and zeros for the same frequency response in the analog 
and digital domains. A similar problem arises in the digital state variable problem 
where the finite difference errors become significant as the frequencies of interest 
approach the Nyquist sampling rate. For all digital filters, we must maintain a stable 
causal response giving rise to the strict requirement for all system poles to be interior 
to the unit circle on the digital z-plane. In 2D filters we generally limit the structure of 
operators to be of the FIR type so that the stability of the filtering operation is not 
dependent on which direction the 2D filter is moved over the 2D data. These physical 
attributes of digital signal processing are perhaps the most important fundamental 
concepts to understand before moving on to frequency transforms and the adaptive 
processes presented in the next few chapters. 

PROBLEMS 

1 .  What is the discrete state variable flow diagram for the system 
(h ( )+h lZ ' ) l ( l+cI,zl +(1z=2) ? 

2. For a series resonant tank circuit with R = lOQ, C = I pF, and L = 2 mH, 
what is the minimum sample period in seconds for a stable state variable 
model? What sample period is recommended? 
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3.  A volatile stock is being smoothed by an ct-D-7 type fixed-gain tracking filter 
to help remove random hourly fluctuations and improve the observability 
of market trends. If we wish to reduce the observed fluctuations to 
10% of the original data, what are the values of cc-a-y? 

4. We are interested in detecting lines in an image with run along a -45' line 
(from upper left to lower right). Define a 2D FIR filter to enhance detection 
of these lines. 

5.  Show that the 1st order (2x) interpolation filter is the convolution of the 
0th order filter with itself, the 3rd order is the convolution of the 2nd order 
with itself, and so on. That being the case, prove that the frequency 
response of the 1st order interpolation filter is the square of the 0th order 
(taking into account the doubled sample rate), 3rd order square of the 
2nd order. and so on. 
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Part II 

Frequency Domain Processing 

Frequency domain processing of signals is an essential technique for extracting sig- 
nal information with physical meaning as well as a filtering technique for enhancing 
detection of periodic signal components. The genesis of frequency domain dates back 
to the later half of the 19th century when Fourier (pronounced "4-E-A") published a 
theory that suggested any waveform could be represented by an infinite series of 
sinusoids of appropriate amplitudes and phases. This revolutionary thought led 
to the mathematical basis for many fundamental areas in physics such as diffraction 
theory and optics, field theory, structural vibrations and acoustics, just to name a 
few. However, i t  was the development of the digital computer in  the 1950s and 1960s 
which allowed the widespread use of digital Fourier transformations to be applied to 
recorded signals. Now, in the last decade of the 20th century, real-time digital fre- 
quency transformations are commonplace using ever more astonishing rates of 
numerical computation for applications in almost every area of modern technology. 
The topic of frequency domain processing is of such extreme importance to modern 
adaptive signal processing that several chapters are dedicated to i t  here. One 
can do Fourier processing in the time, space, frequency and wavenumber doniains 
for steady-state signals. However, one must adhere to the underlying physics 
and mathematical assumptions behind the particular frequency transformation 
of interest to be sure that the correct signal information is being extracted. 

The Fourier transform mathematically is an integral of the product of the 
waveform of interest and a complex sinusoid with the frequency for which one would 
like to know the amplitude and phase of the waveform's sinusoidal component at 
that frequency. If one has an analytic function of the waveform in the time domain, 
.U( t ) ,  then one could analytically integrate x ( t ) ~ ~ " " ~ ~ l tover infinite time to obtain 
an equation for the frequency domain representation of the waveform X(co) .From 
Adam and Eve to Armageddon is too long a time integral. By truncating the time 
integral to tl to t2, periodicity of the waveform in the signal buffer is implied over 
all time. This leads to what we call Fourier series. This has obvious niathematical 
utility because many differential equations are more easiljy solkred algebraically 
in the frequency domain. However, in the straightforward applied mathematics 
of the signal processing world. one has a finite-length digital recording, .I-[/?]. 

a7 
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representing the waveform of interest. The analytic indefinite integral becomes a 
finite (truncated from t l  to t 2 )  discrete sum which takes on the characteristics of 
spectral leakage, finite resolution, and the possibility of frequency aliasing. The 
limitations on the Fourier transform imposed by real-world characteristics of digital 
systems are manageable by controlling the size, or number of samples, of the dis- 
crete-time Fourier transform, the use of data envelope windows to control resolution 
and leakage, and by controlling and optimizing frequency resolution as needed for 
the application of interest. Our goal in this presentation of Fourier transforms is 
to demonstrate the effect of finite time (space) integration on frequency 
(wavenumber) resolution and spectral leakage. 

Given the underlying physics of the waves of interest, the frequency domain 
data can be used to observe many important aspects of the field such as potential 
and kinetic energy densities, power flow, directivity, and wave coupling effects 
between media of differing wave impedance. When the sampled waveform represents 
spatial data, rather than time-sampled data, the frequency response represents the 
wavenumber spectrum which is a very important field parameter describing the 
wavelengths in the data. One can describe the physical man-made device of a 
pin-hole or lens-system camera as an inverse wavenumber Fourier transform system 
in 2 dimensions where the optical wavelengths are physically filtered in direction to 
reconstruct the spatial image data on a screen. The importance of wavenumber 
spectra will become evident when we use them to control focus in images as urell 
as show radiation directivities (beamforming) by various transmitting arrays of 
sources. Perhaps what is most useful to keep in mind about Fourier transforms 
is the orthogonality of e'"' for time ( t )  and frequency ( t o )  transforms and c)'" 
for space (s)and wavenumber ( k =27c/j-). Note that if t has units of seconds, (o 
has units of radians/second and i f s  has units of meters, k has units of radians/meter. 
Since the kernel sinusoids are orthogonal to each other, one obtains a discrete 
number of frequencies with amplitudes and phases independent of one another 
as the output of the "forward" (i.e. time to frequency or space to wavenumber) 
Fourier transform. The independence of the frequencies (or wavenumbers) is what 
allows differential equations in the time domain to be solved algebraically in the 
frequency domain. 

I t  is interesting to note the many natural frequency transforms occurring all 
around us such as rainbows and cameras, musical harmony, speech and hearing, 
and the manner in which materials and structures radiate, transmit, and reflect 
mechanical, acoustic, and electromagnetic waves. In the most simple terms, a fre- 
quency transform can be seen as a wave filter, not unlike an audio graphic equalizer 
in many high fidelity audio systems. The frequency band volume slide controls 
on an audio equalizer can approximately represent the various frequency bands 
of the input signal for which the output volume is to be controlled by the slider 
position. Imagine for a moment thousands of audio equalizer slide controls and 
signal level meters for filtering and monitoring a given sound with very high fre- 
quency precision. While the analog electronic circuitry to build such a device would 
be extremely complicated, i t  can be achieved easily in a digital signal processing 
system in real-time (instant response with not missed or skipped data) using current 
technology. 

Rainbows are formed from the white light of the sun passing through water 
droplets which naturally have a chromatic aberration (slightly different L+ ave speed 
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for each color in white light). The angle of a ray of white light entering a droplet 
changes inside the droplet differently for each color wavelength. Upon reaching 
the other side of the droplet, the curvature of the surface causes the rays to 
transmitted back into the air at  slightly different angles, allowing one to see a 
rainbow after a rain storm. Chromatic and geometric distortions can be minimized 
in lens systems by elaborate design and corrective optics, but it is also possible 
to do so using signal processing on the digital image. I n  modern astronomy, 
imperfections in mirrors and lens systems are usually corrected in the digital 
wavenumber domain by characterization of the 2-dimensional (2-D) wavenumber 
response of the telescope (usually on a distant star near the object of interest) 
and “normalization” of the received image by the inverse of the wavenumber 
response of the telescope. The process is often referred to as “de-speckling” of 
the image because before the process a distant star appears as a group of dots 
due to the telescope distortions and atmospheric multipath due to turbulence. 
The “system” 2-D wavenumber transfer function which restores the distant star 
clarifies the entire image. 

For musical harmony, the modes of vibration in a string, or acoustic res- 
onances in a horn or woodwind instrument form a Fourier series of overtone 
frequencies, each nearly an exact integer multiple of a fundamental frequency. 
Western musical scales are based on the first 12 natural harmonics, where the fre- 
quency difference between the 1 l th  and 12th harmonic is the smallest musical 
interval, or semitone, at the frequency of the 12th harmonic. In other words, there 
are 12 semitones in a musical octave, but the frequency difference between a note 
and the next semitone up on the scale is 121/2 (or approximately 1.059 times 
the lower note), higher in frequency. This limits the frequency complexity of music 
by insuring a large number of shared overtones in musical chords. Indeed, an octave 
chord sounds “rock solid” because all overtones are shared, while a minor 4th (5 
semitones) and minor 5th (7 semitones) intervals form the basis for blues, and most 
rock and roll music. In many ancient eastern cultures, musical scales are based on 
15 semitones per octave, and some are even based on 17-note octaves giving very 
interesting musical patterns and harmony. Chords using adjacent semitones have 
a very complex overtone structure as do  many percussive instruments such as 
cymbals, snare drums, etc. In practical musical instruments, only the first few over- 
tones are accurate harmonic multiples while the upper harmonics have slight 
“mis-tunings” because of the acoustic properties of the instrument, such as struc- 
tural modes, excitation non-linearities, an even control by the musician. The same 
is certainly true for the human voice due to nasal cavities and non-linearities in 
the vocal chords. 

In speech and hearing, vocal chords in most animal life vibrate harmonically to 
increase sound power output, but in human speech, i t  is largely the time rate of 
change of the frequency response of the vocal tract which determines the information 
content. For example, one can easily understand a (clearly heard) spoken whisper as 
well as much louder voiced speech. However, the frequency content of voiced speech 
also provides informational clues about the speaker’s ages, health, gender, emotional 
state, and so on. Speech recognition by computers is a classic example of adaptive 
pattern recognition addressed in later chapters of this book. We are already talking 
to electronic telephone operators, office computers. and even remote controls for 
home videotape players! It is likely in the near future that acoustic recognition tech- 
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nology will be applied to monitoring insect populations, fish and wildlife, and 
perhaps even stress in endangered species and animals in captivity or under study. 

The operation of the human ear (as well as many animals) can be seen as a 
frequency transformer/detector. As sound enters the inner ear it  excites the Basilar 
membrane which has tiny hair-like cells attached to it, which when stretched, emit 
electrical signals to the brain. It is believed that some of the hair cells actually operate 
as little loudspeakers, receiving electrical signals from the brain and responding 
mechanically like high frequency muscles. The structure of the membrane wrapped 
up in the snail-shell shaped cochlea (about the size of a wooden pencil eraser), along 
with the active feedback from the brain, cause certain areas of the membrane to 
resonate with a very high (2, brain-controllable sensitivity, and a more distinct 
and adaptive frequency selectivity. The sensor hair cell outputs represent the various 
frequency bands (called critical bands) of hearing acuity, and are nearly analogous to 
1 / 3  octave filters at most frequencies. At higher frequencies in the speech range, 
things become much more complex and the hair cells fire in response vibrations 
in very complex spatial patterns. Evolution has made our speech understanding 
abilities absolutely remarkable where the majority of the neural signal processing 
is done within the brain, not the ear. It is fascinating to point out that the 
“background ringing”, or mild tinnitus, everyone notices in their hearing is actually 
a real sound measurable using laser vibrometry on the ear drum, and can even 
be canceled using a carefully phased sound source in the ear canal. Tinnitus is 
thought to be from the “active” hair cells, where the corresponding sensor hair cells 
have been damaged by disease or excessive sound levels, driving the acoustic 
feedback loop through the brain to instability. I t  is most often in the 4-16 kHz fre- 
quency region because this area of the Basilar membrane is closest to where the 
sound enters the cochlea. Severe tinnitus often accompanies deafness, and in extreme 
cases can lead to a loss of sanity for the sufferer. Future intelligent hearing aid adapt- 
ive signal processors will likely address issues of tinnitus and outside noise cancel- 
lation while also providing hearing condition information to the doctor. Based 
on current trends in hearing loss and increases in life expectancy, intelligent hearing 
aids will likely be an application of adaptive processing with enormous benefits 
to society. 

Essential to the development of intelligent adaptive signal processing and con- 
trol systems is a thorough understanding of the underlying physics of the system 
being monitored and/or  controlled. For example, the mass loading of fluids or  gasses 
in a reactor vessel will change the structural vibration resonances providing the 
opportunity to monitor the chemical reaction and control product quality using inex- 
pensive vibration sensors, provided one has identified detectable vibration features 
which are causal to the reaction of interest. Given a good physical model for sound 
propagation in the sea or in the human body, one can adaptively optimize the pulse 
transmission to maximize the detection of the target backscatter of interest. Anal- 
ogous optimizations can be done for radar, lidar (light detection and ranging), 
and optical corrective processing as mentioned earlier. The characterization of wave 
propagation media and structures is most often done in the frequency-wavenumber 
domain. An intelligent adaptive processor will encounter many waves and signals 
where useful information on situation awareness will be detected using practical 
frequency-wavenumber transforms. On a final note, it is interesting to point out 
that Fourier’s general idea that any waveform, including sound waveforms, could 
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be represented by a weighted sum of sinusoids was a very radical idea at  the time. His 
application of the Fourier transform to heat transfer is considered one of the great 
scientific contributions of all time. 
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The Fourier Transform 

The French scientist Joseph B. Fourier (1  768-1830) developed the first important 
development in the theory of heat conduction presented to The Academy of Sciences 
in Paris in 1807. To induce Fourier to extend and improve his theory the Academy of 
Sciences in Paris assigned the problem of heat propagation as its prize competition in 
I8 12. The judges were LaPlace, Lagrange, and Legendre. Fourier became a member 
of the Academy of Sciences in 1817. Fourier continued to develop his ideas and 
eventually aut hored the applied mathematics classic T/zL;oric’ Arici/j~riqirc~c k  /U 

Clzaleur (or Analytical Theory of Heat), in 1822. Fourier gets much due credit, 
for his techniques revolutionized methods for the solution of partial differential 
equations and has led us to perhaps the most prominent signal processing operation 
in use today. 

Consider the Fourier transform pair 
+cc 


--oc (5.0.1)
+oo 


where ~ ( t )is a time domain waveform and Y(w)is the frequency domain Fourier 
transform. Note the similarity with the LaPlace transform pair in Eq. (2.1.2) where 
the factor of ‘y” in the LaPlace transform is simply from the change of variable 
from ‘‘jo” to “s” We can eliminate the factor of “1 /27?’ by switching from “cu” 
to “2.f’ as seen in Eq. (5.0.2), but this is not the historically preferred notation. 

+% 

y ( f )  = y(t)e-i2rffdt/ 
-oo 
 ( 5.O. 2)
+Y 

-oo 
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The Fourier transform pair notation in Eq. (5.0.2)while slightly longer, may 
actually be slightly more useful to us in this development because its easier to 
physically relate to frequencies in Hz (rather than radians/sec), and in the digital 
domain, all frequencies are relative to the sampling frequency. Consider below a 
short practical example of the Fourier transform for the case y( t )= sin( 2nf;t). 

(5.0.3) 

+Tl’ e+/W o -/ It  +7-12 p- /2; ;+t l t  
= lim S dt - lirn 

/ 
d l  

T+OC 2j 7.-CC 

-7-12 -7-12 

The limit operations are needed to examine the details of the Fourier transform by 
first evaluating the definite integral. I t  is straightforward to show the results of 
the definite integral as seen in Eq. (5.0.4). 

Combining the complex exponentials yields a more familiar result for analysis in Eq. 
(5.0.5). 

(5.0.5) 

For the cases wheref’is not equal to &fo,Y(f)is zero because the oscillations of 
the sinusoid in Eq. (5.0.5) integrate to zero in the limit as Tapproaches infinity. This 
very important property is the result of orthogonulitql of sinusoids where a residue is 
generated in the Fourier transform for the corresponding frequency components in 
j f t ) .  In other words, ifqy(t) contains one sinusoid only atfo, Y ( f )is zero for allfff;. 
For the case wheref’= +foandf= -fo,we have an indeterminant condition of the 
form 0/0 which can be evaluated in the limit asfapproaches ffousing L’Hepital’s 
rule. 

(5.06) 

Taking the partial derivative with respect tof’of the numerators and denominators in 
Eq. (5.0.5)separately and then applying L’Hbpital’s rule we find that the magnitude 
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of the “peaks” at  k*fois equal to T/2. 

(5.07) 

Clearly, the peak at f = f o  has a value of + T/2j, or -jT /2 ,  and the peak at 
f =  -.fil is - T/2j, or +jT/2.  The imaginary peak values and the skew sign sym- 
metry with frequency are due to the phase of the sine wave. A cosine wave would 
have two real peaks at  k.fowith value + T/2. A complex sinusoid ( J ~ I )=c’2n/of) 
would have a single peak at f = f o  of value + T. For real signals j ( t ) ,  one should 
always expect the Fourier transform to have a symmetric real part where the value 
at some positive frequency is the same as that at  the “mirror image” negative 
frequency. The imaginary parts will be opposite in sign at positive and negative 
frequencies. The real and imaginary components of the Fourier transform of a real 
signal are said to be Hilbert transform pairs. Figure 1 below shows the frequency 
response Y ( f )for finite T where the amplitude in the figure has been normalized 
by 2T. 

The width of the peaks are found by noting that the first zero crossing of the 
sine function in Eq. (5.0.5) occurs whenf -so= 1 / T, giving an approximate width 
of I IT. Therefore, as T approaches infinity, the amplitude of the peak becomes 
infinite, while the area remains constant at  one. This is one way to define the Dirac 
delta function 6(s), which is zero for all ,Y # 0, an infinite, but with unity area 
at  .I‘ =0. Therefore, for j f t )  =sin(2nfot), Y ( f )= -jS(f;, - j ) / 2  +j6(.fo + f ) / 2 ,  or 
if the radian notation is used one can simply multiply by 2n to get, 
Y(co)= -jn6(to0 - u)+jn6((o0+C O ) ,  as listed in most texts for the sine function. 
The cosine function is Y ( f )=6( fo - f ) / 2  +S(fo +J)/2, or if the radian notation 
is used, Y(co)=n6((00- (U) + n6(oo+0).For the complex sinusoid c>’2nfof, 
Y ( . f )=S ( f o  -f),or Y(cu)=2716((00- C O )  which can be verified by inspection using 
the sifting property of the Dirac delta function. To complete the example for 
the case of It([) = sin(2qfbt). we simply evaluate the inverse Fourier transform 
integral. 

+oc’ 

(5.0.8) 

= sin(2qht) 

Clearly, one can see the symmetry properties of the Fourier transforms of real 
signals giving a Hilbert transform pair relationship to the symmetric real and 
skew-symmetric imaginary parts. As 7‘approaches infinity, the resolution of the 
Fourier transform increases until all frequencies are completely independent, or 
orthogonal, from each other. As will be seen in the next section, the Discrete Fourier 
Transform (DFT) has limited resolution due to the finite number of data samples in 
the digital transform sum. 
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5.1 SPECTRAL RESOLUTION 

We consider a regularly-sampled digital signal (as described in Section I .2.2) ~ “ 1 2 1 ,  

sampled every T seconds and converted to a signed integer. The sampling frequency 
.f,= 1 / T Hz, or samples per second. The Fourier transform integral in Eq. (5.0.2) 
becomes the N-point discrete sum 

(5.1.1) 

where ?(n]is a digital sample of y ( i zq , rzT is t ,  and 1 / N is the equivalent of dt in the 
integral. Including the factor of 1 / N here is technically a “N-normalized” discrete 
Fourier transform (NDFT). Most texts avoid the 1 / N factor in the forward trans- 
form (including i t  in the inverse transform) since the “height” of Dirac delta function 
approaches infinity as the time integral gets longer. Therefore, the “height” in the 
DFT should also increase with increasing N .  

However, from a physical signal processing point-of-view, wr prqfrr l zm’  to 
h c i w  t / w  m?iplititck qf’ tlw .Ji.c.yut.rzc.?’-tiomeiin siizusoichl signtil inck>pencknt qf N ,  
the number of points in the transform. This normalization is also applied to the 
power spectrum in Chapter 6. We must be careful to distinguish the NDFT from 
the standard DFT to avoid confusion with the literature. Any random noise in J * [ H ]  

will however be suppressed relative to the amplitude of a sinusoid(s) as the number 
of points in the NDFT increases. This will also be discussed subsequently in Chapter 
6 on spectral density. Consider the NDFT pair where 0 5 f’ 5 0,5/T (only analog 
frequencies less than the Nyquist ratef’,/2 =0.5/T, are present in ~ ~ [ i i ] ,which is real). 

. ,v- I 

(5.1.2)
fLf- I 

We have assumed a set of M evenly-spaced frequencies in the inverse NDFT in 
Eq. (5.1.2) where Aj’is j , / M  Hz. However, the resolution Afand number of fre- 
quencies can actually be varied considerably according to the needs of the 
application, but the underlying resolution available is a function of the integration 
limits in time or  space. In general, the spectral resolution available in a forward 
DFT can be simply found using the result from the Dirac delta function seen in 
Figure 1. With N samples spanning a time interval of N T  secs in Eq. (5.1.2), the 
available resolution in the DFT is approximately 1 / ( N T )Hz. Therefore, it is reason-
able to set Af=I / (NOgiving N frequencies between 0 and-f,, or N = M in the DFT 
pair. Evaluating the DFT at closer-spaced frequencies than AY will simply result 
in more frequency points on the “sin(s)/x”, or sinc(x), envelope function for a 
sinusoidal signal. This envelope is clearly seen in Figure 1 and in Eq. (5.0.5) where 
the Fourier transform is evaluated over a finite time interval. The only way to 
increase the spectral resolution (narrowing Af) is to increase N T ,  the physical span 
of the DFT sum for a givenf,. Increasing the number of samples N for a fixed sample 
interval T(fixed sample rate or bandwidth) simply increases the length of time for the 
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Figure 1 Fourier transform of sin(27cfot) limiting the integration to fT / 2  to evaluate the 
characteristics of the Dirac delta function. 

Fourier transform and allows a finer frequency resolution to be computed. 
Therefore, one can easily see that a 1-sec forward Fourier transform can yield a 

Hz resolution in the frequency domain. while a 100 msec transform would have 
only 10 Hz resolution available, and so on. 

Consider the following short proof of the N D F T  for an arbitrary j*[n], N time 
samples and N frequency samples giving a A f = f s /  N ,  or Af n T= n l N ,  to simplify 
the algebra and represent a typical discrete Fourier transform operation. 

The forward DFT in the braces of Eq. (5.1.3) can be seen as Y(kAf)=  Vk] .  
Rearranging the summations provides a more clear presentation of the equality. 

(5.1.4) 

Clearly, the expression in the braces of Eq. (5.1.4) is equal to N when p = n .  We now 
argue that the expression in the braces is zero for p # n. Note that the expression in 
the braces is of the form of a geometric series. 

(5.1.5) 

Sincep # n and p - n goes from - ( N  - 1 ) to + ( N  - 1 ), the variable “a” cannot 
equal 1 and the series is convergent. However, since aN is e’2n@-t’),ah’= I and the 
numerator of Eq. (5.1.5) is zero. Therefore, Eq. (5.1.4) is non-zero only for the case 
where p =n,  the sum over n reduces to the p =n case, the factors of N and 1,” 
cancel (as they also do  for an analogous proof for the DFT), and j*[n]=j”p]; p =n .  
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We now examine the N-point NDFT resolution for the case of a sine wave. 
Consider the case where y[n] =sin( 2nfon T )  =sin(2?fon /fs) and .fo is an integer mul- 
tiple of Ajl or fo =moAj: We will consider a N-point NDFT and N frequency points 
Aj’=fs  / N  Hz apart. In other words, the frequency of our sine wave will be exactly 
at one of the discrete frequencies in the DFT. Since f o = m ofS/N, we can write 
our sine wave as a simple function of mo,n,  and N by ,r*[n] = sin(2 7 c r ~ z ~ r z/ N ) .  Equation 
(5.1.6)shows the N-point NDFT expressed in terms of Y[ni], for the rizth frequency 
bin, by again writing the sine function as the sum of two complex exponentials. 

(5.1.6) 

Applying the finite geometric series formula of Eq. (5.1.5) gives 

(5.1.7) 

As nz approaches fnzO,one can clearly see the indeterminant condition 0 /0  as 
evaluated using L’Hbpital’s Rule in Eq. (5.0.7)above. The result is a peak at +uzo 
with amplitude -j / 2 ,  and a peak at -nzo with amplitude +j /2 .  This is consistent 
with the continuous Fourier transform result in Eqs (5.0.6) and (5.0.7) keeping 
in mind that we divided our forward DFT by N (as we have defined as the NDFT). 
Note that the indeterminant condition 0 /0  repeats when n(mo - m)/N =kn; k = 
0, f 1 ,  f 2 ,  ..., since the numerator sine angle is simply N times the denominator 
sine angle. The actual frequency of IT? in Hz is rziAj; where Af = j ; /N ,  N being 
the number of frequency points in the NDFT. Therefore, is can be seen that the 
peak at +moAf Hz repeats every fS Hz up and down the frequency axis to 
f o o ,  as also does the peak at -mo.  Figure 5 ,  page 10, clearly illustrates the fre- 
quency aliasing for a cosine wave showing how a wave frequency greater than.f;/2 
will appear “aliased” as an incorrect frequency within the Nyquist band. If  the orig- 
inal continuous waveform , r ! ( f )  is band-limited to a frequency band less thanfS/2, all 
frequencies observed after performing a NDFT will appear in the correct place. 
Mathematically, i t  can be seen that the NDFT (and DFT) ussumes the waveform 
within its finite-length buffer repeats periodically outside that buffer for both time 
and frequency domain signals. 

Consider the example of a 16-point NDFT on a unity amplitude sine wave of 25 
Hz where the sample rate is 100 Hz. With 16 frequency “bins” in the DFT, we find 
Aj’= 100/ 16, or 6.25 Hz. The sampling time interval is 10 msec so the time window 
of data is 160 msec long, also indicating a possible resolution of 6.25 Hz for the 
NDFT. Figure 2 shows the NDFT of the sine wave in the Nyquist band (between 
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f50 Hz) where the “*” symbols indicate the 16 discrete integer “m”values and the 
curve depicts Y[m]as a continuous function of m showing the resolution limitations 
for the 160 msec wave. Note that if a 16-point D F T  were used instead of the NDFT, 
the peak magnitudes would be 8, or N/2.  The real part of the 16-point NDFT is zero 
as seen in Figure 3.  But, i t  is more customary to show the magnitude of the NDFT as 
seen in Figure 4. 

The discrete NDFT bin samples in Figure 2, 3,  and 4 depicted by the ‘ b * ”  

symbols resemble the ideal Dirac delta function (normalized by N) in the context 
of the 16-point NDFT output because the 25 Hz sine wave has exactly 4 wavelengths 
in the 160 msec long digital input signal. Therefore, the assumptions of periodicity 
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Figure 2 The imaginary part of a 16-point NDFT of a 25 Hz sine wave sampled at 100 Hz 
showing the discrete NDFT bins (*) and a continuous curve for the available resolution. 
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Figure 3 The real part of the 16-point NDFT of the sine wave is zero at the 16 discrete 
frequency bins. 
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outside the finite NDFT input buffer are valid. However, if the input sine wave has a 
frequency of, say, 28.125 Hz, the wave has exactly 4.5 wavelengths in the NDFT 
input buffer sampled at  100 Hz. For 28.125 Hz, the periodicity assumption is 
violated because of the half-cycle discontinuity and the resulting magnitude of 
the NDFT is seen in Figure 5 below. 

As Figure 5 clearly shows, when the sine wave frequency does not match up 
with one of the 16 discrete frequency bins of the NDFT, the spectral energy is 
“smeared” into all other NDFT bins to some degree. This is called spectral Ieukuge. 
There are three things one can do to eliminate the smeared NDFT (or DFT) res- 
olution. First, one could synchronize the sample frequency to be an integer multiple 
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Figure 4 The magnitude of a 16-point NDFT of a 25 Hz sine wave sampled at l00Hz 
showing the discrete NDFT nins (*) an a continuous curve for the available resolution. 
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Figure 5 The magnitude of a 16-point NDFT of a 28.125 Hz sine wave sampled at 100 Hz 
showing the discrete NDFT bins (*) and spectral leakage caused by the mismatched frequency. 
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of the sine wave frequency, which in the case of 28.125 Hz would require a sample 
rate of 112.5 Hz, 140.612 Hz, etc. Synchronized Fourier transforms are most often 
found in “order-tracking” for vibration analysis of rotating equipment such as 
engines, motor/generators, turbines, fans, etc. Synchronizing the sample rate to 
the frequencies naturally occurring in the data insures that the vibration fundamen- 
tal and its harmonics are all well-matched to the DFT bin frequencies giving reliable 
amplitude levels independent of machinery rotation speed. 

The second technique to minimize spectral leakage is to increase the input buf- 
fer size, or increase N .  Increasing N decreases Afand the number of output D F T  
bins. Eventually, with enough increase in resolution, there will be so many bins 
in the DFT that the sine wave of interest will lie on or very close to one of the discrete 
bins. For the case of the 16-point NDFT data in Figure 4, doubling the NDFT size to 
32 (320 msec input time buffer), narrows the resolution to 3.125 Hz allowing the 
28.125 Hz wave to lie exactly on a bin. All the other NDFT bins will be at a 
zero-crossing of the underlying sinc function giving the appearance of a “normalized 
Dirac-like” spectrum. Another way to look at doubling the input buffer size is to 
consider that 28.125 Hz will have exactly 9 full wavelengths in the input buffer, 
making the periodicity assumptions of the Fourier transform on a finite interval 
correct. However, if one kept the 16-point input buffer and simply analyzed the 
NDFT output at many more frequencies closer together than the original 16 N D F T  
bins, one would simply be computing points on the continuous curves in Figures 2,3,  
and 4. These curves represent the underlying resolution available for the 160 msec 
input buffer. 

The third technique is to apply a data envelope window to the D F T  or  N D F T  
input. This technique will be discussed in much more detail in Section 5.3. 
Windowing the data envelope makes the data “appear” more periodic from one 
input buffer to the next by attenuating the data amplitude near the beginning 
and end of the input buffer. This of course changes the spectral amplitude as well 
as causes some spectral leakage to occur even if the input frequency is exactly 
on one the the discrete DFT frequency bins. 

Generally speaking for stationary signals, larger and /or  synchronized Fourier 
transforms are desirable to have a very high resolution, well-defined spectrum. Also, 
if there is any random broadband noise in the input data, the more N D F T  bins one 
has, the less random noise there will be in each bin since the noise is divided over 
all the bins. Large NDFT’s will tend to focus on periodic signals and suppress ran- 
dom noise which is a very desirable property. However, even if the sines and cosines 
of the N D F T  (or DFT) are computed in advance and stored in memory, the number 
of complex multiplies in a straightforward N-point DFT is N 2 .Therefore, very large 
broadband DFT’s where one can vary the number of frequency bins at  will are 
prohibitively expensive interms of the required computing resources. 

5.2 THE FAST FOURIER TRANSFORM 

Early on in the history of digital signal processing it  was recognized that many of the 
multiplies in a D F T  are actually redundant, making a Fast Fourier Transform (FFT) 
possible through computer algorithm optimization. We will not present a detailed 
derivation or discussion of the FFT as there are many signal processing books which 
do so with eloquence not likely here. It should suffice to say that the FFT is an 
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efficient implementation of the D F T  where the number of input samples and output 
frequency bins are the same, and in general, a power of 2 in length. An N-point 
FFT where N is a power of 2 (256, 512, 1024, etc.), requires N log2N complex 
multiplies, as opposed to N2 multiplies for the exact same N-point output result 
from the DFT. For a 1024-point transform, that's a reduction from 1,048,576 
complex multiplies to 105,240 complex multiplies for the FFT. Clearly, to call 
the FFT efficient is an understatement for large N! 

Both transforms give exactly the same result when the DFT has N 
equally-spaced output frequency bins over the Nyquist band. In the early days 
of digital signal processing with vacuum tube flip-flops and small magnetic core 
memories, the FFT was an absolutely essential algorithm. It is (and likely always 
will be) the standard way to compute digital Fourier transforms of evenly-spaced 
data primarily for economical reasons. What is to be emphasized here is that 
the resolution of the D F T  or FFT is always limited by the length of the input 
buffer, and spectral leakage within the DFT or FFT is caused by a breakdown 
of the periodicity assumptions in the Fourier transform when a non-integer number 
of full wavelengths appear in the input buffer. One can use an FFT to evaluate 
more frequency bins than input samples by "zero-padding" the input buffer to 
fill out the larger size FFT buffer. This is sometimes a useful alternative to 
synchronized sampling as a means of finding an accurate peak level even with 
the underlying sinc function envelope. One can also perform a "zoom-FFT" by 
bandlimiting the input signal of interest centered at  some high center frequency 
j ;  rather than zero Hz, and essentially performing a complex de-modulation down 
to 0 Hz as described at  the end of Section 1.3 and Figure 1.7 before computing 
the FFT. 

Consider briefly the case of an 8-point DFT which we will convert to an 8-point 
FFT through a process known as time decomposition. First, we split the 
unnormalized (we'll drop the I / N normalization here for simplicity of presentation) 
DFT into two N/2-point DFT's as seen in Eq. (5.2.1) below. 

(5.2.1) 

We can make our notation even more compact by introducing WN= e j Z n '  '' , com-
monly referred to in most texts on the FFT as the "twiddle factor", or the 
timelfrequency invariant part of the complex exponentials. Equation (5.2.1) is 
then seen as a combination of 2 N/2-point DFT's on the even and odd samples 
of y[n]. 

Note that by doing two N/2-point DFTs rather than one N-point DFT's we've 
reduced the number of complex multiplies from N2 to N2/4 + N/2, which in itself 
is a significant savings. Each of the N/2-point DFTs in Eq. (5.2.2) can be split into 
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even and odd samples to give four N/4-point DFTs, as shown in Eq. (5.2.3). 

(5.2.3) 

n=0 n=O 

For the case N = 8 ,  Eq. (5.2.3) can be seen as a series of four 2-point DFTs and 
the time decomposition need not go further. However, with N some power of 
2, the time decomposition continues q times where N =  2” until we have a series 
of 2-point DFTs on the data. This type of FFT algorithm is known as a radix-2 
FFT using time-decomposition. Many other forms of the FFT can be found 
in the literature including radix 3, 4, 5, etc., as well as frequency decomposition 
formulations. Radix-2 FFT’s are by far the most common used. For blocks of 
data which are not exactly the length of the particular FFT input buffer. one 
simply “pads” the input buffer with zeros. The underlying spectral resolution 
in Hz (wavenumber) is still the inverse of the actual data record in seconds 
(meters) excluding the zero padded elements. 

Figure 6 shows a flow diagram for the 8-point FFT derived above in Eqs 
(5.2.1)-(5.2.3). The 2-point DFTs are arranged in a convenient order for a recursive 
algorithm which computes the FFT in-place (the original input data is overwritten 
during the computation. The 2-point DFTs in the various sections are typically 
called “butterflies” because of their X-like signal flow patterns in the flow diagram. 
However, the convenient ordering of the butterflies leads curiously to the outputs 
being addressed in binary bit-reversed order. This is probably the main reason 

Input 8-Point Radix-2 FFT output Bit-Reversed Binary 
Addmss Address 

OOO OOO 


100 001 

010 010 

110 011 

001 100 

101 101 

01 1 110 

111 111 

Figure 6 An 8-point radix-2 FFT showing twiddle factors in the square boxes for time 
decomposition and bit-reversed outputs. 
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the radix-2 butterfly is so popular. “Unscrambling” of the bit reversed output 
addresses is actually quite straightforward and most of today’s digital signal 
processing processors (AT&T WE-DSP32C, Texas Instruments. TMS320C30, 
Motorola 96002, etc.) offer a hardware-based bit-reversed addressing instruction 
for speedy FFT programs. 

The twiddle factor structure in the flow diagram in Figure 6 also has a much 
more subtle design feature which is not widely understood and is extremely import- 
ant to algorithm efficiency. Notice that for the input column only jf4] through j j7]  
are multiplied by twiddle factors while y[O]through y[3]  pass straight through to 
the second column, where again, only half the nodes are multiplied by twiddle 
factors, and so on. As will be seen, the ordering of the twiddle factors at each node 
is critical, h e c m w  lit one node, the two twiddle -fuctors dujc)r on113 in sign! I tan?l 

seems the ingenious algorithm design has also allowed W! = -W$, W,?.= -W{,  
Wi = -W:, and W i  = - W i .  Figure 7 graphically shows how the twiddle f x t o r s  
differ in sign. 

Obviously, one would do  the complex multiply just once at  each node, and 
either add or subtract the result in the computation for the nodes in the next column. 
For example, j1[4] would be multiplied by b@ (which is unity by the way) and saved 
into complex temporary storage “ctempl”, j*[O]is copied into “ctemp2”, then is 
overwritten by j~[O]+templ (seen in node 0-1 of Figure 6). Then, ctempl - ctemp2 
is seen to be y[O] + ~ “ 4 1W: and overwrites y[4] in node 4-1. This type of FFT algo-
rithm computes the Fourier transform in-place using only 2 complex temporary 
storage locations, meaning that the input data is overwritten and no memory storage 
space is wasted -a critical design feature in the 1960s and an economical algorithm 
feature today. To complete the 8-point FFT, one would proceed to compute the unity 
twiddle factor ( W:) butterflies filling out all the nodes in column 1 of Figure 6, then 
nodes 0-2 through 3-2 in column 2, and finally the outputs U01 and yI41. Then 

unit circle z - plane 

Figure 7 Twiddle factors for the 8-point FFT can be grouped into pairs which differ only in 
sign to  speed computations. 
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using W i ,  nodes 4-2 through 7-2 are computed followed by the outputs y12] and 
y[6]. Then Wd can be used to compute the outputs y[l] and y[5], followed by 
W: to compute the outputs Y[3] and y[7]. A hardware assembly code instruction 
or a straightforward sorting algorithm in software re-orders the outputs in non 
bit-reversed address form for use. 

It can be seen that for a radix-2 N-point FFT algorithm there will be log2N 
columns of in-place computations where each column actually requires only N / 2 
complex multiplies and N additions. Since multiplications are generally more inten- 
sive than additions, we can focus the computational cost on only multiplications. 
The radix-2 N-point FFT, where N is a power of 2 ( N  =2”) requires (N/2)logzN 
complex multiplies. Since a significant number of those multiplies are using the 
twiddle factor WiT,which is unity, the required number of complex multiplies is 
actually less than (N/2)log2N. However, a complex multiply actually involves 4 
numerical multiplies. Therefore, for complex input and output, the FFT is seen 
to require 2Mog2N numerical multiplies. Once again, most FFT applications start 
with real sampled input data, so the widely accepted computational estimate for 
the FFT is Mog2N multiplies, but the actual number will depend on the specific 
application and how well the designer has optimized the algorithm. Note that 
the inverse FFT simply requires the opposite sign to the complex exponential which 
is most easily achieved by reversing the order of the input data from 0 to N - 1 
to N - 1 to 0. The scale factor of N ,  or 1 / N  depending on one’s definition of 
the DFT/FFT,  is generally handled outside the main FFT operations. 

Usually we work with real sampled data as described in Section 1.2, yet most 
FFT algorithms allow for a fully complex input buffer and provide a complex output 
buffer. For real input samples, one simply uses zeros for the imaginary component 
and a significant number of multiplies are wasted unless the user optimizes the 
FFT algorithm further for real input data. This can be done a number of different 
ways including packing the even samples into the real part of the input and odd 
samples into the imaginary part of the input. Another approach is to simply elim- 
inate all unnecessary multiplications involving imaginary components of the input 
data. Another technique would be to bit-reverse the input data and neglect all com- 
putations which lead to the upper half of the in-order output data, and so on. But, 
perhaps an even more intriguing technique is simultaneously computing the FFT’s 
of two real signals assembled into a single complex array using one complex 
FFT operation. It was discussed earlier that real input data (imaginary part is zero) 
yields real frequency domain data with even symmetry (positive and negative fre- 
quency components equal), or Re[Y[m]=Re( V N  - t ? ? ] ) ,  t?? = 0, 1, ... , N - 1. 
The imaginary part will have skew symmetry, or It71[ Y[m]] = - lr ir  [ Y [ N  -n ~ ] ; ,  
i n  =0, 1, ... ,N - 1 .  The amplitudes of the real and imaginary parts is really only 
a function of the phases of each frequency in the FFT input buffer. I f  we put 
our real input data into the imaginary part of the input leaving the real part of 
the FFT input zero, the opposite is true where Re[y[w]) = -Ref y [ N  -m])and 
1171[ y [ t ? ~ ]= It??[ Y[N - 1711 . 

We can exploit the Hilbert transform pair symmetry by packing two real data 
channels into the complex FFT input buffer and actually recovering two separate 
FFTs from the output. For “channel I ”  in the real part of our complex input data, 
and “channel 2” in the imaginary part of our complex input data, the following 
relationships in Eq. (5.2.4) can be used to completely recover the two separate 
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frequency spectra YI[rn]and Y2[nz]for positive frequency. Note that the "0 Hz" 
components are recovered as Re( Y,[O]}= Re{ y[O]),  Re( Y,[O]) = I m  [ y[o]). 
Inz( YJO])= Inz{  Y2[0])=o.  

RP( Y,[r72]}= -2I [  {Re(Y [ m ] }+ Re{ Y" - nz]}}I 

I!)?(Y,[rzz])= - { I m (  Y[nz]}- I m (  Y" - 1 1 2 1 ) )2 I 


1 (5.2.4) 
Re( Y?[m]}= -2I [  (In2( Y" -4)+ Inz( Y[nz]}} 

Im(Y2[tH])= 3 (Rcq Y" - nz])- Re( Y[nz]}}Y 1 
5.3 DATA WINDOWING 

Controlling the resolution of the Fourier transform using either the NDFT, DFT, or 
FFT algorithms is an important design consideration when dealing with signal fre- 
quencies which may lie in between the discrete frequency bins. The reason why 
a peak's signal level in the frequency domain is reduced, and leakage into other 
frequency bins increases, when the frequency is between bins can be seen as the result 
of a non-periodic waveform in the input buffer. Therefore, i t  is possible to reduce the 
leakage effects along with the peak level sensitivity to frequency alignment by forcing 
the input wave to appear periodic. The most common way this is done is to multiply 
the input buffer by a raised cosine wave which gradually attenuates the amplitude of 
the input at either end of the input buffer. This "data window" is known as the 
Hanning window, after its developer, and has the effect of reducing the signal leak- 
age into adjacent bins when the frequency of the input signal is between bins. I t  
also has the effect of making the peak signal level in the frequency domain less 
sensitive to the alignment of the input frequency to the frequency bins. However, 
when the input signal is aligned with a frequency bin and the Hanning window 
is applied, some spectral leakage, which otherwise would not have occurred. bill 
appear into the bins adjacent to the peak frequency bin. This tradeoff is generally 
worth the price in most Fourier processing applications. As we will see below. a 
great deal of artifice has gone into data window design and controlling the amount 
of spectral leakage. We present a wide range of data windows for the FFT (the 
NDFT, DFT, and FFT behave the same) and discuss their individual attributes. 
First, we consider the Hanning window, which is implemented Mith the folloiving 
equation. 

(5.3.1) 

The input buffer of the Fourier transform can be seen as the product of the data 
window times a "infinitely long" waveform of the input signal. The finite sum 
required by the FFT can be seen as having an input signal which is the product 
of a rectangular window N samples long and the infinitely long input waveform. 
A product in the time domain is a convolution in the frequency domain, a s  explained 
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in detail in Chapter 2, and the sinc-function response of the FFT due to the finite sum 
can be seen as the convolution of the Fourier transform of the rectangular data 
window with the Dirac delta function of the infinitely-long sinusoid. The Hanning 
window can be written as the sum of three terms, each of which has a sinc-like 
Fourier transform. 

(5.3.2) 

he effect of the three sinc functions convolved with the delta function for the sinusoid 
is a “fatter”, or broader, main lobe of the resulting resolution envelope and lower 
leakage levels in the side lobes. This is depicted in Figure 8 below which compares 
the resolution for the rectangular data window to that for the Hanning “raised 
cosine” data window. 

The resolutions shown in Figure 8 are normalized by N (as we defined in the 
NDFT), but an additional narrowband correction factor of 2.0317 for N=64  
(approaches 2.00 for large N) is needed to boost the Hanning window peak level 
to match the rectangular window peak level. For any given window type, one 
can “calibrate” a bin alligned sine wave to determine the narrowband correction 
factor. However, normalizing the integral of the window to match the integral 
of the rectangular window is a more strict definition of narrowband normalization. 
Therefore, one simply sums the window function and divides by N ,  the rectangular 
window sum, to get the narrowband correction factor. In other words, the 
nurrowhand correction factor is the ratio of the windoit, integral to the integral of 
a rectangular window of the same length. The narrowband normalization constant 
multiplied by the window function is important for signal calibration purposes 
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Figure 8 Comparison of the spectral resolution of the rectangular and Hanning data 
windows where N = 64 (a 1024-point FFT of the zero-padded windows is used to show 
the underlying resolution). 
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in in signal processing systems, as we would like the peak levels of the spectra to 
match when the peak is bin-aligned for whichever data window is used. 

There will be a slightly different correction factor for matching broadband 
Hanning-windowed signals to the rectangular window levels. Broadband 
normalization is important for determining the total signal power in the frequency 
domain by summing all the NDFT bins. Application of a window on the 
time-domain data before the Fourier transform introduces a small level error in 
the total spectral power due to the controlled spectral leakage of the window. Since 
power is measured as a magnitude-squared spectrum, the brouciband correction 
.fuctor is determined bqi the squure-root of the integrul of the wincio\t* function squared, 
then divided by N (the intc>grul of the squured rectangulnr tipinciow jirnction). The 
broadband correction factor for a N =  64 point Hanning window is 1.6459, and 
1.6338 for N =  1024. 

Careful definition of narrowband and broadband normalization constants is 
consistant with our reasoning for the NDFT, where we would like periodic signal 
levels to be independent of N ,  the size of the D F T  as well as independent of the 
type of data window used. By keeping track of time and frequency-domain scale 
Factors we will make applications of frequency domain signal processing techniques 
to adaptive systems, pattern recognition algorithms, and control applications much 
more clear. Nurrowbund and broadband correction fuctors ure criticullj* importunt 
to power spectrum unzplitucle culibrution in the frequencqi doniuin. 

There are several other noteworthy data windows which are presented below 
ranging from highest resolution and side lobe levels to lowest resolution and side 
lobe levels. For the NDFT these windows need not be normalized by N (as seen 
in most texts for DFT applications). The calibration factors are presented for N =64 
for comparison. 

The Welch window is essentially a concave down parabola centered in the 
middle of the data input buffer. The Welch window requires a narrowband scale 
factor of 1.5242 to boost its peak level up to the rectangular window's level. 

n - i ( N -
(5.3.3)  

- ( { ( N  - I ) ' ) )?  

Another simple but very useful data window is the Parzen, or triangle window, 
described in Eq (5.3.4), which requires a narrowband scale factor of 2.0323. 

(5.3.4) 

Raising the Hanning window a small amount (so the end points are non-zero) pro- 
duces a significant improvement by narrowing resolution and lowering side lobe 
leakage as seen in the Hamming window. 

(5.3.5) 

The small change between the Hanning and Hamming windows (small spelling 
change too) is indicative of the art that has gone into data window design. The 
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Hamming window requires a narrowband scale factor of 1.8768 for its peak levels to 
match the rectangular window. One can also define a generic exponential window 
which can be taylored to have almost any spectral width with very smooth low side 
lobe levels. 

WE'(n)  -c>-;(tl-+-l)~(3.43 10 A )  (5.3.5)= 8 
When k >_ 4, the exponential window very closely matches the rectangular window 
and the narrowband scale factor is 1.0347. When k = 3, the window very closely 
matches the Welch window and the narrowband scale factor is 1.5562. However, 
k also depends on N ,  so a wide variety of window shapes and resolution can be 
realized. We show the exponential window below with N=64,  k=2.6,  and a 
narrowband scale factor of 2.3229, giving a broader resolution than the other 
windows but with the lowest side lobe levels. 

Figure 9 shows the 6 data windows together in the time domain unnormalized. 
The narrowband correction scale factors noted above for N = 64 and in Table 1 for 
the windows should be applied (multiply the windows by them) to insure consistent 
peak or levels for all windows on frequency bin-aligned signals. For FFT sizes 
not equal to N = 64, calculate the narrowband scale factor by the ratio of the window 
integral to the rectangular window integral and the broadband scale factor by the 
ratio of the window-squared integral to the integral of the rectangular window. Note 
that if the input signals are not bin-aligned, or a broadband correction factor is used, 
their peak levels will differ slightly depending on the particular data window used. 
The best we can do is to calibrate each data window so the peak levels for each 
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Figure 9 Comparison of the rectangular, Welch, Parzen, Hamming. Hanning, and 
exponential data windows. 
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Table 1 Narrowband and Broadband Level Correction Factors for N=64 and N=1024 
point windows 

Window 
N=64  

Rectangular 
r Hanning Welch Parzen Hamming 

Exponential 
k = 2.6 

~ ~~~ 

Narrowband 1 .OOOO 2.03 17 1.5242 2.0323 1.8768 2.3229 
Broadband 1 .OOOO 1.6459 1.3801 1.7460 1.5986 1.7890 

N =  1024 k =5.2 
Narrowband 1 .OOOO 2.0020 1.5015 2.0020 1.8534 2.8897 
Broadband 1 .OOOO 1.6338 1.3700 1.7329 1.5871 1.6026 
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Figure 10 Comparison of the spectral resolution of the rectangular, Welch. Parzen, 
Hamming, Hanning, and exponential data windows. 

window match when the input signal frequency is matches the FFT bin. The spectral 
resolutions shown in Figure 10 include the narrowband correction factors (window 
calibration) constants named with each window above and in Table I .  Broadband 
correction factors are applied to insure total signal power is consistent from the 
(unwindowed) time domain to the frequency domain. Table 1 also presents the 
broadband corrections for N =64 point windows. All correction factors given will 
vary slightly with N ,  so a simple calculation is in order if precise signal level 
calibrations are needed in the frequency domain. 

Comparing the non-rectangular data windows in Figure 9 we see only very 
slight differences. However, we can make some interesting observations which hold 
in general for data window applications. First, the broader rectangular and Welch 
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data windows are the ones with better resolution, as seen in Figure 10. Second, the 
data windows with nearly zero slope at  either end (near rz  = 0 and I I  =N - 1 )  tend 
to have the lowest side lobe levels, as seen in Figure 10 for the exponential, Hamming 
and Hanning window’s spectral resolution. Its hard to say which data window is the 
best because is depends on the particular applications emphasis on main lobe res- 
olution and side lobe suppression. 

The reason one desires low side lobes is often one has strong and weak signal 
peaks in the same frequency range. With high leakage, the side lobes of the strong 
peak can cover up the main lobe of the weak peak. For applications where a wide 
dynamic range of sinusoidal peak levels are expected, application of a data window 
is essential. However, other applications require very precise frequency and phase 
measurement of spectral peaks. In this case, higher resolution is of primary import- 
ance and the rectangular window may be best suited. As always, a thorough under- 
standing of the underlying physics of the signal processing application is needed 
to be sure of an optimal design approach and implementation. Perhaps the most 
important reason for have a variety of data windows available is for sensor array 
shading, which is presented in more detail in Sections 7.1, 12.2, and Chapter 13. 
Array shading using data windows is the reason the spectral leakage is referred 
to as “side lobes” while the resolution response of the FFT bin is called the “main 
lobe” These terms have a perfect analogy in array beamforming directivity 
responses. 

5.4 CIRCULAR CONVOLUTION 

In this section we briefly discuss some very important and often unappreciated (by 
amateurs) issues of circular convolution in the proper use of the FFT in real-world 
signal processing systems. Often one can define a desired system response in the 
frequency domain using FFTs of various input and output signals or perhaps a par- 
ticular frequency response function. If the desired system response is found from 
spectral products and/or  quotients, and the system is to be implemented by an 
inverse FFT to give a FIR digital filter, one has to be very careful about the impli- 
cations of the finite Fourier integral. The mathematics of the “analog domain” 
Fourier integral imply that the signals of interest are linear, stationary, and that 
the finite sum (finite resolution) of the DFT or FFT provides an accurate signal 
representation (no spectral leakage). Since we can have leakage if the signal fre- 
quencies are mis-matched to the FFT bins, the product of two spectral functions 
leads to the circwlcrr (’012\70htk~1?1rather than linear convolution of the corresponding 
signals in the time domain giving an erroneous FIR filter from the spectral product. 
If one has a broadband input signal to a linear system, spectral leakage in the output 
signal can occur if the system has a sharp (very high Q or low damping) resonance 
with a narrower bandwidth than the FFT bins. But in general broadband signals 
will have a circular convolution which very closely matches the linear convolution. 
One should also note that the inverse FFT of a conjugate multiply in the frequency 
domain (a cross spectrum) is equivalent to a cross correlation in the time domain, 
which can also be affected by circular correlation errors w.hen narrowband signals 
are involved. 

Consider the classic optimal filtering problem as depicted in Figure 1 I .  This 
general filtering problem gives a result known as an Echart filter and will be used 
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Figure 11 The optimal Weiner filtering problem described in the frequency domain using 
spectral products to derive a filter which recovers U( . [ ) ,given R ( f ) ,S(,f ) ,and N ( , / ) .  

in Chapters 1 1  and 12 for optimal signal detection. The least-squares technique will 
also be seen in a more general form in Chapter 8. The problem in Figure 1 1  is 
to recover the system input U ( f )given the output C(j’)which contains both signal 
S(J‘) and N ( f ‘ ) from the known system R ( f ) .With no noise, the answer is almost 
trivial because C ( f )=S(f ‘ )= U ( f ) R ( f ) .Therefore, the “optimal” filter A ( f )  to 
recover U ( f ) from C ( f )  is simply A ( f )= 1 /R ( f ’ ) ,as seen by U ( . f )= C ( f ) A ( . f ’ ) .  
However, in the presence of uncorrelated noise N ( f ) , we have one of the classic 
adaptive signal processing problems known as the Weiner filtering problem. The 
beauty of solving the problem in the (analytic) frequency domain is that with infinite 
spectral resolution and no spectral leakage all frequencies are orthogonal. Therefore, 
the equations can be solved frequency-by-frequency as a simple algebra equation. 

We start by defining our model output U’( . f )where U’( . f )=C ( f ) A ’ ( f ) / R ( * f ’ ) .  
We wish our model output to match the actual U(J‘)as close as possible for all 
frequencies. Therefore, we seek to choose A ‘ ( f )  such that the total squared spectral 
error defined in Eq. (5.4.1) is minimized. 

(5.4.1) 

We can let 0 2 A’ ( f ’ )  2 1 and evaluate the integrand algebraically, dropping the ( . f )  
not at ion for brevity 

E = [IS[’ + 2Ro{NS)+ ( N / z ] A ’ z+ IS]?- 2 R e { S N } * A ’ * }- 2A’(SI‘ + ,4’(N(’  

(5.4.2) 

Since the signal S and noise N are assumed uncorrelated, any spectral products 
involving S N  are assumed zero. 

We can solve Eq. (5.4.3) for an A ’ ( f )  which minimizes the squared spectral error 
E(. f ‘ )at each frequency by examining the first and second derivatives of E with 
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respect to A’ 

aE’ 
= ISI’(2A’ - 2 )  + 21Nl‘A’ ---2(ISI’ + IN13 (5.4.4)

aA’ aA‘’ 

Clearly, the parabolic structure of the squared spectral error shows a positive 
second derivative in Eq. (5.4.4), indicating the squared error function is concave 
up. Therefore, a solution for the first derivative equal to zero is a minimum of 
the squared error. We will repeatedly use variations of this basic approach to 
adaptively solving for optimal systems in many places later on in  this text. The 
optimal solution for A ’ ( f ) is clearly bounded between zero and unity. 

(5.4.5) 

The optimal filter for recovering U ( f ) from the noise-corrupted C ( f ) given 
that we know R ( S )is therefore H ( f )=A ’ ( f ) / R ( f ) ,or the spectral product of ’4 ’ ( . f ’ )  
and B ( . f )= 1 / R( . f ) .For the analog-domain indefinite-integral Fourier transform 
representation of A’( f ’ )  and B ( f )there is no mathematical problem with designating 
the linear convolution of a ’ ( ( )and h( t )  in the time-domain as the inverse Fourier 
transform of the spectral product A ’ ( f )  and B ( f ) .  Note that one could express 
the cross correlation R”’(z) =E(cr’(t)h(t,- r ) )  as the inverse Fourier transform of 
the spectral conjugate product A ’ ( f ) B( f ) .  These relations are very important 
for the process of using measured signals from a system of interest to design or 
optimize performance of signal filters for control or detection of useful information. 
Therefore it is critical that we recognize the effect of the finite sum in the DFT and 
FFT on the convolution /correlation relations. It is or i l j i  ,fhr tlic~CNSC’ I ~ ~ > I Y Ju11 
narroii~haizdsignal freyuenclQcomponents are bin-aligncd tlicit the spctral  prochrct 
of tiiv ,functions results in the equivalent linear correlcitio~i or co~i~wl i~ t ionin t/ic 
tinw-dor~aiii.For the more common case where leakage is occurring between 
the discrete spectral bins in the frequency domain, the discrete spectral product 
results in a circular convolution or circular correlation (for the conjugate spectral 
product) in the digital time domain. Unexpected circular convolution or correlation 
effects in a FIR impulse response from an inverse Fourier transform of the desired 
frequency response of the FIR filter can be extremely detrimental to the filter’s per- 
formance in the system. 

Consider the following simple example of a system with a short delay modeled 
in the frequency domain using a single frequency. If the frequency matched one of the 
DFT bin frequencies (for an exact integer number of wavelengths in the DFT input 
buffer as seen in the D F T  spectra in Figure 4), there would be no problem 
determining the input-output cross-correlation from the inverse DFT of the spectral 
product of the input and conjugate of the output signal spectra. However, as seen in 
Figure 12, the frequency happens to lie exactly inbetween two discrete bins as can be 
seen by the odd number of half-wavelengths in the D F T  input buffer and by the 
spectral leakage in Figure 5 The true linear correlation is seen in the solid curve 
in Figure 12 while the inverse DFT of the conjugate spectral product is seen in Figure 
12 as the curve denoted with ( -0- ). Clearly, the additional frequencies from the 
product of the spectral leakage terms leads to significant amplitude and phase errors 
in the cross correlation. 
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Figure 12 Comparison of frequency-domain estimated circular cross-correlation ( 0-) 
with spectral leakage to actual linear cross-correlation. 

One can avoid circular convolution errors only by strictly limiting input and 
output signals to only have frequency components bin-aligned to the discrete 
DFT bins or by the following technique for spilling over the circular convolution 
errors into a range where they can be discarded. Note that only bin-aligned sinusoids 
will urork for the former case. Random noise sequences can be seen to suffer from the 
leakage problem. To implement the later case, we simply double the number of data 
points in the DFT or FFT where one of the signals has the later half of its input buffer 
zc~ro-pudtlc~cl,or filled with zeros. Suppose we only really need 128 cross-correlation 
data points in Figure 12. We would f i l l  one signal buffer with 256 points and compute 
a 256-point DFT. The other signal buffer would have the most recent 128 points of 
its 256-point input buffer filled with zeros, the latter 128 points filled with the cor- 
responding input time data, and it  256-point DFT is computed. The zero-padded 
DFT actually has a bit too much spectral resolution for the input data, but this 
added frequency sampling of the "sinc" function offers a special trick for the user. 
When the inverse DFT is computed after the spectral product is computed, all 
of the circular correlation errors are shifted to the upper half of the system impulse 
response and the lower half matches the true linear correlation result. Figure 13 
showfs the results of this operation graphically where the solid curbre is again 

~the true linear cross correlation and the ( 0- )  curve is the result using spectral 
prod uc ts. 

Doubling the number of input data points and zero padding the input for 
one of the spectral products is the accepted method for controlling circular con- 
volution and/ or circular cross-correlation errors from spectral products using 
the DFT or FFT. As seen in Figure 13, the circular correlation crrors itre com- 
pletely corrected in the first 128 points, and the latter 128 points are simply dis- 
carded. This technique is Lvell-documented in  the literature, yet i t  is still 
surprising that many system designers fail to embrace its importance. I t  is likely 
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Figure 13 Comparison of the circular-correlation correction (- 0-) with the actual 
cross-correlation for the spectral leakage case showing leakage confined to the upper 128 
points of the output buffer. 

that the widespread use of the analytical Fourier transforms and the correspond- 
ing convolution and correlation integral relations make it straightforward to 
assume that the same relations hold in the digital domain. The fact that these 
relations do  hold but for only a very special case of exact signal frequency 
bin-alignment for the DFT is the technical point which has ruined many a 
“robust” adaptive system design! Truly robust adaptive processes need to work 
with precision for any input and output signals. 

5.5 UNEVEN-SAMPLED FOURIER TRANSFORMS 

In our discrete summations for the NDFT, DFT, and FFT, we have always assumed 
regular equally-spaced signal samples. There is a very good reason for this in the use 
of the trapezoidal rule for integration. However, in real-world signal processing 
applications, one may be faced with missing or corrupted data samples in the input 
to an FFT, or irregularly-spaced samples from asynchronous communications 
between sensor and processor. Perhaps the most common occurrence of uneven 
samples in with spatial Fourier transforms of sensor array systems. As described 
in wavenumber Fourier transforms, the spatial sampling of a group of sensors 
may not be regular, requiring special consideration when calculating the Fourier 
transform. These type of data problems are not at all unusual in real applications 
of signal processing, and are actually quite common in astrophysics and radio 
astronomy, where a considerable amount of attention has been given to the subject 
in the literature. 

An area which can frustrate the use of Fourier transforms is the so-called 
“missing-data” or “unevenly-sampled” data cases. We have generally assumed 

TLFeBOOK



116 Chapter 5 

regular-timed data samples in a continuous numerical stream as this allows simple 
application of discrete integration to replace the Fourier integral with a discrete 
summation. The discrete summation approximation can be seen as a finite 
“trapezoidal rule” summation where the average value of the integrand at  two 
adjacent time sample points is taken as a “height” allowing the area under 
the integrand curve to be approximated by a rectangle with the width equal 
to the sampling interval. If the sampling interval is very small and regular, 
the errors in the approximation are quite small. However, if the sample points 
are not evenly-spaced, or if various data points are missing from the series of 
input waveform numbers, the errors in estimating the DFT become very 
significant. A good example of how unevenly-space input data samples to a 
Fourier transform can occur in practice can be seen in the application of sensor 
arrays for spatial Fourier transforms (wavenumber transforms) where the sensors 
are physically spaced in irregular positions. The irregular spacing can be due 
to practical limitations of the particular application or i t  can be purposely done 
as a simple means of controlling the wavenumber, or spatial (directional), response 
of the sensor array. 

An example of missing or irregular time-sampled data can be seen in global 
networks of radio astronomy receiver networks. By linking the receiver dishes across 
the planet, a directional high-gain signal sensitivity response can be obtained. 
However, due to varying atmospheric conditions and the earth’s magnetic field 
fluctuations. the signal pulses from a distant transmitter such as the Voyager I 
and I 1  probes do not arrive at each receiver site at precisely the same time. 
Furthermore, some receiver sites may experience momentary “drop-out” of the 
received signal due to multipath-induced destructive interference or other technical 
problems. The central question (among many) is: how should one deal with a section 
of missing or corrupted data? Should one “clamp” the data at the last known level 
until a new valid sample comes along? Is i t  better to simply set the missing or 
bad data to zero? Should one interpolate or spline fit the missing data to fit the rest 
of the sequence? A good point to consider is the relationship of the wavelength 
of interest with respect to the gap in the data sequence. For really long wavelengths. 
the relatively small irregularity is in general not a problem. However, if the data 
irregularity is in the order of a quarter wavelength or bigger, clearly a substantial 
error will occur if the problem is ignored. 

In  the following examples we will simulate the missing or corrupted input data 
problem by imposing a Gaussian randomization on the sample interval T making the 
input data sequence to be actually sampled randomly in time (random spatial 
samples are the same mathematically). We will then examine the FFT of a low 
and high frequency with varying degrees of sample time randomization. For small 
variations in sample period T with respect to the wave period, simply applying 
the FFT as if there was no variation appears to be the best strategy. However, 
for relatively high frequencies with a shorter wave period, the variation in sample 
time is much more significant and the FFT completely breaks down. In  the astro- 
physics literature, a transform developed by N.R.  Lomb allows the spectrum to 
be accurately computed even when significant missing data or sample time variations 
occur in the input data. The Lomb normalized periodogram, as we will referred to in 
the literature, starts out with N samples , 1 1 [ n ]  11 = 0,1,2,..., N - 1, sampled at time 
intervals t [ tz]  I I  =0.12, ..., N - I where the mean and variance of j3[11] are 
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approximated by 

(5.5. I )  

and used in the normalized periodogram 

N - l  
Cy[n]-y )cos o( t [n]-

y Lonlh
((0)= - tl =o 

I\'- I2a' 1cos2 to(t[n]- t) 
r1=0 (5.5.2) 

n=o J 

where t is determined by 

(5 .5 .3)  

The setting of 7 in the Lomb transform according to Eq. (5.5.3) not only makes the 
periodogram independent of time shift, but is actually essential for a least-squared 
error model of fit of sinusoids to the input data. The model fit is particularly import- 
ant if the t[n]span is somewhat short. I t  should be noted that tlio Loriih t r w s f i ~ r u iis N 

verj' sloni ulgorithm compared to even a DFT since the time shift T must be estimated 
for each frequency of the periodogram, which has the equivalent magnitude of the 
D F T  magnitude-squared, normalized by N .  

A much more simple transform which is essentially equivalent to the Lomb 
transform for reasonably large data sets will be referred to here as simply the Uneven 
Fourier Transform (UFT). The UFT cannot be implemented as an FFT because i t  
requires the precise time sample value for each data value which mathematically 
requires a unique sample set of complex sinusoids. 

(5.5.4) 

We can compare the normalized magnitude squared spectra of Eq. (5.5.4), 
1 YL'"'(tu)I'/N = P"lh((u)to examine performance of the two approaches. Consider 
the following data set of a sinusoid 0.1 times the mean sample frequency (.f/,fi=0. I ) 
where the sample error standard deviation is 0.5 times the sample interval T as seen 
in Figure 14 below. The FFT of the signal in Figure 14 is seen in  Figure 15. 

The FFT of the 0.1fs frequency sine wave in Figure 15 shows a "mirror image" 
of the spectral peak at 0.9fs on the right side of the Figure. This peak is expected for 
real data and can be seen as the aliased image of the negative frequency component 
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Figure 14 A 0.1.f:~sine wave sampled with a 0.5T standard deviation in time interval. 
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Figure 15 An FFT of' the sine wave in Figure 14 clearly shows good results and the 
"mirror-image" peak at 0.9f.S. 

of the sine wave which would also be seen at  -0.If.s.The Lomb and Uneven Fourier 
transforms are seen in Figure 16 and do not SIZO~I,this "nzi,.ror.-ir?ztrKr." due to the 
randomization of the sample times. In other words, the time randomization of 
the input samples causes some very short sample time intervals, effectively raising 
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Figure 16 The UFT and Lomb transforms show no mirror image peak at 0.9fS but actually 
have more numerical error than the FFT of the sine wave at  0.1,f.s cvith a 0.5 T sampling stan-
dard deviation. 

the Nyquist rate for the data sequence. However, we must know the precise sample 
times for each input sample. 

Note how the UFT and Lomb transforms are nearly identical. As presented, 
the two algorithms are not identical and the Lomb approach appears to be more 
robust on very short data records. However, the UFT is so much more efficient 
to implement and does not appear to be significantly less accurate than the Lomb 
algorithm. 

Now if we examine a case where the frequency is increased to 0.451:s with the 
same sampling error, the Lomb and U F T  transforms outperform the FFT as seen 
in Figures 17 through 19. Clearly, the results seen in Figure 18 are unacceptable. 
I t  can be seen that the sine wave at  0.45fs has a wave period nearly equal to t\+,ice 
the sample period T. With a standard deviation on the FFT input data samples 
of 0.5T. or approximately a quarter wave period for the sine wave, the integration 
errors in the FFT are so great as to render the algorithm useless. I t  is in this relm 
where the Lomb and UFT algorithms show there value, as seen in Figure 19. 

While Figures 14 through 19 are convincing, this next example will be SOMC-

what stunning in its ability to show the usefulness of the UFT or  Lomb transforms 
on extremely erratic-sampled input data. Again, all we require is an accurate sample 
level and the precise time of the sample. Consider the case where the standard 
deviation of the data samples is 10T (yes, ten sample periods)! Figure 20 sh0M.s 
the input data for the Fourier transform. Even though i t  looks like a 2-jxxir-old 
baby's refrigerator artwork, the UFT or Lomb algorithms can easily unscramble 
the mess and produce a useful Fourier transform! Will also violate the tj.pical 
even-sampled Nyquist rate by letting the frequency rise to O . 7 f i  just to demonstrate 
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Figure 17 A 0.45fs sine w a k ~sampled with a 0.5T standard deviation in times interkral. 

0.8 0.9 1 

Figure 18 An FFT of  the sin brave in Figure 14 clearly shows poor results due to the short 
wave period at 0.451s ;is compared to the standard deviation of 0.57. 

some positive effects of sample randomization. Figure 21 shows the Fourier trans- 
form using the Lomb and UFT algorithms. 

Why d o  the Lomb and UFT algorithms work so well for large randomizations 
of the input data, yet not so well for the case where a low randomization was given 
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Figure 19 The Lomb and Uneven Fourier transforms perform quite well on  
randomized-time sampled data even when the sample errors approach a quarter wave period 
of the signal. 
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Figure 20 The sine wave input samples for the case where the sampling error standard 
deviation is 10 samples and the frequency is 0.7fs to illustrate randomization effects on 
the Nyquist rate. 
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Figure 21 Both the Lomb and UFT algorithms easily provide a Fourier transform from 
the heavily randomized data in Figure 20. 

for random sample times with a standard deviation of O S T ?  The answer can be seen 
in the fact that small randomizations of the time samples of OSTas seen in Figures 14 
through 16 are of little consequence to the low frequency wave with frequency 0. I.fs, 
which has a wave period of IOT, or 20 times the standard deviation. The random 
signal levels in the FFT and UFT bins are due to errors in the assumptions in 
the trapezoidal rule behind the numerical integration carried out by the discrete 
sum in the DFT. I t  can be postulated, but will not be proven here, that the regular 
sample assumptions in the FFT have a better averaging effect on the integration 
errors than does the UFT and Lomb algorithms. Clearly, the discrete sum in 
the DFT does not care in what order the products are summed up. AI1 thut reullj* 
niuttc>rs is tliut the correct sample times ure used in the Fourier integrul. As the sample 
time randomizations increase with respect to the wave period, the regular sample 
assumptions in the FFT simply become a huge source of numerical error. The ran- 
dom noise in the UFT and Lomb algorithms tends to stay at  a constant level, 
depending on the number of data points in the transform. Since the normalized 
Lomb periodogram is approximately the magnitude-squared of the DFT divided 
by N ,  it can be seen that the narrowband signal-to-noise gain the Lomb periodogram 
is 10 log,, N ,  or about 21 dB for a complex sinusoid. Therefore, one would expect a 
unity amplitude sine wave to be approximately + I 8  dB in the periodogram and 
the correspondingly scaled UFT and FFT responses with some small losses due 
to bin misalignment. It would appear from these simulations that the Lomb Fourier 
transform periodogram may require more computation without significant improve- 
ment in performance when compared to the more simple UFT approach to the ran- 
dom Fourier integral. I t  should be clear that so long as the precise time and/or  
sensor position is known for the Fourier input data, an accurate Fourier transform 
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can be computed but at the expense of giving up the efficient FFT algorithm and 
some added noise in the spectral result. 

5.6 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

The Fourier transform is a fundamental signal processing algorithm which allows 
time-domain signals to be expressed in the frequency domain as a spectrum of system 
transfer function. Frequency domain representation of signals is generally more 
physically intuitive for periodic (sinusoidal) signals. Conversely, impulsive signals 
such as sonic booms are not very intuitive in the frequency domain, although 
the impulse response of a physical system is a special case where its Fourier trans- 
form is the system frequency response. For discrete signals and systems, the infinite 
time integration of the Fourier transform is replaced by a finite discrete summation. 
The result of this practical implementation issue is that the frequency separating 
resolution of the Discrete Fourier Transform (DFT) is limited by the length of time 
spanned by the summed discrete signal samples. For example, the maximum res- 
olution in Hz is the inverse of the time span in seconds. For a DFT with 10 Hz 
bin resolution, the time span of the input data must be at  least 100 msec. For 
0.1 Hz resolution the time span must be at  least 10 sec. The resolution of a particular 
D F T  depends on the discrete sample rate and the number of data points used, which 
both translate physically into the time span of the input data to the DFT. 

The Fast Fourier Transform (FFT) is an engineered DFT such that the number 
of multiplications and additions are minimized. This is done by clever arranging of 
the multiplies in the summation so that nothing is repeated. The FFT frequency 
bins are orthogonal for input frequencies which are exactly aligned with the bin 
frequencies, and thus, produce no leakage into adjacent FFT bins. The sine and 
cosine components of the FFT and D F T  can be precomputed into tables to minimize 
redundant computation. Computationally, the FFT is significantly more efficient 
than the more explicit D F T  requiring only Mog2N multiplies as compared to 
the DFT’s N2. For a 1024 point FFT this difference is 10,240 to 1,048,576 or a 
reduction of 102.4:l. However, in order to use the FFT’s marvelous efficiency, 
the input samples must be regularly-spaced and the number of input samples must 
equal the total number of FFT bins. 

For cases where spectral leakage is unavoidable (nonstationary or uncontrol- 
lable input frequencies), one may weight the input data (by multiplying it  by a data 
“window”) to keep the spectral leakage approximately the same for both bin-aligned 
and non-aligned input data frequencies. Window design and use is an approximate 
art and, like shoes, fast-food, music, and breakfast cereal, there is a wide variety 
of both old a new designs which do  the same basic job slightly differently. We stop 
short of referring to data windows as pop art, for most applications the Hanning 
windows gives excellent performance. However, one of the most overlook aspects 
of the use of data windows is their affect on signal levels in the frequency domain. 
Using a bin-aligned narrowband reference for the rectangular data window (no 
window applied), we provide “narrowband correction” scale factors in Table 1 )  
which if multiplied by the window samples, allows bin-aligned narrowband signal 
levels to be consistent independent of which window is used. The narrowband cor- 
rection factor is simply N divided by the sum of the window’s N samples. For 
broadband signals the sum of the energy in the time-domain should be consistent 
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with the some of the spectral energy. The broadband correction factor is found by N 
divided by the square-root of the sum of the squared window samples. These values 
can also be found in Table 1 for a wide range of data windows. Both narrowband 
and broadband signals cannot be simultaneously calibrated in the frequency domain 
if a data window is used to control spectral leakage, a nonlinear phenomenon. 

Another area of Fourier processing of data often overlooked is the effect of 
circular convolution when spectral products or divisions are inverse Fourier tran- 
sformed back into the time domain to give impulse responses, cross correlations, 
or  other physical results. If there is spectral leakage in the frequency domain, 
the effect of the leakage is clearly seen in a plot of the spectral operation but 
can be far more devastating in the time domain. Spectral products (or divisions) 
bin by bin are only valid when the spectra accurately represent the data as an orthog- 
onal frequency transform. The assumptions of signal / system linearity and 
time-invariance carry forward to imply long time records transformed into high res- 
olution Fourier transforms. In the physical world, these assumptions all have limits 
of applicability which can lead to serious sources of error in frequency domain 
processing. 

Finally, it is possible to transform non-regularly spaced samples into the fre- 
quency domain provided the precise sample times are known for each sample. 
The uneven Fourier transform (UFT) cannot use the efficient form of the FFT, 
but does offer the benefit of no frequency aliasing when significantly random sample 
time dithering is present. The UFT may be most useful for spatial Fourier transforms 
where sensor positions rather than sample times may be randomized for various 
reasons. The UFT and its more formal brother, the Lomb transform, allow for 
unevenly sampled data to be transformed to the frequency domain for subsequent 
analysis and processing. 

PROBLEMS 

1 .  A digital signal is sampled 100,000 times per second and contains white 
noise and two sinusoids. One sinusoid is 20,000 Hz and the other is 
the same amplitude at 20,072 Hz. Assuming that a discrete Fourier trans- 
form can resolve the two sinusoids if at least one bin lies between the 
two spectral peaks to be resolved, what size DFT (i.e. number of samples) 
is required to just resolve the two sinusoids? What is the associated inte- 
gration time in seconds? 

2. Given a digital signal processor (DSP) chip capable of 25 million 
floating-point operations per second (25 MFLOPS), what is the real-time 
(no data missed) N-point FFT's processing rate assuming N operations 
are needed to move the real input data into place and N operations are 
needed to move the N / 2  complex FFT output away when done if N =  128, 
1024, 8192'? What are the computational times for the FFTs? 

3.  Given a real time data sequence, the total real spectrum is found by sum- 
ming the positive and negative frequency bins and the total imaginary 
spectrum is found by subtracting the negative frequency bin values from 
the positive frequency bins. This is due to the Hilbert transform pair 
relationship for the real and imaginary spectra given a real input time data 
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sequence. Suppose the time data sequence is placed in the imaginary part of 
the input leaving the real part zero. How does one recover the proper real 
and imaginary spectra? 

4. Suppose we have a data window that’s a straight line starting a 1 .OO at 11 = 1 
and decreasing to 0.00 at n = N ,  the window size. Show that the 
narrowband correction factor is 2.00 and the broadband correction factor 
is 3” or 1.732. 
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Spectral Density 

The spectral density of a signal is a statistical quantity very useful in determining the 
mean-square value, or power spectral density, for frequency-domain signals. Strictly 
speaking, the spectral density, as its name implies, is an expected power density per 
Hz. As the time integral in the forward Fourier transform increases, so does the 
amplitude of the spectral density while the resolution of the Fourier transform 
narrows. Therefore, the expected signal power per-Hz in the frequency domain stays 
the same, matching the expected signal power at that frequency in the time domain. 
However, many current signal processing texts define the spectral density with some 
subtle differences which depend on the whether the underlying Fourier transform 
integral limits are - T to + T or - T/2 to + T/2, and whether the original time 
signal is real or complex. Unfortunately for the uninitiated student, both of these 
subtle parameters can either lead to a “factor of 2” difference in the spectral density 
definition, or can actually cancel one another deep in the algerbra leading to sig- 
nificant confusion. In the derivation below (which is thankfully consistent with 
all texts), we will allude to the origins of the potential “factor of 2s” so that the 
student can easily see the consistency between the many available texts with 
derivations of spectral density. 

We start the derivation of spectral density with the assumption of an analytic 
time waveform x( t )  over the interval t =  - T/2 to + T/2 and zero everywhere else 
on the range of t .  Using the fT/2 integration interval for the Fourier transform, 
we define the spectral density as 

+ T / 2  

(6.0.1) 

-T/2 

Note that if the Fourier transform X ( u ) is defined over the interval - T to + T, a 
factor of 2T(rather than 7‘) would be required in the denominator for the spectral 
density Sx(w), as seen in some texts. 

A good starting point for the derivation of spectral density is Parseval’s 
theorem for two time functions g ( t )  and f ( t )  Fourier-transformable into G ( o )  

127 
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and F(ru), respectively. 

F(w)G(-co)dtu = (6.0.2) 

One can easily see that the only difference between working in radian frequency (o in 
radians per second and the more familiar physical frequencyfin Hz (cycles per 
second) is the simple factor of 1 / 2 n  from the change of variables. We prefer to 
use f instead of (r) because it will be more straightforward to compare spectral 
densities in the analog and digital domains. For our real signal s ( t )which is nonzero 
only in the range - T/2< t < T/2,we have 

(6.0.3) 


Dividing Eq. (6.0.3) by T and taking the limit as T goes to infinity provides and 
equation for the expected mean square signal (or signal power), in the time and 
frequency domains. 

i TJ2 +lx: 

(6.0.4) 

- l - j 2  --3o 

For the special (and most common) case where x ( t )  is a purely real signal (the 
imaginary component is zero), we note the Hilbert transform pair relationship which 
allows X (  - f )  to be seen as the complex conjugate of X(+f’).Taking the expected 
value of both sides of Eq. (6.0.4) gives 

(6.0.5) 


where for stationary signals and random processes, the expected value of the time 
average of the signal squared is just the mean square signal. 

(6.0.6) 

Equation (6.0.6)provides the very important result of the integral of the 
spectral density over the entire frequency domain is the mean square time-domain 
signal, or signal power. The integral of the spectral density Sx(,f) in Eq. (6.0.6) 
is referred to as a two-sided pobtvr spectrcrl densit)? ( P S D )  because both positive 
and negative frequencies are integrated. Since x ( t )  is real, the two-sided PSD is 
exactly the same as twice the integral of the spectral density over only positive 
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frequencies. 

+m 

- 3
x’ = E{x2(2)}= 2 / S X ( f ) d f  (6.0.7) 

0 

The integral of the spectral density in Eq. (6.0.7) is known as a one-sided PSD.  
Clearly, if one is not careful about the definition of the time interval ( fT or fT l 2 )  
for the Fourier transform and the definition of whether a one-sided or two-sided PSD 
is being used, some confusion can arise. The power spectrum estimate, G x x ( f ) ,of a 
real signal, x ( t ) ,  is defined as twice the spectral density at that frequency as a simple 
means of including positive and negative frequency power in the estimate. 

Consider the following simple example. Let x(t) be equal to a sine wave plus a 
constant. 

~ ( 2 )= A + Bsin(o2) (6.0.8) 

We can write the mean square signal by inspection as A’ + B’/2. The Fourier trans- 
form of x( t )  is 

X(c0) = A T 
sin(cuT/2) +-BT sin([wl -w]T/2) BT sin([ol - o ] T / 2 )  

(6.0.9)-__ 
w T / 2  2j [w1 -w ] T / 2  2j [col -w ] T / 2  

The spectral density SAW)is found by taking expected values and noting that the 
three “sin(x)/x” type functions in Eq. (6.0.9) are orthogonal in the limit as T 
approaches infinity. 

(6.0.10) 

To find the signal power, we simply integrate the two-sided spectral density over 
positive and negative frequency noting the following important definition of the 
Dirac delta function. 

(6.0. I 1 ) 
-cc 


Then, by a straightforward change of variables where 7’= T/2 and df =d o / 2 n , then 
it can be seen that the integral of the two-sided PSD is simply 

(6.0.12) 

Since the integral of a Dirac delta function always gives unity area, the signal power 
is easily verified in Eq. (6.0.12). 
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We now briefly consider the discrete sampled data case of .x[n]=s(nTs) ,where 
Ts is the sampling interval in seconds. For an N-point DFT or FFT of s [ n ] ,we can 
compare the digital signal equivalent of Parseval’s theorem. 

N - I N- l  
1 

(6.0.13) 
n=O 


The factor of 1 / N in Eq. (6.0.13) is very interesting. It is required to scale the 
transform appropriately as is the case for the inverse DFT formula. It essentially 
takes the place of “df ’  in the analog-domain inverse Fourier transform. For N 
equal-spaced frequency samples of mrzz],the factor of 1 / N represents the spectral 
width of a bin in terms of a fraction of the sample rate. If we consider the mean 
square digital signal, or expected value of the digital signal power, we have 

1 N - 1  1 N - 1  

(6.0.14)
N 

n=O m=o 

the equivalent digital domain spectral density can be seen as the magnitude-squared 
of the normalized DFT (NDFT) presented in the previous section. The mean-square 
value (or average power) of the digital signal is the sum of the magnitude-squared of 
the NDFT bins. But more importantly, the power at  some frequencyfk is the sum of 
the squares of the NDFT bins for f f k ,  or twice the value atfx for ~ [ n ]real. The root 
mean-square, or rms value, is simply the square root of the power, or more simply, 
1/2”2 times the magnitude of the NDFT bin. This is why the NDFT is very often 
convenient for real physical system applications. 

Sensor calibration signals are usually specified in rms units at  some frequency. 
Electronic component background noise spectra are usually specified in the standard 
Volts per square-root Hertz, which is the square-root of the voltage power spectral 
density. Obviously, one would not want the size of the DFT or  FFT to be part 
of a component noise standard. For intelligent adaptive systems, we generally want 
to change NDFT size according to some optimization scheme and do  not want signal 
levels in the normalized power spectral density (NPSD) to depend on the number of 
points in the transform. Throughout the rest of the next section, we will examine 
the statistics of the data in the NDFT bins and many useful signal functions 
well-represented by physical applications in the frequency domain. To avoid con- 
fusion, we will refer to the mean square values of the NDFT magnitude-squared 
as the NPSD, while the PSD as defined in the literature is N times the NPSD (i.e. 
NPSD =PSD/N). 

6.1 STATISTICAL MEASURES OF SPECTRAL BINS 

One often processes broadband signals in the frequency domain which can be seen as 
the sum of a large number of sinusoids of randomly distributed amplitudes. There 
are many naturally occurring random processes which generate broadband signals 
such as turbulence in the atmosphere, intrinsic atomic vibrations in materials above 
absolute zero temperature, electron position uncertainty and scattering in con- 
ductors, and the least significant bit error in a successive approximation A / D  con- 
vertor as described in Chapter 1 .  All physical signals harvested in an A I D  and 
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processed in an adaptive signal processing system contain some level of 
“background” random signals referred to as noise. Even numerical errors in 
computing can be modeled as random noise, although this kind of noise is 
(hopefully) quite small. The normalized power spectral density (NPSD) in a given 
bin can also be seen as a random variable where we would like to know the expected 
value as well as the likelihood of the bin value falling within a particular range. The 
central limit theorem states that regardless of the probability distribution of an inde- 
pendent random variable x,,,the sum of a large number of these independent ran- 
dom variables (each of the same probability distribution) gives a random 
variable Y which tends to have a Gaussian probability distribution. 

1 
Y = --[XI + xz + x3 + . . . + Xn] (6.1.1)

f i  

Probability Distributions and Probability Density Functions 

A probability distribution P h i )  is defined as the probability that the observed ran- 
dom variable Y is less than or equal to the value )!. For example, a six-sided die 
cube has an equal likelihood for showing each of its faces upward whzn it  comes 
to rest after being rolled vigorously. With sides numbered 1 through 6, the prob- 
ability of getting a number less than or equal to 6 is 1.0 (or loo%), less than or 
equal to 3 is 0.5 (50‘%),equal to 1 is 0.1667 (16.67% or a 1 in 6 chance), etc. A 
probability distribution has the following functional properties: 

(a) P y b ’ )= Pr( Y 5 y) 
(b)  O ~ P y @ ) 5 1  - o o < ~ < + o o  

(c.) Py(-OO) = 0 Py(+oo) = 1 (6.1.2) 

(4 PrCvl < y 5 y 2 )  = P Y c Y 2 )  - PYCYl) 

It is very convenient to work with the derivative of the probability distribution, or 
probability density function (PDF). A probability density function p &-) has the 
following functional properties: 

(6.1.3)--Dc 

J’ 
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For our die example above, the probability distribution is a straight line from 
1 / 6  for a value of 1 to 1.OO for a value less than or equal to 6. The probability density 
function is the slope of the probability distribution, or simply 1 /6. Since the PDF for 
the die is the same for all values between 1 and 6 and zero elsewhere, it is said to be a 
unifornzprobabilit?.i distribution. The expected value, (or average value), of a random 
variable can be found by computing the 1st moment, which is defined as the mean. 

(6.1.4) 

The mean-square value is the second moment of the PDF. 

- 3

Y - = E ( Y 2 }= / y2py (y )dy  (6.1.5) 
-Dc 

The variance is defined as the second central moment, or the mean-square value 
minus the mean value squared. The standard deviation for the random variable, 
G)’,is the square-root of the variance. 

(6.1.6) 

For our die example, the mean is 1/ 6  times the integral from 0 to 6 of or 1 1 12 times ~ 9 , 

j * 2evaluated at  6 and zero, which gives a mean of 3. The mean-square value is 116 
times the integral from 0 to 6 of y 2 ,  or 1 /24 times y 3  evaluated at 6 and 0, which 
gives a mean-square value of 12. The variance is simply 12 - 9 or 3 as expected. 

Consider the statistics of rolling 100 dice and noting the central limit theorem 
in Eq. (6.1.1) and the probability distribution for the sum (giving possible numbers 
between 100 and 600). Clearly, the likelihood of having all 100 dice roll up as 
1s or 6s is extremely low compared to the many possibilities for dice sums in 
the range of 300. This “bell curve” shape to the probability density is well-known 
to approach a Gaussian PDF in the limit as n approaches infinity. The Gaussian 

kr 
PDF is seen in Eq. (6.1.7) and also in Figure 1 for ni kr =0 and = 1. 

(6.1.7) 

For real-world sensor systems where there are nearly an infinite number of 
random noise sources ranging from molecular vibrations to turbulence, i t  is not only 
reasonable, but prudent to assume Gaussian noise statistics. However, when one 
deals with a low number of samples of Gaussian random data in a signal processing 
system (say < 1000 samples), the computed mean and variance will not likely exactly 
match the expected values and a histogram of the observed data arranged to make a 
digital PDF make have a shape significantly different from the expected bell-curve. 
This problem can be particularly acute where one has scarce data for adaptive algo- 
rithm training. There are various intricate tests, such as Student’s t-test and others, 
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Figure 1 A zero-mean Gaussian (ZMG) probability density function (PDF) with variance 
equal to unity. 

that have been developed (but are not presented here) to determine whether one data 
set is statistically different from another. Results from statistical tests with small 
data sample sets can be misleading and should only be interpreted in general as 
a cue, or possible indicator for significant information. The general public very often 
is presented with statistical results from small sample size clinical trials in the health 
sciences (human volunteers are rare, expensive, and potentially in harm's way). 
These statistical sample set tests can also be used in adaptive pattern recognition 
to insure low bias in small data sets. However, the best advice is to use enormous 
data set for statistical training of adaptive algorithms wherever possible and to 
always check the data set distribution parameters to insure the proper assumptions 
are being applied. 

Statistics of the NPSD Bin 

Consider the Fourier transform of a real zero-mean Gaussian (ZMG) signal with a 
time-domain standard deviation o,, The Fourier transform (as well as the DFT, 
FFT, and NDFT defined above) is a linear transform where each transformed fre- 
quency component can be seen as the output of a narrowband filter with the 
ZMG input signal. Since the ZMG signal is spectrally white (it can be represented 
as the sum of an infinite number of sinusoids with random amplitudes), each 
bin in a DFT, FFT, or NDFT can be seen as a complex random variable where 
the real and imaginary components are each ZMG random variables with standard 
deviation oR=oI=of . If we use the NPSD to compare mean square values in 
the time and frequency domains (DFT computed using a rectangular data window), 
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we can easily determine in terms of a; using Eq. (6.0.14) as seen in Eq. (6,1.8). 

1 N-1 
N - '  &[rnl2 + X,[m]'

of = - s2[n]= 
N N' (6.1.8)ll=O tn=o 

Clearly, a: = rr?/ZN, and the variance of the real and imaginary parts of an 
N-point NPSD bin, decrease by a factor of 1/2N relative to the time-domain 
variance. If a Hanning or other non-rectangular data window is used in the NDFT 
calculation, a broadband correction factor (1.6329 for the Hanning window, see 
Table 5.1 for other window types) must be applied for the broadband variances 
to match the rectangular window levels. For the PSD, the variance in the real 
and imaginary bins is simply N / 2  a? while a sinusoid power is amplified by a factor 
of N'. If the input data were complex with real and imaginary components each 
with variance a;?,the NPSD drop in variance is 1 / N rather than 2 /  N for real signal. 
I t  can be seen that the spectrally white input noise variance is equally divided into 
each of the N discrete Fourier transform bins. Note that the NDFT scaling (and 
NPSD definition) used allows the mean-square value for a sinusoid in the time 
domain to be matched to the value in the corresponding NPSD bin. Therefore, 
the Fourier transform is seen to provide a narrowband signal-to-noise ratio (SNR) 
enhancement of 10 loglo ( N 2 )dB for real signal input. The larger N is, the greater 
the SNR enhancement in the power spectrum will be. A more physical interpretation 
of N is the ratio of the sample rateJ, (in Hz) over the available resolution (in Hz), 
which is inversely proportional to the total integration time in seconds. Therefore, 
the SNR enhancement for stationary real sinusoids in white noise is 10 log,, (ZV?), 
where N can be derived from the product of the sample rate and the total integration 
time. A 1024-point PSD or NPSD provides about 27 dB SNR improvement while a 
128-point transform gives only 18 dB. PSD measurement in an extraordinary tool 
for enhancing the SNR and associated observability of stationary sinusoids in white 
noise whether the normalization is used or  not. 

To observe an approximation to the expected value of the power spectrum we 
are clearly interested in the average magnitude-squared value and its statistics 
for a given Fourier transform bin (with no overlap of input buffers). These statistics 
for the NPSD will be based on a limited number of spectral averages of the 
magnitude-squared data in each bin. Lets start by assuming real and imaginary 
ZMG processes each with variance a'. The PDF of the square of a ZMG random 
variable is found by employing a straightforward change of variables. Deriving 
the new PDF (for the squared ZMG variable) is accomplished by letting ]'=.U' 
be the new random variable. The probability that y is less than some value Y must 
be the same as the probability that s is between fY'/'. 

(6.1.9) 

Differentiating Eq. (6.1.9) with respect to Y gives the PDF for the new random 
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variable 4’ =x2. 

d ( - J R
p(  Y )=p ( x  = +Jy)d ( + m  

- p ( x  = -Jy) dYdY (6.1.10) 

Since the Gaussian PDF is symmetric (its an even function), we can write the new 
PDF simply as 

(6.1.11 )  

The PDF in Eq. (6.1.1 1) is known as a Chi-Square PDF of order 1’ = 1 and is denoted 
1.1here as p(x21v= 1). The expected value for is now the variance for s since 

E { ) > )=E{.x2)=02.The variance for the Chi-Square process is 

(6.1.12) 

The 4th moment on the ZMG variable x in Eq. (6.1.12) is conveniently found using 
the even central moments relationship for Gaussian PDF’s (the odd central moments 
are all zero). 

.?)‘I}E ( ( s- = 1 - 3 - 5 .  . . (n- 1 ) ~ ”  (6.1.13) 

We now consider the sum of two squared ZMG variables as is done to compute 
the magnitude squared in a bin for the PSD. This PDF is a Chi-Square distribution of 
order v =2. Equation (2.60) gives the general Chi-Square for 1’ degrees of freedom. 

(6.1.14) 

The means and variances for the 2 degree of freedom Chi-Square process 
simply add up to twice that for the v =  1 case. The gamma function r (17/2) equals 
n”’ for the v =  1 case and equals (A4- l)! for M =  2v. Since we are interested 
in the average of pairs of squared ZMG variables, we introduce a PDF for the aver- 
age of M NPSD bins. 

(6.1-15) 

Figure 2 shows a number of the Chi-Square family PDF plots for an underlying 
ZMG process with unity variance. The v =  1 and v = 2  ( M =  1) cases are classic 
Chi-Square. However, the M =  2, 4, and 32 cases use the averaging PDF in Eq. 
(6.1.15). Clearly, as one averages more statistical samples, the PDF tends toward 
a Gaussian distribution as the central limit theorem predicts. Also for the averaging 
cases (A4 > l) ,  note how the mean stays the same (2 since o2= 1 )  while the variance 
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Figure 2 The family of Chi-Square PDFs useful for determining spectral averaging 
(M > 1 )  statistics. 

decreases with increasing M .  In the limit as M approaches infinity, the PDF of Eq. 
(6.1.15) takes on the appearance of a Dirac delta function. 

It is important to note that the v =  1 case has a mean of a2=1, while all the 
other means are 20' =2. This 2a2mean for the NDFT bin relates to the time-domain 
variance by a factor of 1 / 2 N  for real data as mentioned above. It may not at first 
appear to be true that the mean values are all the same for the spectral averaging 
cases ( M = 1, 2, 4, and 32). However, even though the skewness (asymmetry) of 
the spectral averaging PDFs is quite significant for small A4 as seen in Figure 2, 
the curves really flatten out as .Y approaches infinity adding a significant area to 
the probability integral. The variance for the v =  1 case is 204 while the variances 
for the averaged cases ( M =  1,  2, 4, 32) are seen to be 4a4/Mwhich can be clearly 
seen in Figure 2. Figure 3 shows the probability distribution curves corresponding 
to the PDFs in Figure 2. Equation (6.1.16) gives the probability of finding a value 
less than s'. However, this solution is somewhat cumbersome to evaluate because 
the approximate convergence of the series depends on the magnitude of .Y'. 

(6. I .  16) 

Confidence Intervals For Averaged NPSD Bins 

What we are really interested in for spectrally averaged Fourier transforms is the 
probability of having the value of a particular NPSD bin fall within a certain range 
of the mean. For example, for the M =32 averages case in Figure 3, the probability 
of the value in the bin lying below 2.5 is about 0.99. The probability of the value 
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Figure 3 Probability distributions numerically calculated from the PDFs i n  Figure 2 ii,here 
( T =  1 .  

being less than 1.5 is about 0.02. Therefore, the probability of the averaged value for 
the bin being between 1.5 and 2.5 is about 97”/0.With only 4 averages, the probability 
drops to 0.80-0.30, or about 50%, and with only 1 NPSD bin ( M  = l ) ,  the probability 
is less than 20%. Clearly, spectral averaging of random data significantly reduces the 
variance, but not the mean, of the spectral bin data. The only way to reduce the mean 
of the noise (relative to a sinusoid), is to increase the resolution of the NPSD. 

One statistical measure that is often very useful is a cmzfidmce in tcwcr l  for the 
spectral bin. A confidence interval is simply a range of levels for the spectral bin 
and the associated probability of having a value in that range. The 99% confidence 
interval for the M =2 case could be from 0.04 to 0.49, while for M =4 the interval 
narrows to 0.08 to 3.7, etc. It can be seen as even more convenient to express 
the interval in decibels (dB) about the mean value. Figure 4 shows the probability 
curves on dB value x-axis scale where 0 dB is the mean of 20‘ =2.0. Clearly, using 
Figure 4 as a graphical aid, one can easily determine the probability for a wide range 
of dB. For example, the f3 dB confidence for the A4 =4 case is approximately 98%. 
while for the M =  1 case its only about 50%). 

Synchronous Time Averaging 

We can see that spectral averaging in the frequency domain reduces the variance of 
the random bin data as the number of complex magnitude-squared averages 124 
increases. This approach is very useful for “cleaning up” spectral data, but i t  does 
not allow an increase in narrowband signal-to-noise ratio beyond what the Fourier 
transform offers. However, if  we know the frequency to be detected has period 
T,,, we can synchronously average the time data such that only frequencies 
synchronous with .J;, = 1 / 7‘’ (i.e..h,, 2j;,, 3J;,,...) will remain. All non-coherent fre- 
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Figure 4 Probability distributions for the Chi-Square average PDFs but with .v2 on a 
10 log,,, scale relative to the mean at 2.0. 

quencies including ZMG random noise will average to zero. This is an extremely 
effective technique for enhancing known signal detectability. Examples are often 
found in active sonar and radar, vibrations monitoring of rotating equipment such 
as bearings in machinery, and measurements of known periodic signals in high noise 
levels. For the case of rotating equipment, a tachometer signal can provide a trigger 
to synchronize all the averages such that shaft-rate related vibrations would all 
be greatly enhanced while other periodic vibrations from other shafts ~zfouldbe 
suppressed. The averaging process has the effect of reducing the non-coherent signals 
by ii factor of 1 / N for N averages. Therefore, to increase the detectability by 40 dB, 
one would need at least 100 coherent time averages of the signal of interest. 

Higher-Order Moments 

Beyond the mean and mean-square (1st and 2nd general moments) of a probability 
density function there are several additional moments and moment sequences which 
are of distinct value to intelligent signal processing systems. In  general, these 
* ’h igher -order * ‘ stat i st ics and the ir correspondin g spec t ra each provide i n s ig h t fuI 
features for statistically describing the data set of interest. We will start by consider-
ing the 11th general moment of the probability distribution /)(.\-). 

(6.1.17) 
--z 

The central moment is defined as the moment of the difference of a random variable 
and its mean a s  seen in Eq. (6.1.18).The central moments of a random variable are 
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preferred because in many cases a zero mean random variable will result in much 
simpler mathematical derivations. 

+m 

( X  - X)’]= E (( X  - X)” = / (x - x)”p(.U)d.u (6.1.18) 
--cx, 

As noted earlier, the 2nd central moment is the variance d.The 3rd central 
moment leads one to the sketvness which is typically defined with the difference 
between the random variable and its mean normalized by the standard deviation 
to give a dimensionless quantity. 

(6.1.19) 

A positive skewness means the distribution tail extends out more in the positive 
x-direction then in the negative direction. Hence, a positively skewed distribution 
tends to lean “towards the right”, while a negatively skewed PDF leans toward 
the left. The normalized 4th central moment is is known as the kurtosis and is given 
in Eq. (6.1.20) below. 

Kurt = E (  (--)4}X - X  - 3 (6.1.20) 

The kurtosis is a measure of how “peaky” the PDF is around its mean. A 
strongly positive kurtosis indicates a PDF with a very sharp peak at the mean 
and is called (by very few people), leptokurtic. A negative kurtosis indicates the 
PDF is very flat in the vicinity of the mean and is called (by even fewer people), 
platykurtic. The measures of skewness and kurtosis are essentially relative to the 
Gaussian PDF because it has zero skewness and a kurtosis of - 1 .  The mean, 
variance, skewness and kurtosis form a set of features which provide a reasonable 
description of the shape of a Gaussian-like uni-modal curve (one which has just 
one bump). PDFs can be bi-modal (or even more complicated on a bad day) such 
that other measures of the PDF must be taken for adequate algorithmic description. 

The Characteristic Function 

Given an analytic function for the PDF or a numerical histogram, the general 
moments can be calculated through a numerical or analytic integration of Eq. 
(6.1.17). However, analytic integration of the form in Eq. (6.1.17) can be quite 
difficult. An alternative analytic method for computing the central moments of a 
P D F  is the chrrructeristic .function 4 (u ) .  The characteristic function of a random 
variable X is simply $ ( U )  =E{eit‘Xf. 

(6.1.2 1 )  

It can be seen that, except for the positive exponent, the characteristic function is a 
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Fourier transform of the PDF! Conversely, if we are given a characteristic function, 
the “negative exponent” inverse transform gives back the PDF. 

(6.1.22) 

The sign in the exponent is really more of a historical convention than a requirement 
for the concept to work. To see the “trick” of the characteristic function, simply 
differentiate Eq. (6.1.21) with respect to U and evaluate at z i = O .  

(6.1.23) 

As one might expect, the nth general moment is found simply by 

(6.I .24) 

Joint characteristic functions can be found by doing 2-dimensional Fourier 
transforms of the respective joint PDF and the joint nth general moment can be 
found using the simple formula in Eq. (6.1.25). Its not the first time a problem 
is much easier solved in the frequency domain. 

(6.1.25) 

Cumulants and Polyspectra 

The general moments described above are really just the 0th lag of a moment time 
sequence defined by 

Therefore, one can see that 171;  = E l s ) ,  or just the mean while uz; (0) is the mean 
square value for the random variable .u(k). The sequence m i ( 7 )  is defined as the 
autocorrelation of .u(k).The 2nd order cwiulcint  is seen as the c o w r i m c o  . s e c l i r c n c * o  
since the mean is subtracted from the mean-square. 

The 0 t h  lag of the covariance sequence is simply the variance. The 3rd order 
cumulant is 

The (0,O)lag of the 3rd order cumulant is actually the “unnormalized” skewness, or 
simply the skewness times the standard deviation cubed. As one might quess, 
the 4th order cumulant (0,0,0) lag is the unnormalized kurtosis. The 4th order 
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cumulant can be written more compactly if we can assume a zero mean r71; = 0. 

These cumulants are very useful for examining the just how “Gaussian” a ran- 
dom noise process is, as well as, for discriminating linear processes from nonlinear 
processes. To see this we will examine the spectra of the cumulants known as 
the power spectrum for the 2nd cumulant, bispectruiu for the 3rd cumulant, 
trispectrurn for the 4th cumulant, and so on. While the investigation of po/jqspecatru 
is a relatively new area in signal processing, the result of the power spectrum being 
the Fourier transform of the 2nd cumulant is well-known as the Weiner-Khintchine 
theorem. Consider the bispectrum which is a 2-dimensional Fourier transform of the 
3rd cumulant. 

(6. I .30) 

It can be shown that the bispectrum in the first octant of the col,LU? plane (to2 > 0, (ol 
2 (02 ), bounded by cu1 + 0 2  5 71 to insure no aliasing, is actually all that is needed 
due to a high degress of symmetry. The trispectrum is a 3-dimensional Fourier 
transform of the 4th cumulant. 

+m +x, +oo 

The trispectrum covers a 3-dimensional volume in CO and is reported to have 96 
symmetry regions. Don’t try to implement Eqs (6.1.30) and (6.1.31) as written 
on a computer. There is a far more computationally efficient way to compute 
polyspectra without any penalty given the N-point DFT of s ( k ) ,  X(co). While 
the power spectrum (or power spectral density PSD) is well known to be 
Ci((o) =X(tu)X*(to)/N ,  the bispectrum and trispectrum can be computed as 

which is a rather trivial calculation compared to Eqs (6.1.28) through (6.1.31 ). For 
purposes of polyspectral analysis, the factor of 1 / N  is not really critical and is 
included here for compatibility with power spectra of periodic signals. 

Let take an example of a pair of sinusoids filtered through a nonlinear process 
and use the bispectrum to analyze which frequencies are the result of the 
nonlinearity. The bispectrum allows frequency components which are phase-coupled 
to coherently integrate, making them easy to identify. Let s ( k )be sampled at./; = 256 

TLFeBOOK



142 Chapter 6 

Hz and 

(6.1.33) 

where A I = 12,J = 10, O 1  =45” ,  A2= 10,f2 =24, O 1  = 170”, and w ( k )is a ZMG noise 
process with standard deviation 0.01. Our nonlinear process for this example is 

z ( k )  = .y(k)+ E s(k)’ (6.1.34) 

where E =0.10, or a lO‘% quadratic distortion of ~ ( k ) .The nonlinearity should pro- 
duce a harmonic for each of the two frequencies (20 and 48 Hz) and sum and dif- 
ference tones at  14 and 34 Hz. Figure 5 clearly shows the original PSD of s ( k )  
(dotted curve) and its two frequencies and the PSD of z ( k )  (solid curve), showing 
6 frequencies. The 10% distortion places the harmonics about 10 dB down from 
the original levels. But since the distorted signal is squared, the levels are not quite 
that far down. 

Harmonic generation is generally known in audio engineering community as 
Hurnionic Distortion, while the sum and difference frequency generation is known 
as Intermodulution Distortion. I t  is interesting to note that if f i  and .f: were 
harmonically related (say 10 and 20 Hz), the sum and difference tones would also 
be harmonics of the 10 Hz fundamental and no “intermodulated” tones would 
be readily seen. For most music and speech signals, the harmonic content is already 
very rich, so a little harmonic distortion is acceptable to most people. However, 
in some forms of modern rock music (such as “heavy metal” and “grunge”), more 
harmonics are desirable for funky artistic reasons and are usually produced using 
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Figure 5 Comparison of a two sinusoid signal (dotted curve) and the addition of a 10‘%, 
quadratic distortion (solid curve). 
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overdriven vacuum tube amplifiers. Out of the 6 frequencies in Figure 5 ,  only two are 
phase coupled via the nonlinearity to a respective fundamental. Figure 6 shows the 
bispectrum where bright areas on the plot indicate frequency pairs of high coherence. 

Clearly, there is perfect symmetry about thefi =f2 line in Figure 6 suggesting 
that all one needs is the lower triangular portion of the bispectrum to have all 
the pertinent information. The bright spots at 20 and 48 Hz indicate that these 
two frequencies are phase coupled to their respective fundamentals due to the dis- 
tortion. The symmetry spot at (48,20) and verticle and horizontal lines, are due 
to the fact that the same nonlinearity produced both harmonics. The diagonal spots 
appear to be due to a spectral leakage effect. 

We now test the bispectrum of the same set of 6 frequencies, except only the 
24 Hz sinusoid is passed through the nonlinearity, where the other tones are simply 
superimposed. The bispectrum for the single sinusoid nonlinearity is seen in Figure 
7. Comparing Figures 6 and 7 one can clearly see the relationship between a fun- 
damental and the generated harmonic from the nonlinearity. The difference tones 
at 14 and 34 Hz should be seen in the tri-spectrum. The bi-spectrum, or 3rd cumulent 
provides a measure of the skewness of the PDF. Since the nonlinear effect increases 

Figure 6 Bispectrum of the pair of sinusoids in white noise passed through the 10'% 
quadratic nonlinearity. 
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Figure 7 The bispectruin of the saine 6 frequencies iii Figure 5 except only the 24 Hz passes 
through the nonlinearity. 

with signal amplitude, one can see that a PDF signal representation will be skewed 
because of the nonlinearity. 

6.2 TRANSFER FUNCTIONS AND SPECTRAL COHERENCE 

Perhaps the most common method to mcasure the frequency response of a trans- 
ducer or electricalimechanical system is to compute the transfer function from 
the simultaneous ratio of the output signal spectrum to the input signal spectrum. 
For modal analysis of structures, the classic approach is to strike the structure with 
an instrumented hammer (it has an embedded force-measuring accelerometer), 
and record the input force impulse signal simultaneously with the surface acceler- 
ation response output signal(s) at  various points of interest on the structure. 
The ratio of the Fourier transforms of an output signal of interest to the force 
impulse input provides a measure of the mechanical force-to-acceleration transfer 
function between the two particular points. Noting that velocity is the integral 
of acceleration, one can divide the acceleration spectrum by ‘j.,’’ to obtain a velocity 
spectrum. The ratio of velocity over force is the mechanical mobility (the inverse of 
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mechanical impedance). An even older approach to measuring transfer functions 
involves the use of a swept sinusoid as the input signal and an rms level for the 
output magnitude and phase meter level for system phase. The advantage of the 
swept sinusoid is a high controllable signal to noise ratio and the ability to 
synchronous average the signals in the time domain to increase the signal-to-noise 
ratio. The disadvantage is, the sweep rate should be very slow in the regions of sharp 
peaks and dips in the response function and tracking filters must be used to eliminate 
harmonic distortion. More recently, random noise is used as the input and the 
steady-state response is estimated using spectral averaging. 

Once the net propagation time delay is separated from the transfer function to 
give a minimum phase response, the frequencies where the phase is 0 or 71 (imaginary 
part is zero) indicate the system modal resonances and anti-resonances, depending 
on how the system is defined. For mechanical input impedance (force over velocity) 
at  the hammer input force location, a spectral peak indicates that a large input force 
is needed to have a significant structural velocity response at  the output location on 
the structure. A spectral “dip” in the impedance response means that a very small 
force at  that frequency will provide a large velocity response at the output location. 
It can therefore be seen that the frequencies of the peaks of the mechanical mobility 
transfer function are the structural resonances and the dips are the anti-resonances. 
Recalling from system partial fraction expansions in Chapter 2, the frequencies 
of resonance are the system modes (poles) while the phases between modes determine 
the frequencies of the spectral dips, or zeroes (anti-resonances). Measurement of the 
mechanical system’s modal response is essential to design optimization for vibration 
isolation (where mobility zeros are desired at force input locations and frequencies) 
or vibration communication optimization for transduction systems. For example, 
one needs a flat (no peaks or dips) response for good broadband transduction, 
but using a structural resonance as a narrowband “mechanical amplifier” is also 
often done to improve transducer efficiency and sensitivitity. 

It is anticipated that adaptive signal processing systems will be used well into 
the 21st century for monitoring structural modes for changes which may indicate 
a likely failure due to structural fatigue or damage, as well as to build in a 
sensor-health “self-awareness”, or  sentient capability for the monitoring system. 
It is therefore imperative that we establish the foundations of transfer function meas- 
urement especially in the area of measurement errors and error characterization. 
Consider the case of a general input spectrum X ( f ) , system response H ( . f ) ,and 
coherent output spectrum Y ( f )as seen in Figure 8. 

Clearly, H ( f )= Y ( f ) / X ( f ) ,but for several important reasons, we need to 
express H ( f )in terms of expected values of the ratio of the short time Fourier trans- 
forms X,,(f;r ) and Y,,v,r ) integrated over the time interval T where each block “n“ 
will be averaged. 

(6.2.1) 

The data x,,(t) in Eq. (6.2.1) can be seen as being sliced up into blocks Tsec long 
which will then be Fourier transformed and subsequently averaged. This approach 
for spectral averaging is based on the property of ergoclic rcinclorii prot~c~.sse.s,where 
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the expected values can be estimated from a finite number of averages. This requires 
that the signals be stationary. For example, the blows of the modal analysis hammer 
will in general not be exactly reproducible. However, the average of, say 32, blows of 
the hammer should provide the same average force impulse input as the average of 
thousands of hammer blows if the random variability (human mechanics, back- 
ground noise, initial conditions, etc.) is ergodic. The same is true for the PSD 
Gaussian random noise where each DFT bin is a complex Gaussian random 
variable. However, after averaging the NDFT bins over a finite period of time (say 
11 = 32 blocks or 32Tsec), the measured level in the bin will tend toward the expected 
mean as seen in Figure 9 for the cases of A4 = 1 and M = 32 and the autospectrum. 

Given the resolution and frequency span in Figure 9, i t  can be seen that the 
underlying N DFT is 1024-point. For a unity variance zero-mean Gaussian (ZMG) 
real time-domain signal, we expect the normalized power spectrum to have mean 
20’ = 2 /  N ,  or approximately 0.002. The bin variance of the A4 = 32 power spectrum 
is approximately 1 /32 of the M = 1 case. For the transfer function measurement, 
N,, we can exploit the ergodic random processes by estimating our transfer func- (%f ‘ ) ,  

Figure 8 A general transfer function H ( f ’ )t o  be measured using the input spectrum X ( , f )  
and output spectrum Y(. / ’ ) .  
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Figure 9 Comparison of 1 and 32 averages ot’the I-sided 1 H z  resolution power spcctrum 
of  ZMG process of  unit) variance. 
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tion as the expected value of the ratio of Fourier transforms. 

I (6.2.2) 

The expected value in Eq. (6.2.2) is the average of the ratio of the output 
spectrum over the input spectrum. It is not the ratio of the average output spectrum 
over the average input spectrum which does not preserve the input-output phase 
response. There is however, an unnecessary computational burden with Eq. (6.2.2) 
in that complex divides are very computationally demanding. However, if we pre- 
-multiply top and bottom by 2 X ; ( f ,  T )  we can define the transfer function as 
the ratio of the input-output cross spectrum G,.(f) over the input autospectrum 
(referred to earlier as the 1-sided power spectrum) G,.\(.f). 

Recall that the 2-sided power spectrum S d f )  for real x ( t )  is defined as 

(6.2.4) 

and the 1-sided power spectrum is G,,(f), or the autospectrum of s ( t ) .  

(6.2.5) 

= o  f < O  

The autospectrum gets its name from the fact that a conjugate multiply X * ( . f ) X ( . f )in 
the frequency domain is an auto-correlation, not convolution, in the time domain. 
The autospectrum, (or power spectrum), G,,(f),is the Fourier transform of the 
autocorrelation of ~ ( t )in the time domain. 

(6.2.6) 

Likewise, the input-output cross spectrum G,,.(f) is the Fourier transform of the 
cross correlation of s and 4' in the time domain. 

(6 .2 .7)  

Equations (6.2.3), (6.2.6), and (6.2.7) allow for a computationally efficient method- 
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ology for computing the transfer function H\ , ( f ) .  One simply maintains a running 
average of the cross spectrum G,,.(f) and autospectrum G,\(-f). After the averaging 
process is complete, the two are divided only once, bin by bin, to give the transfer 
function estimate H \ , ( f ) .  

However, due to numerical errors which can be caused by spectral leakage, 
environmental noise, or even the noise from the least-significant bit of the A / D  con- 
vertors, we will introduce a measurement parameter known as an orc/iricirj*c~ot i t~rc~nc‘c~ 

.firnc>tiorifor characterization of transfer function accuracy. 

(6.2.8) 

The coherence function will be unity if no extraneous noise is detected leading to 
errors in the transfer function measurement. The exception to this is when only 
1 average is computed giving a coherence estimate which is algebraically unity. 
For a reasonably large number of averages, the cross spectrum will differ slightly 
from the input and output autospectra, if only from the noise in the A / D  system. 
However, the system impulse response is longer than the FFT buffers, some response 
from the previous input buffer will still be reverberating into the time frame of the 
subsequent buffer. Since the input is ZMG noise in most cases for system 
identification, the residual reverberation is uncorrelated with the current input. 
and as such, appears as noise to the transfer function measurement. A simple 
coherence measurement will identify this effect. Correction requires that the 
FFT buffers be at least as long as the system impulse response, giving corresponding 
frequency-domain resolution higher than the system peaks require. Significant dif- 
ferences will be seen at frequencies where an estimation problem occurs. We will 
use the coherence function along with the number of non-overlapping spectral aver- 
ages to estimate error bounds for the magnitude and phase of the measured transfer 
function. 

Consider the example of a simple digital filter with two resonances at 60.5 and 
374.5 Hz, and an antiresonance at  240.5 Hz, where the sample rate is 1024 Hz 
and the input is ZMG with unity variance. Figure 10 shows the measured transfer 
function (dotted line), true transfer function (solid line), and measured coherence 
for a single buffer in the spectral average ( M =  1) .  

Obviously, with only one pair of input and output buffers, the transfer function 
estimate is rather feeble due primarily to spectral leakage and non-uniform input 
noise. The coherence with only one average is algebraically unity since 

(6.2.9) 

Figure 1 1  gives the estimated result with only 4 averages. Considerable 
improvement can be seen in the frequency ranges where the output signal level 
is high, With only 4 averages, the cross spectrum and auto spectrum estimates begin 
to differ slightly where the output signal levels are high, and differ significantly where 
the spectral leakage dominates around the frequency range of the 240.5 Hz dip. The 
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Figure 10 Magnitude and phase of the true (solid line) and measured (dotted line) transfer 
function and coherence &. ( f ) .  

expected values can be approximated by sums. 

I ,*-I  I I ,r-1 

Figure 12 clearly shows how application of a Hanning data window signifi- 
cantly reduces the spectral leakage allowing the transfer function estimate to be 
accurately measured in the frequency range of the dip at  240 Hz. Note that the 
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Figure 11 Transfer function and coherence measurement with 4 averages show the effect 
of spectral leakage in the dip region. 

coherence drops slightly at the peak and dip frequencies due to the rapid system 
phase change there and the loss of resolution from the Hanning window. Clearly, 
the uti l i ty of a data window for transfer function measurements is seen in the 
improvement in the dip area and throughout the frequency response of the measured 
transfer function. 

We now consider the real-world effects of uncorrelated input and output 
noise leaking into our sensors and causing errors in our transfer function 
measurement. Sources of uncorrelated noise are, at the very least, the random 
error in the least significant bit of the A / D  process, but typically involve things 
like electromagnetic noise in amplifiers and intrinsic noise in transducers. A block 
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Figure 12 Application of a Hanning window gives a significant improvement i n  the dip 
region by reducing spectral leakage although coherence is reduced at the peak and dip regions. 

diagram of the transfer function method including measurement noise is seen in 
Figure 13. 

Consider the effect of the measurement noise on the estimated transfer 
function. Substituting U(.()  + N x ( . f )  for X ( f )  and V(. f ' )+ N j , ( . f ' )for Y( . f ' )i n  
Eq. (6.2.3) we have 

(6.2.11 )  

We simplify the result if we can assume that the measurement noises N.I-(,/')and 
N j * ( . f ' )are uncorrelated with each other and uncorrelated with the input signal C'( I') 
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Figure 13 The transfer function H ( f ’ ) measured using the input X ( , f )and output Y ( , f )  
which contain measurement noise. 

and the output signal V(.f’). 

(62.12) 

Equation (6.2.12) clearly shows a bias whenever the input SNR is low which causes 
the transfer function amplitude to be low. An overall random error is seen in 
Eq. (6.2.11 )  when the output SNR is low. The ordinary coherence function also 
shows a random effect which reduces the coherence to < I with uncorrelated input 
and output measurement noise. 

(6.2.13) 

Equation (6.2.13)clearly shows a breakdown in coherence whenever either the input, 
output, or both SNRs become small. Figure 14 below shows the effect of low input 
SNR (both U(f)and N . Y ( . ~ ’ )are ZMG signals with unity variance) on the measured 
transfer function and coherence. The 0 dB input SNR gives about a 3 dB bias 
to the transfer function magnitude, and an average coherence of about 0.5. The 
variances of the magnitude, phase, and coherence will be reduced if the number 
of averages in increased, but not the bias offsets. 

While the low input SNR in Figure 14 is arguably a nearly a worse case easily 
be avoided with good data acquisition practice, i t  serves us to shou the bias effect 
on the transfer function magnitude. If the output measurement noise is ZMG, 
we should only expect problems in frequency ranges where the output of H,,,(.f’) 
is low. Figure 15 shows the effect of unity variance ZMG output noise only for 
4 averages when a Hanning window is used on both input and output data. 

Clearly, one can easily see the loss of coherence and corresponding transfer 
function errors in the frequency region where the output of our system H,,(.f) 
is low compared to the output measurement noise with unity variance. Since the 
output noise for our example is uncorrelated with the excitation input UU). it is 
possible to partially circumvent the low output SNR by doing a large number of 
averages. Figure 16 below shows the result for 32 averages which shows a mild 
improvement for the regions around 250 Hz and 500 Hz, and an overall reduced 
spectral variance. 
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Figure 14 Transfer function magnitude, phase, and coherence for 4 averages, Hanning 
window, and 0 dB input SNR ( G ~ f ~ r ( f )  both have unity variance ZMG noise).and G~.~;v.\.(f) 

The situation depicted in Figure 16 is more typical of a real-world measurement 
scenario where the dynamic range of the system being measured exceeds the available 
SNR of the measurement system and environment. The errors in the transfer func- 
tion magnitude and phase are due primarily to the breakdown in coherence as will 
be seen below. While one could arduously average the cross and input autospectra 
for quite some time to reduce the errors in the low output frequency ranges, the 
best approach is usually to eliminate the source of the coherence losses. 

The variance of the transfer function error is usually modeled by considering 
the case of output measurement noise (since the input measurement noise case is 
more easily controlled), and considering the output SNR's impact on the real 
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Figure 15 Transfer function magnitude, phase, and coherence for an output measurement 
ZMG noise with unity variance using 4 spectral averages and a Hanning window. 

and imaginary parts of the transfer function (1)  using the diagram depicted in Figure 
17 below. 

The circle in Figure 17 represents the standard deviation for the transfer func- 
tion measurement which is a function of the number of averages nd, the inverse 
of the output SNR, and the true amplitude of the transfer function represented 
by the “H” in the figure. Recall that for output noise only, the transfer function 
can be written as an expected value. 

(6.2.14) 
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Figure 16 Transfer function magnitude, phase, and coherence for an output measurement 
ZMG noise with uni ty  variance using 32 spectral averages and a Hanning window. 

The expected value E { N j ? ( f ) IV ( f ) )is zero because for a ZMG input U ( f )into the 
system, which is uncorrelated with the output noise N j f f ) , the real and imaginary 
bins of both N y ( f )and V(f)are ZMG processes. This centers the error circle around 
the actual H(f)in Figure 17 where the radius of the circle is the standard deviation 
for the measurement. The mean magnitude-squared estimate for the transfer func- 
tion is 

(6.2.15) 
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Figure 17 Phasor diagram showing the magnitude and phase errors of the transfer func- 
tion due to the output SNR. 

The variance of the amplitude error for H.yJf’,) is therefore 

(6.2.16) 

where the factor of 1 / (2n, , )takes into account the estimation error for the division of 
two autosprectra averaged over nLi buffers. Clearly, GNJ.s,.(/)/GI , {J)  is the 
magnitude-squared of the noise-to-signal ratio (NSR). We can write the NSR in 
terms of ordinary coherence by observing 

and 

(6.2.18) 

allowing the magnitude-squared of the NSR to be written as 

(6.2.19) 

We can also write the ordinary coherence function in terms of the output SNR 
magni tude-squared 

(6.2.20) 
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The transfer function amplitude error standard deviation (the circle radius in Figure 
17j, assuming no input measurement noise is therefore 

(6.2.21) 

The transfer function phase error standard deviation (angle error in Figure 17), is 
found by an arctangent. 

(6.2.22) 

Clearly, as the coherence drops, the accuracy expected in magnitude and phase 
also decreases. Spectral averaging improves the variance of the coherence, but does 
not restore coherence. As a consequence, compensating poor coherence in  the 
transfer function input-output signals with increased spectral averaging has only 
a limited benefit. For example, where the coherence is below 0.1, the model estimated 
magnitude standard deviation is about 0.375 times the transfer function magnitude, 
or about -20 to -40 dB as is confirmed in Figure 16. The phase error standard 
deviation is only about 20 degrees and approaches 90 degrees as the coherence 
approaches zero. This too is confirmed in Figure 16 although some of the more 
significant phase jumps are due to wrapping of the phase angle to fit in the graph. 

For systems where the impulse response is effectively longer than the FFT 
buffers, a loss of coherence occurs because some of the transfer function output 
is due to input signal before the current input buffer, and therefore is incoherent 
due to the random nature of the noise. It can be seen in these cases that the spectral 
resolution of the FFTs is inadequate to precisely model the sharp system resonances. 
However, a more problematic feature is that the measured magnitude and phase of a 
randomly-excited transfer function will be inconsistent when the system impulse 
response is longer than the FFT buffers. If the FFT buffers cannot be increased, 
one solution is to use a chirped sinusoid as input, where the frequency sweep covers 
the entire measurement frequency range within a single FFT input buffer. 
Input-output coherence will be very high allowing a consistent measured transfer 
function, even if the spectral resolution of the FFT is less than optimal. The 
swept-sine technique also requires a tracking filter to insure that only the fundamen- 
tal of the sinusoid is used for the transfer function measurement. However, tracking 
harmonics of the input fundamental is the preferred technique to measuring har- 
monic distortion. Again, the bandwidth of the moving tracking filter determines 
the amount of time delay measurable for a particular frequency. Accurate measure- 
ments of real systems can require very slow frequency sweeps to observe all the 
transfer function dynamics. 

For applications where input and output noise are a serious problem, 
time-synchronous averaging of a periodic input-output signal can be used to 
increase SNR before the FFTs are computed. The time buffers are synchronized 
so that the input buffer recording starts at exactly the same place on the input signal 
waveform with each repetition of the input excitation. The simultaneously triggered 
and recorded input-output buffers may then be averaged in the time domain greatly 

TLFeBOOK



158 Chapter 6 

enhancing the input signal and its response in the output signal relative to outside 
non-synchronous noise waveforms which average to zero. This technique is very 
common in active sonar, radar, and ultrasonic imaging to suppress clutter and noise. 
However, the time-bandwidth relationship for linear time-invariant system transfer 
functions still requires that the time buffer length must be long enough to allow 
the desired frequency resolution (i.e. AJ’= 1 / 0.If the system represents a medium 
(such as in sonar) one must carefully consider time-bandwidth of any Doppler fre- 
quency shifts from moving objects or  changing system dynamics. Optimal detection 
of non-stationary systems may require a wide-band processing technique using 
wavelet analysis, rather than narrowband Fourier analysis. 

6.3 INTENSITY FIELD THEORY 

There are many useful applications of sensor technology in mapping the power flow 
from a field source, be it  electrical, magnetic, acoustic, or vibrational. Given the 
spatial power flow density, or intensity which has units of Watts per meter-squared, 
one can determine the total radiated power from a source by scanning and summing 
the intensity vectors over a closed surface. This is true even for field region where 
there are many interfering sources so long as the surface used for the integration 
encloses only the power source of interest. Recalling Gauss’s law, one obtains 
the total charge in a volume either by integrating the charge density over the volume 
or, by integrating the flux density over the surface enclosing the volume. Since it is 
generally much easier to scan a sensor system over a surface than throughout a 
volume, the flux field over the surface, and the sensor technologies necessary to 
measure it are of considerable interest. In electromagnetic theory, the power flux 
is known as the Pojwtirzg Vector, or S = E  x H. The cross product of the electric 
field vector E and the magnetic field vector H has units of Watts per meter-squared. 
A substantial amount of attention has been paid in the literature to acoustic intensity 
where the product of the acoustic pressure and particle velocity vector provides the 
power flux vector which, can be used with great utility in noise control engineering. 
The same is true the use of vibrational intensity in structural acoustics, however 
the structural intensity technique is somewhat difficult to measure in practice 
due to the many interfering vibrational components (shear, torsional, compressional 
waves, etc.). The Poynting vector in electromagnetic theory is of considerable 
interest in antenna design. Our presentation of intensity will be most detailed 
for acoustic intensity but, will also show continuity to structural and electromagnetic 
intensity field measurements. 

Point Sources and Plane Waves 

When the size of the radiating source is much smaller than the radiating wavelength, 
i t  is said to be a poirzt source. Point sources have the distinct characteristic of 
radiating power equally in all directions giving a spherical radiation pattern. At 
great distances with respect to wavelength from the source, the spherically-spreading 
wave in an area occupied by sensors can be thought of as nearly a plane wave. Inten- 
sity calculation for a plane wave is greatly simplified since the product of the poten- 
tial field (pressure, force, electric fields) and flux field (particle velocity, 
mechanical velocity, magnetic fields) gives the intensity magnitude. The vector direc- 
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tion of intensity depends only on the particle velocity for acoustic waves in fluids 
(gasses and liquids), but depends on the vector cross-product for vibrational waves 
in solid and electromagnetic waves. One can get an idea of the phase error for a 
plane wave assumption given a measurement region approximately the size of a 
wavelength at a distance R from the source as seen in Figure 18. 

The phase error is due to the distance error R - RcosO between the chord of the 
plane wave and the spherical wave. The phase error A 4  is simply 

(6.3.1) 

where % is the wavelength. A plot of this phase error in degrees is seen in Figure 19 
which clearly shows that for the measurement plane to have less than 1 degree phase 
error, the distance to the source should be more than about 100 wavelengths. For 

Figure 18 Over a wavelength-sized patch a distance R from the source, a plane-wave 
assumption introduces a phase error. 
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Figure 19 Phase error due to plane wave assumption as a function of distance from source 
and measurement aperture. 
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sound, the wavelength of 1 kHz is approximately 0.34 m and one would need to be 
over 30 m away from the source for the plane wave assumption to be accurate. Even 
at 40 kHz where many ultrasonic sonars for industrial robotics operate the plane 
wave region only exists beyond about a meter. The phase error scales with the size 
of the measurement area shown in Figure 19 in terms of wavelength. Clearly, 
the plane wave assumption is met for small apertures far from the source. Larger 
sensor array sizes must be farther away then smaller arrays for the plane wave 
assumption to be accurate. For multiple point sources, the radiation pattern is 
no longer spherical but the distance/aperture relationship for the plane wave 
assumption still holds. This issue of plane wave propagation will be revisited again 
in Sections 12.3 and 12.4 for field reconstruction and propagation modeling 
techniques. 

The point of discussing the plane wave assumption is to make clear the fact that 
one simply cannot say that the power is proportional to the square of the pressure, 
force, electric fields, etc., unless the measurement is captured with a small array 
many wavelengths from the source. This is a very important distinction between 
field theory and circuit theory where the wave propagation geometry is much less 
than a wavelength. Since we need to understand the field in more detail to see 
the signal processing application of field intensity measurement, we develop the wave 
equation for acoustic waves as this is the most straightforward approach compared 
to electric or vibration fields. 

Acoustic Field Theory 

To understand acoustic intensity one must first review the relationship between 
acoustic pressure and particle velocity. Derivation of the acoustic wave equation 
is fairly straightforward and highly useful in gaining insight into acoustic intensity 
and the physical information which can be extracted. The starting point for the wave 
equation derivation is usually the Equution of Stufc,which simply put, states that the 
change in pressure relative to density is a constant. In general, the pressure is a 
monic, but nonlinear function of fluid density (gasses will also be referred to here 
as “fluids”). However, the static pressure of the atmosphere at  sea level is about 
100,000 Pascals where 1 P a =  1 Nt/m2. An rms acoustic signal of 1 Pa is about 
94 dB, or about 100 times louder than normal speech, or  about as loud as an 
obnoxious old lawnmower. So even for fairly loud sounds, the ratio of acoustic press- 
ures to the static pressure is about I :  105 making the linearization assumption quite 
valid. However, for sound levels above 155 dB linear acoustics assumptions are gen- 
erally considered invalid and linear wave propagation is replaced by shock wave 
propagation theory. We can derive the equation of state for an ideal gas using 
Boyle’s law 

(6.3.2) 

where 1’ is the volume of 1 mole of fluid, R is 8310 J/kmole K, and T is the tem- 
perature in degrees Kelvin. The thermodynamics are assumed to be udicihutic, 
meaning that no heat flow occurs as a result of the acoustic pressure wave. This 
is reasonable for low heat conduction media such as air and the relatively long 
wavelengths and rapid pressure / temperature changes of audio band acoustics. 
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Taking the natural logarithm of Eq. (6.3.2) we have 

We examine the differential of the pressure with respect to volume by computing 

(6.3.4) 

Since the volume 1’ of one mole of fluid is the molecular mass M divided by the 
density p, dv ldp  = - M / p 2  and we can simplify the derivative of pressure with 
respect to volume as seen in Eq. (6.3.5). 

(6.3.5) 

The Linearized Acoustic Equution of State is simply 

(6.3.6) 

The parameter c2has the units of meters-squared per second-squared, so c‘ is taken as 
the speed of sound in the fluid. For small perturbations p =RT/  17, we can write the 
speed of sound in terms of the fluid’s physical parameters. 

(6.3.7) 

At a balmy temperature of 20°C (293°K) we find nitrogen ( M=28) to have a speed of 
349 m/sec, and oxygen (M=32) to have a speed of 326 m/sec. Assuming the atmos- 
phere is about 18% oxygen and almost all the rest nitrogen, we should expect the 
speed of sound in the atmosphere at  20°C to be around 345 m/sec, which is indeed 
the case. Note how the speed of sound in an ideal gas does not depend on static 
pressure since the density also changes with pressure. The main contributors to 
the acoustic wave speed (which can be measured with a little signal processing), 
are temperature, mass flow along the direction of sound propagation, and fluid pro- 
perties. Therefore, for intelligent sensor applications where temperature, fluid 
chemistry, and mass flow are properties of interest, measurement of sound speed 
can be an extremely important non-invasive observation technique. However, 
for extremely intense sound waves from explosions, sonic booms, or devices such 
as sirens where the sound pressure level exceeds approximately 155 dB, many other 
loss mechanisms become important and the “shock wave” speed significantly 
exceeds the linear wave speed of sound given by Eq. (6.3.7). 

The second step in deriving the acoustic wave equation is to apply Newton’s 
second law ( f=mu)  to the fluid in what has become known as Euler’s Equation. 
Consider a cylindrical “slug” of fluid with circular cross-sectional area S and length 
d . ~ .The force acting on the slug from the left is S p ( s )  while the net force acting 
on the slug from the right is S p ( s + d - ~ ) .With the positive s-direction pointing 
to the right, the net force on the slug resulting in an acceleration duldt to the right 
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of the mass Sd-x p is S[p(s)- p ( x +dx)] or 

p ( s )-p ( x + d.Y) ( Ip  du 
SdY = -SdY -= Sdxp - (6.33)

ci-Y (1.Y nt 

which simplifies to 

(6.3.9) 

The term duldt in Eq. (6.3.9) is simply the acoustic particle acceleration while U 

du/d,r is known as the convective acceleration due to flow in and out of the cylinder 
of fluid. When either the flow U is zero, or the spatial rate of change of flow d u / c l . ~  
is zero, Euler’s Equution is reduced to 

(6.3.10) 

The Continuitjq Equation expresses the effect of the spatial rate of change of 
velocity to the rate of change of density. Consider again our slug of fluid where 
we have a “snapshot” dt sec long where the matter flowing into the volume from 
the left is S~( .K)U ( X )  Jt  and the matter flowing out to the right is Sp(x + d x )  u ( s  + c1-y) 

dt.  If the matter entering our cylindrical volume is greater than the matter leaving, 
the mass of fluid will increase in our volume by apSd-y. 

(6.3.11) 

The change in density due to sound relative to the static density po is assumed small 
in Eq. (6.3.1 1 )  allowing a linearization in Eq. (6.3.12) 

(6.3.12) 

which is rearranged to give the standard form of the continuity equation. 

(6.3.13) 

The Acoustic. Wave Equution is derived by time differentiating the continuity 
equation in (6.3.13), taking a spatial derivitive of Euler’s equation in (6.3.10), 
and equating the terms (d%/dx)dt.  

(6.3.14) 

Acoustic Intensity 

For a plane wave, the solution of the one-dimensional wave equation in cartesian 
coordinates is well-known to be of the form 
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where for positive moving time t (the causal world) the first term in Eq. (6.3.15) is an 
outgoing wave moving in the positive x-direction and the second term is incoming. 
The parameter k is radian frequency over wave speed m / c ,  which can also be 
expressed as an inverse wavelength 2nlL. For an outgoing plane wave in free space 
many wavelengths from the source, we can write the velocity using Euler's equation. 

-1 ap(X,1 )  1 
U ( X ,  t )  = -

p s____ dt = -p(x, t )  (6.3.16) 
ax PC 

Since the pressure and velocity are in phase and only differ by a constant, one can say 
under these strict fur-Jield conditions that the time-averaged acoustic intensity is 

The specific acoustic impedanceplu of a plane wave is simply pc. However, for 
cases where the intensity sensor is closer to the source, the pressure and velocity are 
not in phase and accurate intensity measurement requires both a velocity and a press- 
ure measurement. 

(6.3.18) 

Consider a finite-sized spherical source with radius ro pulsating with velocity 
uoP" to produce a spherically-spreading sinusoidal wave in an infinite fluid medium. 
From the LaPlacian in spherical coordinates it  is well-known that the solution of the 
wave equation for an outgoing wave in the radial direction r iswhere A is some 
amplitude constant jet to be determined. Again, using Euler's equation the particle 
velocity is found. 

(6.3.19) 

At the surface of the pulsating sphere r = ro, the velocity is uod"" and it can be shown 
that the amplitude A is complex. 

(6.3.20) 

The time-averaged acoustic intensity is simply the product of the pressure and vel- 
ocity conjugate replacing the complex exponentials by their expected value of 
112 for real waveforms. If the amplitude A is given as an rms value, the factor 
of 1/2  is dropped. 

( I @ ) ) ,= -- 1 +- (6.3.21)
r2' A ' 22pc ( 9 

Equation (6.3.21) shows that for distances many wavelengths from the source 
(kr>>l),the intensity is approximately the pressure amplitude squared divided 
by 2pc. However, in regions close to the source (kr<< I ) ,  the intensity is quite dif- 
ferent and more complicated. This complication is particularly important when 
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one is attempting to scan a surface enclosing the source(s) to determine the radiated 
power. One must compute the total field intensity and use the real part to determine 
the total radiated power by a source. Figure 20 shows the magnitude and phase 
of the intensity as a function of source distance. It can be seen that inside a few 
tens of wavelengths we have an acoustic neur-ekdwith non-plane wave propagation, 
and beyond an acousticfurJl’eki where one has mainly plane wave propagation. The 
consequence of the non-zero phase of the intensity in the nearfield is stored energy 
or reuctive intensity in the field immediately around the source. The propagating 
part of the field is known as the uctive interzsitji and contains the real part of 
the full intensity field. 

Figure 21 plots the radiation impedance for the source and shows a “mass 
load” in the nearfield consistent with the reactive intensity as well as the spherical 
wavefront curvature near the source. Interestingly, the range where the nearfield 
and farfield meet, say around 20 wavelengths, does not depend on the size of 
the source so long as the source is radiating as a monopole (pulsating sphere). 
Real-world noise sources such as internal combustion engines or  industrial venti- 
lation systems hdve many “monopole” sources with varying amplitudes and phases 
all radiating at the same frequencies to make a very complex radiation pattern. 
Scanning the farfield radiated pressure (100s of wavelengths away) to integrate 
p 2 / 2 p c  for the total radiated power is technically correct but very impractical. 
Scanning closer to the noise source and computing the full complex acoustic intensity 
provides tremendous insight into the physical noise mechanisms (including machin- 
ery health) as well as allowing the real part to be integrated for the total radiated 
power. 
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Figure 20 Intensity magnitude and phase as a function of distance for a 1-0 = j. source 
pulsating with a velocity of 10 cm/sec. 
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Figure 21 Radiation impedance of a spherical wave as a function of distance from the 
source. 

A great deal of consistency can be seen in comparing Figures 19, 20, and 21 
where the acoustic nearfield and acoustic farfield can be seen to meet in the range 
of 10 to 100 wavelengths from the source. When the wavefront has a spherical cur- 
vature the intensity indicates energy storage in the field and the wave impedance 
clearly shows a “mass-like” component. Note how the phase of the intensity field 
is also the phase of the wave impedance. If a sensor design places one conveniently 
in the farfield, great simplifications can be made. But, if nearfield measurements 
must be made or are desirable, techniques such as intensity are invaluable. The con- 
servation of energy corollary governing all systems is seen “verbally” in Eq. (6.3.22).( ( )

( 
Power)  Rate Of 

+ Out Of + Energy Storage = 0 (6.3.22) 
Sources Surface In Field 

If the radiation is steady-state and the medium passive, the rate of energy storage 
eventually settles to zero and the energy radiating out from the surface enclosing 
the sources is equal to the radiated energy of the sources. This is also well-known 
in field theory as Gauss’s Law. Intelligent adaptive sensor systems can exploit 
the physical aspects of the waves they are measuring to determine the accuracy 
and/or  validity of the measurement being made. 

Structural Intensity 

Structural acoustics is a very complicated discipline associated with the generation 
and propagation of force waves in solids, beams, shells, etc. A complete treatment 
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of structural intensity is well beyond the scope of this and many other books. 
However, from the perspective of intelligent sensor and control system design, it 
is important for us to contrast the differences between structural and fluid waves 
towards the goal of understanding the sensor system signal processing requirements. 
There are three main types of waves in solids: compressional, or “p-waves” where the 
force and propagation directions are aligned together; transverse shear, or 
“s-waves” where a moment force and shear force are orthogonal to the propagation 
direction; and torsional shear, where a twisting motion has a shear force aligned with 
the rotation angle 0 and is orthogonal to the propagation of the wave. There are also 
numerous composite forces such as combinations of p ,  s, and torsional waves in 
shells and other complex structural elements. 

The are some simplified structural elements often referred to in textbooks 
which tend to have one dominant type of wave. For example, “rod” vibration refers 
to a long stiff element with compressional waves propagating end-to-end like in the 
valves of a standard internal combustion engine. “String” vibration refers to 
mass-tension transverse vibration such as the strings of a guitar or the cables of 
a suspension bridge. “Shaft” vibration refers to torsional twisting of a drive shaft 
connecting gears, motors, etc. Rod, string, and shaft vibrations all have a second 
order wave equation much like the acoustic wave equation where the wave speed 
is constant for all frequencies and the solution is in the form of sines and cosines. 
“Beam” vibration refers to a long element with transverse bending shear vibrations 
such as a cantilever. “Plate” vibration refers to bending vibrations in two 
dimensions. Beams and plates have both shear and moment forces requiring a 
4t h-order wave equation, giving a wave speed which increases with increasing 
frequency, and a solution in the form of sines, cosines, and hyperbolic sines and 
hyperbolic cosines. “Shell” vibration is even more complex where the bending 
s-waves are coupled into compressional p-waves. 

These “textbook” structural models can be analytically solved (or numerically 
using finite element software) to give natural frequencies, or  modes, of vibration. The 
modes can be seen as the “energy storage” part of the consevation of energy 
corollary in Eq. (6.3.22) making intensity measurement essential to measurement 
of the vibration strength of the internal sources. When dealing with fluid-loaded 
structures such as pipes and vessels, strong coupling between the “supersonic” 
vibration modes (vibrations with wave speeds faster than the fluid wave speed) will 
transmit most of their energy to the fluid while the non-radiating “subsonic” remain 
in the structure dominating the remaining vibrations there. One can observe the net 
radiated power using a combination of modal filtering and structural intensity 
integration. Real-world structures are far more complex than the simplified 
“textbook” structural elements due to effect of holes, bolts, welds, ribs, etc. These 
discontinuities in structural impedance tend to scatter modes. For example, a 
low frequency bending mode which is subsonic (non-radiating) can spillover its 
stored energy into a supersonic mode at  the discontinuity in the structure. Not 
surprisingly, required structural elements such as ribs, bolts, rivets, and weld seams 
tend to be radiated noise “hot spots” on the structure. The modal scattering at dis- 
continuities also contributes to high dynamic stress making the hot spots susceptible 
to fatigue cracks, corrosion, and eventual structural failure. The vibration and inten- 
sity response of the structure will change as things like fatigue and corrosion reduce 
the stiffness of the structural elements. Therefore, in theory at least, an intelligent 
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sensor monitoring system can detect signs of impending structural failure from the 
vibrational signature in time to save lives and huge sums of money. 

P-waves in solids are much the same as acoustic waves except they can have 
three components in three dimensions. Each component has the force and propa- 
gation direction on the same axis. In Cartesian coordinates, each p-wave component 
is orthogonal with respect to the other components. For the direction unit vectors a,, 
a)., and a,, the p-wave time averaged intensity for a sinusoidal p-wave is simply 

where the factor of 1 /2  can be dropped if rms values are used for the compressional 
forces and velocity conjugates. Generally, p-waves in solids are extremely fast com- 
pared to s-waves and most acoustic waves. This is because solids are generally quite 
stiff (hard) allowing the compressional force to be transmitted to great depths into 
the solid amost instantly. Torsional intensity is found in much the same manner 
except the shear force velocity in the 6 direction produce an intensity vector in 
the orthogonal direction. 

Bending waves on lossless beams, or s-waves, there are two kinds of restoring 
forces, shear and moment, and two kinds of inertial forces, transverse and rotary 
mass acceleration. Combining all forces (neglecting damping), we have a forth-order 
wave equation 

(6.3.24) 

where E is Young’s modulus, I is the moment of inertia, p is the mass density, and 
S is the cross-sectional area. The transverse vibration is in the y direction and 
the wave propagation is along the beam in the x direction. To compute the intensity, 
one needs to measure the shear force Fs = EI(a341/as3), moment force 
M S= EZ($y/a.u2), transverse velocity us= (ay/&), and rotary velocity R‘= 
( $ ~ ~ / 8 x i l y ) .Again, assuming peak values for force and velocity and a sinusoidal 
s-wave, the bending wave time-averaged intensity is 

(6.3.25) 

where * indicates a complex conjugate of the time varying part of the bending wave 
only. The spatial derivatives needed for the shear and moment forces are generally 
measured assuming EI and using a small array of accelerometers and finite difference 
approximations, where the displacement is found by integrating the acceleration 
twice with respect to time (multiply by - l /w2) .  However, other techniques exist 
such as using strain gauges or lasers to measure the bending action. Bending wave 
intensity, while quite useful for separating propagating power from the stored energy 
in standing wave fields, is generally quite difficult to measure accurately due to trans- 
ducer response errors and the mixture of various waves always present in structures. 
Intensity measurements in plates and shells are even more tedious, but likely to be an 
important advanced sensor technique to be developed in the future. 

TLFeBOOK



168 Chapter 6 

Electromagnetic Intensity 

Electromagnetic intensity is quite similar to acoustic intensity except that the power 
flux is defined as the curl of the electric and magnetic fields, S = E  x M. While 
the acoustic pressure is a scalar, the electric field is a full vector in three dimensions 
as well as the magnetic field. In simplest terms, if the electric field is pointing upwards 
and the magnetic field is pointing to the right, the power flux is straight ahead. Meas- 
urement of the electric field simply requires emplacement of unshielded conductors 
in the field and measuring the voltage differences relative to a ground point. 
The E field is expressed in Volts per meter (V/m) and can be decomposed into 
orthogonal U , ,  U , ,  and U: components by arranging three antennae separated along 
Cartesian axes a finite distance with the ground point at  the origin. The djwunzic. 
magnetic field H can be measured using a simple solenoid coil of wire on each axis 
of interest. Note that static magnetic fields require a flux-gate magnetometer which 
measures a static offset in the coils hysteresis curve to determine the net static field. 
Flux-gate magnetometers are quite commonly used as electronic compasses. Three 
simple coils arranged orthogonally can be used to produce a voltage proportional 
to the time derivative of the magnetic flux CD along each of three orthogonal axes. 
If  the number of turns in the coil is N ,  the electromotive force, or  emf voltage will 
be v =  -N dCD/dt, where @=pHS,  S being the cross-sectional area and 1.1 the per- 
meability of the medium inside the coil ( p  for air is about 4n x 10-7 Henrys 
per meter). Unlike a electric field sensor, the coil will not be sensitive to static 
magnetic fields. For Cartesian coordinates, the curl of the electromagnetic field 
can be written as a determinant. 

(6.3.26) 

which can be written out in detail for the time-averaged intensity assuming a 
sinusoidal wave. 

(6.3.27) 

The electromagnetic intensity measurement provides the power flux in Watts 
per meter-squared at the measurement point, and if scanned, the closed surface inte- 
gral can provide the net power radiation in Watts. The real part of the intensity can 
be used to avoid the nearfield effects demonstrated for the acoustic case which still 
hold geometrically for electromagnetic waves. Clearly, the nearfield for electromag- 
netic waves can extend for enormous distances depending on frequency. The speed 
of light is 3 x 10' m / s  giving a 100 MHz signal a wavelength of 3 m. For a modern 
computer or  other digital consumer electronic device, electromagnetic radiation 
can interfere with radio communications, aircraft navigation signals, and the oper- 
ation of digital electronics. For hand-held cellular telephones, there can be potential 
health problems with the transmitter being in very close proximity to the head and 
brain, although these problems are extremely difficult to get objective research data 
due to the varying reaction of animal tissues to electromagnetic fields. However, 
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for most frequencies of concern, a simple field voltage reading is not sufficient to 
produce an accurate measure of net power radiation in the farfield. 

6.4 INTENSITY DISPLAY AND MEASUREMENT TECHNIQUES 

The measurement of intensity can involve separate measurement of the potential and 
kinetic field components with specialized sensors provide sensor technologies are 
available which provide good field component separation. In acoustics, velocity 
measurements in air are particularly difficult. Typically one indirectly measures 
the acoustic particle velocity by estimating the gradient of the acoustic pressure from 
a finite difference approximation using two pressure measurements. The gradient 
estimation and intensity computation when done in the frequency domain can 
be approximated using a simple cross-spectrum measurement, which is why this 
technique is presented here. While we will concentrate on the derivation of the acous- 
tic intensity using cross-spectral techniques here, one could also apply the technique 
to estimating the Poynting vector using only electric field sensors. We also present 
the structural intensity technique for basic compressional and shear waves in beams. 
Structural intensity measurement in shells and complicated structures are the subject 
of current acoustics research and are beyond the scope of this book. 

We begin by deriving acoustic intensity and showing its relation to the cross 
spectrum when only pressure sensors are used. An example is provided using an 
acoustic dipole to show the complete field reconstruction possible from an intensity 
scan. Following the well-established theory of acoustic intensity in air, we briefly 
show the intensity technique in the frequency domain for simple vibrations in beams. 
Finally we will very briefly explore the Poynting vector field measurement and why 
intensity field measurements are important to adaptive signal processing. 

Graphical Display of the Acoustic Dipole 

A dipole is defined as a source which is composed of two distinct closely-spaced 
sources, or “monopoles”, of differing phases. If the phases are identical and the 
spacing much less than a wavelength, the two identical sources can be seen to couple 
together into a single monopole. For simplicity, we consider the two sources to be of 
equal strength, opposite phase, and of small size with respect to wavelength ( r o  << 1.. 
therefore kro << 1). The pressure amplitude factor A in Eq. (6.3.20) can be simplified 
to A =.jkpcQ/4n, where Q = 47crO2uo is the source strength, or volume velocity in 
m’/sec. Figure 21 shows the pressure response in Pascals for two opposite phased 
0.1 m diameter spherical sources separated by 1 m and radiating 171.5 Hz with 
1 mm peak surface displacement. The sources are located at  J’ = 0 and .Y = f 0.5 
m and the net pressure field is found from summing the individual point source fields. 

The classic dipole “figure-8” directivity pattern can be seen in Figure 22 by 
observing the zero pressure line along the x = 0 axis where one expects the pressures 
from the two opposite-phased sources to sum to zero. For the assumed sound speed 
of 343 m/sec, the sources are separated by exactly 112 ;I so no cancellation occurs 
along they = 0 axis. Figure 23 shows the pressure response at  343 Hz giving ”4-leaf 
clover” directivity pattern. 

The velocity field of a dipole is also interesting. Using Eq. (6.3.19). we can 
calculate the velocity field of each source as a function of distance. In the .Y - 1’ 
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Figure 22 Sound pressure field for a 171.5 Hz opposite-phased acoustic dipole separated 
by 1m on the y = 0 axis. 

Figure 23 At 343Hz, a 4-lobe directivity pattern appears due to the additional cancel- 
lation along the y = 0 axis. 

plane of the dipole, the velocity field is decomposed into x and y components for each 
source and then summed according to the phase between the sources. The resulting 
field is displayed using a vector field plot as seen in Figure 24 for 171.5 Hz. For 
each of the measured field points, the direction of the vectors indicates the particle 
velocity direction, and the length of the vectors indicates the relative magnitude 
of the particle velocity. For a 1 mm peak displacement of the 10 cm diameter 
spherical sources at 171.5 Hz, the surface velocity is 1.078 m/sec and the Q is 
0.0338 m3/sec. The vector field in Figure 24 is scaled for the best display and, like 
the pressure field in Figure 23, represents a “snapshot” of the velocity field at 
one time instant. 
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Figure 24 Instantaneous particle velocity of the 171.5Hz dipole clearly showing elliptical 
mntinn 2lnncT the nil11 g x i c  nf Y = 0 

One can compute, point by point, the instantaneous intensity I ( . Y J ! , I )= p ( s , ~ ~ , t )  
U ( . Y , J ! , I ) .  However, the direction of real power flow is not always the same as the 
velocity because both pressure and velocity are complex, and because the product 
of a negative velocity and negative pressure yields a positive instantaneous intensity. 
In Figure 25 we purposely change the sign of the source intensity field for the 
(+0.5,0) source to show the details of the dipole field. Figure 26 shows another 
representation of the field using time-averaged superposition. 

Neither Figure 25 nor Figure 26 are technically correct representations of the 
actual intensity field! However, they can be seen as quite useful in describing the 
power flow between the two sources. It is expected that the instantaneous intensity 
field in Figure 25 would be zero where either the pressure or velocity is zero, 
but this can be misleading since the waves are propagating outward from the sources. 
The time-averaged intensity is found for sinusoidal excitation using ( I ( -Y,JV))~= 'A 
~ ( - Y , J ~ , I )u*(s , y , f ) ,where the real part represents the active intensity. Computing 
the time-averaged intensity for each source in the dipole and then superpositioning 
them in opposite phase yields the vector plot in Figure 26, which is physically intuit- 
ive since one can visualize the arrows oscillating back and forth with the phases of the 
two sources. However, Figure 26, like Figure 25, is misleading since it  is neither a 
true time-average field nor does power actually flow into the source at .Y = ( + 0.5.0). 
To graphically depict the dipole intensity field, we first need a model for the total 
pressure and velocity fields in the radial direction for the dipole. I t  is straightforward 
to show that for a separation distance d o n  the J' axis symmetric about the origin the 
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Figure 25 Instantaneous intensity for the 171.5 Hz dipole (vector lengths are on a 
logarithmic scale to show detail). 
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Figure 26 Superposition of the opposite-phased time-averaged intensities of the two 
sources in the 17 1.5 H z  dipole. 
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total pressure field is 

(6.4.1) 

where r =(s2+ y2)' and 0 is measured counterclockwise from the positive x-axis. 
The radial component of velocity for the complete dipole field is 

(6.4.2) 

Finally, the time averaged intensity for the dipole field is found using ( l ( r , Q)),  = 54 
p(r,  0, t )  u*(r, 0, t )  as seen in Eq. (6.4.3). We would drop the factor of 1 / 2  for 
rms values ofp(r ,  0, t )  and U(Y, 0, t ) rather than peak values. 

(6.4.3) 

A vector plot of the correct time-averaged dipole intensity along the radial 
direction at  171.5 Hz is seen in Figure 27. We do not include the circumferential 
direction intensity component since its contribution to radiated power on a spherical 
surface is zero. Figure 27 correctly shows radiated power from both sources and a 
null axis along s = O  corresponding to the zero pressure axis seen in Figure 22 
and elliptical particle velocities in Figure 24. 

Figure 27 Radial component only of the real part of the acoustic intensity of the 171.5Hz 
dipole. 
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It is important to understand the graphical display techniques in order to 
obtain correct physical insight into the radiated fields being measured. The vector 
plots in Figures 24 through 27 are typically generated from very large data sets which 
require significant resources to gather engineering-wise. Even though one is well 
inside the nearfield, the net radiated power can be estimated by integrating the inten- 
sity over a surface enclosing the sources of interest. Any other noise sources outside 
the enclosing scan surface will not contribute to the radiated power measurements. 
This surface is conveniently chosen to be a constant coordinate surface such as 
a sphere (for radial intensity measurements) or a rectangular box (for S-J-: intensity 
component measurements). The intensity field itself can be displayed creatively (such 
as in Figure 25 and 27) to gain insight into the physical processes at work. Intensity 
field measurements can also be used as a diagnostic and preventative maintenance 
tool to detect changes in systems and structures due to damage. 

Calculation of Acoustic Intensity From Normalized Spectral Density 

Given spectral measurements of the field at the points of interest, the time-averaged 
intensity can be calculated directly from the measured spectra. However, we need 
to be careful to handle spectral density properly. Recall that twice the bin magnitude 
for the normalized discrete Fourier transform (NDFT, or DFT divided by the size of 
the transform N) with real data input gives the peak amplitude at the corresponding 
bin frequency. Therefore, the square root of 2 times the NDFT bin amplitude gives a 
rms value at the corresponding bin frequency. When the necessary field components 
are measurable directly, the calibrated rms bin values can be used directly in the field 
calculations resulting in vector displays such as that in Figure 27. When spatial 
definitives are required to compute field components only indirectly observable (say 
via pressure or structural acceleration sensors only), some interesting spectral cal- 
culations can be done. For the acoustic intensity case, two pressure sensors signals 
pI(to) and p2(to)are separated by a distance Ar, where p 2 ( w ) is in the more positive 
position. From Euler's equation given here in Eq. (6.3.10), the velocity can be esti- 
mated at a position inbetween the two sensors from the pressure by using a spatial 
derivative finite difference approximation. 

(6.4.4) 

The pressure sensors need to be close together for the finite difference approxi- 
mation to be accurate, but if they are too close, the finite difference will be dominated 
by residual noise since the sensor signals will be nearly identical. Somewhere between 
about 1 / 16 and 1 / 4  of a wavelength spacing can be seen as a near optimum range. 
The pressure used in the intensity calculation is estimated at the center of the sensors 
by a simple average. The rms intensity is simply 

(6.4.5) 
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Noting that both pl (w)  and pz(co) have real and imaginary components, i.e. 
p2(co)= p f ( w )  + j p i ( o ) ,  the real part of the intensity, or uctive irztensitj’, is 

(6.4.6) 

which represents the propagating power in the field in the units of Watts per 
meter-squared (W/m2). The active intensity can be very conveniently calculated 

G ’ ‘ ( ( ! I )using the negative of the imaginary part of the cross-spectrum = 

(P 1 * ( 4 P 2 ( 4  t 

(6.4.7) 

The imaginary part of the intensity, or reactive intensit??depicts the stored 
energy in the field and is given in Eq. (6.4.8). 

(6.4.8) 

The reactive intensity provides a measure of the stored energy in the field, such 
as the standing wave field in a duct or the nearfield of a dipole. Since the energy 
stored in the field eventually is coupled to the radiating part of the field, the transient 
response of a noise source can be significantly affected by the reactive intensity. For 
example, a loudspeaker in a rigid-walled enclosure with a small opening radiating 
sound to a free space would reproduce a steady-state sinusoid fine, but be very poor 
for speech intelligibility. The standing-waves inside the enclosure would store a sig- 
nificant part of the loudspeaker sound and re-radiate it  as the modes decay causing 
a words to be reverberated over seconds of time. The nearfields of active sources 
for sonar and radar can also have their impulse responses affected by the stored 
energy in the reactive intensity field. The term nearfield generally refers to any 
component of the field in the vicinity of the source which does not propagate to 
the far-field. This could be the evanescent part of the velocity field as well as 
the “circulating” components of the pressure field which propagate around the 
source rather than away from it. One can consider the nearfield as an energy storage 
mechanism which can effect the farfield transient response of a transmitter source. 

Calculation of Structural Intensity for Compressional and Bending Waves 

Calculation of structural intensity most commonly uses finite-differences to estimate 
the force and velocity from spatial acceleration measurements and known physical 
parameters of the structure material, such as Young’s modulus E and the moment 
of inertia I .  Structural vibrations are enormously complex due to the presence of 
compressional, shear, and torsional vibrations in three dimensions. At dis-
continuities (edges, holes, joints, welds, etc.) each kind of wave can couple energy 
into any of the others. The finite size of a structure leads to spatial modes of 
vibration, which with low damping are dominated by one frequency each, and again 
can couple to any other mode at an impedance discontinuity. Measuremcnt of struc- 
tural vibration power is not only important from a noisei’jibration control point of 
view, but also from a fatigue monitoring and prognosis \view. Controlling the dis-
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sipation of fatigue causing vibrations in a structure will have important economical 
implications for every thing from vehicles to high performance industrial equipment. 
The technical issues with structural intensity measurement are analogous to the 
acoustic case in that one wants the sensors as close together as possible for accurate 
finite difference approximations, yet far enough apart to yield high signal-to-noise 
ratios in the finite difference approximations. For simplification one generally 
assumes plane waves, and separation of say, shear and compressional waves involves 
complicated sensor arrays for wavenumber separation through the use of 
wavenumber filtering and “beamforming”, discussed later in this text. We note that 
newer sensor technologies in the area of laser processing and micro-machined 
strain-gauges offer the potential to eliminate the finite difference approximations, 
and the associated systematic errors, 

The type of sensor preferred for a particular vibration measurement depends 
on the frequency range of interest, wave speed, and effect of the sensor mass on 
the vibration field. At very low frequencies (say below the audio range of around 
20 Hz), displacement sensing is preferred because velocity is quite small and accel- 
eration even smaller (they scale as jo and respectively). Typical very low --(I?, 

frequency/static displacement sensors would be capacitive or magnetic proximity 
transducers, strain gauges, or optical sensors. At medium to low frequencies, vel- 
ocity sensors such as geophones are preferred since a moving coil in a magnetic field 
can be made to have very high voltage sensitivity to a velocity excitation in the range 
of a few Hz to several hundred Hz. Above a few hundred Hz, accelerometers are 
preferred due to their high sensitivities and low cost. An accelerometer is essentially 
a strain gauge with a known “proof’ mass attached to one side. The known mass 
produces a traceable stress on the accelerometer material when accelerated along 
the common axis of the accelerometer material and mass. The accelerometer 
material is usually a piezoelectric material such as natural quartz or the man-made 
lead-zirconate-titanate (PZT) ceramic. These materials produce a small voltage 
potential when mechanical stress in applied. In recent years, a new class of acceler- 
ometer has become widely available making use of micro-machined strain gauge 
technologies. Micromachining (accomplished chemically rather than with 
micro-milling) allows very robust and low cost manufacture of sensors with precise 
properties and integrated signal conditioning electronics. For light weight structures, 
the mass of an attached sensor is very problematic due to its effect of the vibration 
field. For light weight structural vibration measurement, non-contact laser 
vibrometers are the most common sensors. 

Fundamental to all intensity measurement is the need to simultaneously 
measure force and velocity at a field position. The preferred approach is to employ 
a sensor which directly measures force and another sensor which directly measures 
velocity. In heavy structures, velocity is easily observed directly using a geophone, 
by a simple time integration (low pass filter with 6 dB/octave rolloff) of acceleration, 
or by a time differentiation (high pass filter with 6 dBloctave rollup) of measured 
displacement. Force measurement can be done with a direct strain gauge measure- 
ment which is unusually a thin metal film attached under tension so that its electrical 
resistance changes with the resulting strain in the structure. However, an easier 
approach to force measurement is to use the known material properties of the struc- 
ture to relate the spatial difference in, say, acceleration. to the force. For example. 
Young’s modulus E for a particular material is known (measured a priori) and 
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has units of Nt/m' (often listed as pounds per square-inch - psi) or the ratio of 
longitudal stress (Nt/m2) over longitudal strain (change in length over initial length). 
Given two accelerometers spaced by A meters, the difference in acceleration spectra, 
A?(to) - A , (m) ,where point 2 is further along the positive .\--axis than point 1 ,  can be 
multiplied by - 1 / ( A w  ') to give the longitudal strain spectrum. The structure 
cross-sectional area S times Young's modulus times the longitudal strain spectrum 
gives the compressional force spectrum, or  p-force wave. 

The compressional force spectrum in Eq. (6.4.9) represents the force betuTeen the t w u  
accelerometers oriented along the structure (usually referred to as a rod for this type 
of structural vibration). The velocity is simply the average of the two estimated 
velocities from the acceleration signals. 

(6.4.10) 

The rms compressional wave intensity in a rod is therefore 

(6.4.1 1 )  

where the factor of 1 / 2  can be dropped if rms calibrated acceleration spectra are used 
(multiply by 2). Equation (6.4.1 1 )  provides a one-dimensional intensity p-wave 
which can be integrated into the 3-dimensional compressional time-averaged inten- 
sity for solids in Eq. (6.3.23) 

The largest source of error in Eq. (6.4.1 I )  comes from the acceleration differ- 
ences in Eq. (6.4.9). which can be near zero for long w a \ ~ l e n t h s  and short acceler- 
ometer separations. The compressional wave speed can be quite fast and is 
calculated by the square-root of Young's modulus divided by density. For a given 
steel. if E= 50 x 10" and density p=500 kg/m', the compressional w a k ~speed 
is 31,623 m/sec, or  nearly 10 times the speed of sound in air. Therefore. the 
accelerometers need to be significantly separated to provide good signal to noise 
ratio (SNR) for the intensity measurement. 

Bending wave intensity follows from Eq. (6.3.25) where the various coni- 
ponents of shear are calculated using finite difference approximations for the 
required spatial derivatives. The time-averaged bending wave intensity in ii struc-
tural beam is seen to be 

(6.11.12) 

where again, the factor of 1 / 2  may be dropped if rms spectra are used Typically one 
would use accelerometers to measure the beam response to bending waves where 
the displacement jf.\-)is - 1 /w' times the acceleration spectra. One could estimate 
the spatial derivatives using a 5-element linear array of accelerometers each spaced 
a distance A meters apart, to give symmetric spatial derivati\,e estimates about 
the middle accelerometer, A3(co).Consider the accelerometers to be spaced such t h a t  
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,45((0)is more positive on the x-axis than A l ( ( o ) ,etc. Using standard finite difference 
approximations for the spatial derivatives, the bending (shear wakve) rms intensit)! is 

(6.4.13) 

N here the accelerations A , ( w )are written as .4,, i =  1,3,3,4,5; to save space. Clearlqr, 
the bending w;ive intensity error is significant by finite difference approximation 
errors which happen if the sensors are u.idely spaced ( A  must always be less than 
E. 3), and by S N R  if A is too small. The bending \vave wa\relength for 21 beam kvith 
moment of inertia I ,  density p,  cross-sectional area S ,  Young's niodulus E. and fre- 
quency is seen in Eq. (6.4.14). ( 1 1 ,  

(6.4.13 )  

Clearlqr, the bending ura\,elength is niuch slower than the compressional U a c e .  But  
ecen more interesting. is that the bending wave speed can be seen its ;I function 
of frequency to be slowcr at low frequencies than at  higher frequencies. This is 
because ;i given beam of fixed dinlensions (moment of inertia) is stiffer to shorter 
\vavelengths that it is to longer wavelengths. While measurement of vibrational 
power flow (bending or compressional) is of itself valuable, changes in vibrational 
power flow and wavelength due to material changes could be of paramount import- 
ance for monitoring structural integrity and prediction of material fatigue. 

Calculation of The Poynting Vector 

Electromagnetic sensors can rather easily detect the electric field with a simple colt- 
age probe and the alternating magnetic field with it simple wire coil. The static 
magnctic field requires ii detrice known iis ii flux-gate magnetometer, where filtering 
ii nieasurcd hqsteresis response of ii coil provides an indirect measurement of 
the static magnetic field. For strong magnetic fields in \w-y close proximity to 
magnetic sources, 21 Hall effect transistor can be used. We are interested here in 
the process o f  measuring electrical power flow in fields using the intensit) technique, 
or Poj'nting Fa tor .  While one could use finite difference approximations czrith either 
electric or magnetic field sensors, i t  is much simpler to directly observe the field using 
ii directional \ oltage probe and search coil. The electric field is nieasured in  \ olts per 
meter and can be done using ii pair of probes, each probe exposing a small unshielded 
detector t o  the field at ii known position. Probe kroltagc differcnces along each axis of' 
ii c;i r tesiii 17 coordi n ;I t e sq'ste111norm ii I ized by t he sep a ra t i on d i st ii nces pro v i de t he 
3-dimensional electric field vector, expressed ;ISii spectrum kvhere each bin h a s  thrce 
dircctioniil components. This information alone is sufficient to resolkte the direction 
o f  \ b ; i \ ~  propagation with surprising accuracy. The time deri\fative of the magnetic 
field can be indirectly estimated from the curl of the electric field a s  seen in  Eq. 
(6 .3 .27) ,  allowing the magnetic field to be estimated from spatial dcrivati\w o f  
the electric field. However, the presence of ;I solenoid coil is not problematic for 
the tield mtxisurement (back ernf from currents i n  the coil may affect the field to 
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be measured), a direct magnetic field measurement can be made 

(6.4.15) 

where the solenoid has N circular loops with average cross sectional area A .  The 
parameter ~ ( C O )in Eq. (6.4.15) is the voltage produced by the coil due to Farrady’s 
law. The simple an effective use of coils to measure magnetic field is preferable 
due to the ability to detect very weak fields, while finite-difference approximations 
to the electric field would likely produce very low SNR. Also, for a given level 
of magnetic field strength, one can see from Eq. (6.4.15) that a large coil with a 
large number of turns could produce substantial voltage for easy detection by a 
sensor system. However, too many turns in the coil will produce too much 
inductance for easy detection of high frequencies, Direct measurement of electric 
and magnetic fields allows one to compute the electromagnetic intensity using 
Eq. (6.3.27) with spectral products in the frequency domain. 

6.5 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

Most applications of the Fourier transform are for the purposes of steady-state 
sinusoidal signal detection and analysis, for which, the Fourier transform provides 
an enhancement relative to random noise. This is because of the orthogonality 
of sinusoids of different frequencies in the frequency domain. Provided that the time 
domain signal recording is long enough, conversion to the frequency domain allows 
the levels of different frequencies to be easily resolved as peaks in the magnitude 
spectrum output. Peaks in the time domain are best detected in the time domain 
because the broad spectral energy would be spread over the entire spectrum in 
the frequency domain. For non-stationary frequencies, the length of time for the 
Fourier transform should be optimized so that the signal is approximately stationary 
(within the transforms frequency resolution). For most signal detection applications, 
we are interested in the statistics of the Fourier spectrum bin mean and standard 
deviation, given that the spectrum is estimated by averaging many Fourier trans- 
forms together (one assumes an ergodic input signal where each averaged buffer 
has the same underlying statistics). If the input signal is zero-mean Gaussian (ZMG) 
noise, both the real and imaginary bins are ZMG processes. The magnitude-squared 
of the spectral bin is found by summing the real part squared plus the imaginary part 
squared and results in a 2nd-order chi-square probability density function (pdf). For 
a time domain ZMG signal with o;!variance, a N-point normalized Fourier trans- 
form produces a magnitude-squared frequency bin with mean o: / N and variance 
a:/N2.  As one averages M Fourier magnitude-squared spectra, the mean for each 
bin stays the same, but the variance decreases as a;l(MN’) as M increases. The 
pdf for the averaged spectral bin is chi-square of order 2M. Given the underlying 
statistics of averaged spectra, one can assign a confidence interval where the bin 
value is say, 90°/;)of the time. Examination of higher-order spectral statistics is also 
very useful in extracting more information about the spectrum, such as nonlinearities 
as seen in the bispectrum. 

The transfer function of a linear time-invariant system can be measured by 
estimating the ratio of the time-averaged input-output cross-spectrum divided 
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by the input autospectrum. Again, the statistics of the spectral bins plays a crucial 
role in determining the precision of measured system magnitude and phase. The 
spectral coherence is a very useful function in determining the precision of transfer 
function measurements as i t  is very sensitive to showing weak SNR as well as inter- 
fering signals in the input-output signal path. Using the observed coherence and 
the known number of averages, one can estimate a variance for the transfer function 
magnitude and phase responses. This error modeling is important because i t  allows 
one to determine the required number of spectral averages to achieve a desired pre- 
cision in the estimated transfer function. 

However, if the transfer function has very sharp modal features (spectral peaks 
and/or  dips in the frequency response), the input-output buffers may have to be 
rather long for consistent ergodic averages. This is because the buffer must be long 
enough to measure the complete system response to the input. With random input 
signals in each buffer, some of the “reverberation” from previous input buffers 
are not correlated with the current input, giving transfer function results which 
do not seem to improve with more averaging. This requires switching to a broadband 
periodic input signal such as an impulse or sinusoidal chirp, which is exactly 
reproduced in each input buffer. The magnitude response for a synchronous periodic 
input will quickly approach the spectral resolution limit define by the buffer length, 
but some phase errors may still be present due to the “reverberation” from previous 
buffers. Synchronous input signals also allow one to average in the time domain. or 
average the real and imaginary spectral bins separately, before computing the 
transfer function and magnitude and phase. This “time-synchronous averaging” 
virtually eliminates all interfering signals leaving only the input and output to 
be processed and is an extremely effective technique to maximize SNR on a difficult 
measurement. 

While the details to which we have explored acoustic, structural, and electro- 
magnetic intensity here are somewhat involved, we will make use of these develop- 
ments later in the text. The intensity techniques all generally involve spectral 
products, cross-spectra. or various forms of finite difference approximations using 
measured spectra. The underlying statistics of the spectral measurements translate 
directly into the precision of the various power flow measurements. Detailed 
measurements of the full  field through active and reactive intensity scans can provide 
valuable information for controlling radiated power, optimizing sensor system 
performance, or for diagnostic/prognostic purposes in evaluating system integrity. 
Clearly, the most sophisticated adaptive sensor and control systems can benefit from 
the inclusion of the physics of full field measurements. 

PROBLEMS 

1. Broadband electrical noise is known to have white spectral characteristics, 
zero mean, and a variance of 2.37 v’. A spectrum analyzer (rectangular 
window) is used to average the magnitude squared of 15 FFTs each 1024 
points in size. What is the mean and standard deviation of on of the spectral 
magnitude-squared bins‘? I f  the sample rate is 44.1 kHz, whats the noise 
lekrel in p?/ HZ? 

2. Suppose a Hanning data window was used by mistake for the data in ques-
tion 1 .  What would the tneasured spectral density be for the noise? 
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3. A transfer function of a transducer is known to have a very flat response. 
Would you expect a reasonable measurement of the transfer function using 
a rectangular window? 

4. A transfer function is measured with poor results in a frequency range 
where the coherence is only 0.75. How many spectral averages are needed 
to bring the standard deviation of the transfer magnitude to with 5% 
of the actual value? 

5 .  Given the measured intensity in 3-dimensions over at random points on a 
closed surface around a source of interest, how does one compute the total 
radiated power? If the source is outside the closed surface, what is the 
measured power? 
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Wavenumber Transforms 


The wavenuniber k is physically the radian frequency diirided by n7a\'espeed ( ( 1 )  ( a ) .  

giving i t  dimensions of radians per meter. Wavenumbers can be seen a s  a measure 
of wavelength relative to 2n. Actually, k also equals 27r 'i,and can be decomposed 
into k , ,  k , .  and k z  components to describe the wave for 3-dimensional spaces. 
The wavenumber k is the central parameter of spciticil .sig11(11prowxsiqq 11 hich is 
widely used in radar, sonar, astronomy, and in digital medial imaging. Just iis 
the phase response in the frequency domain relates to time delay in  the time domain. 
the phase response in the wavenumber domain relates to the spatial position of the 
waves. The wavenumber transform is a Fourier transform, \\,here time is replaced 
by space. Wavenumber processing allows spatial and e l m  directional information 
to be extracted from waves sampled with an array of sensors at  precisely knokvn 
spatial positions. The array of sensors could be a linear a r r a l ~  of h~~drophonesto\vcd 
behind a submarine for long range surveillance, a line of  geophones used for oil 
exploration, or  a two-dimensional phased-array radar such as  the one used i n  
the Patriot missile defense system. The most common tivo-diniensional signal data 
is video urhich can benefit enormously from wavmumber processing i n  the frequcncj 
domain. Wavenumber processing can be used to enhance imager~  from telescopes, 
digitized photographs, and video where focus or carnera steadiness is poor. 

We begin our  analysis of wavenumber transforms by defining ii plane ~ i i i ' e  
tnoting L\.ith speed c' mjsec in the positive r direction as bcing of the form c""' "'. 
With respect to the origin and time t ,  the wave is outgoing because the phase of 
the ~ v a v efurther out from the origin corresponds to a time i n  the past. As t increases 
a constant phase point on the wave propagates outward. I f  I - = (.v' +.I*:+ ? ) I  ' rep-
resents a distance relative to the origin, the respective wracwumber componcnts 
/i\,k , ,  and k ,  in the s,17, and 1 directions can be used t o  determine the direction 
of \ + , ; i \ ~  propagation. Recall that to measure temporal frequency. a signal is 
measured at one field point and sampled at a series of knonm times alloning a time 
Fourier transform on the time series to produce a frequencj spectrum. To measure 
the wavenumber spectrum, the waveform is sampled a t  one time "snapshot" o\ er 
a series o f  knobtn field positions allowing a spatial Fouricr transform to be applied. 
producing a m.avenun-1ber spectrum. Since the wavenumber is 2n i ,long 11 a\ elengths 
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correspond to small wavenumbers and short wavelength correspond to high 
wavenumber. 

Consider the pinhole camera in Figure 1. On any given spot on the outside of 
the camera box, the light scattered from the field produces a "brightness" 
wavenumber spectrum. Another way to look at the physics is that light rays from 
every object in the field can be found on any given spot on the outside of the camera 
box. By making a pin hole, the camera box allows reconstruction of the object field 
as an upside-down image on the opposite side of the pinhole. 

One can describe the magic of the pinhole producing an image inside the cam- 
era as a 2-dimension inverse wavenumber transform where the wavenumber 
spectrum at the pinhole spot is I (kx , ky) .  

(7.0.1) 
-cc --oo 

The ray geometry which allows reconstruction of the image is represented by the 
wavenumber components k ,  and ky for the image coordinates x and y .  Small 
wavenumbers near zero correspond to light with slowly varying brightness (long 
wavelengths) across the pinhole side of the camera while the large wavenumbers 
correspond to sharply varying brightness such as edges from shadows. 

Some of the earliest cameras used a simple pinhole and extremely long 
exposures on the photographic plate due to the low light levels. Lens-type cameras 
are far more efficient at gathering and focusing light. The shape and index of 
refraction for the lens bends the light rays creating a focal point and an inverted 
image. The focal point is geometrically analogous to the pinhole, but light is highly 
concentrated there by the lens. This allows much faster exposure times. The amount 
of light is controlled by the aperture which is also referred to as the entrance pupil in 
most optics texts. A border usually forming a rectangular boundary around the 
photographic film is the exit pupil. Dilating or constricting the aperture does 

Figure 1 A pinhole camera produces a clear upside down image due to the coherence of the 
light rays through the small aperture, but not much light gets to the image plane. 
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not effect the exit pupil boundary, but rather just impacts the brightness of the 
image. 

As can be seen in Figure 2, the aperture can have an effect on focus of objects 
near and far. Note that for the far object parallel rays enter the lens and are refracted 
depending on the angle of incidence. A near object produces a focal point closer than 
a far object, therefore far objects in the background can appear out of focus when a 
wide aperture is used. Narrowing the aperture will tend to allow only the nearly 
parallel rays into the camera thus improving the focus of both near and far objects. 
The entire field of view is in focus for the pinhole camera. Focus can be seen as 
the situation where the wavenumbers are coherently “filtered” by the camera to 
faithfully reproduce a sharply-defined image. The “fuzzyness” of out-of-focus 
objects is really due to “leakage” of wavenumber components into other areas 
of the image surrounding the “true” intended spot. The physics to be noted here 
is that “focus” for a camera system is definable as a wavenumber filter and that 
out-of-focus objects can (in theory) be digitally recovered if the lens system 
wavenumber filtering response is known. The transfer function of the lens system 
is quite complicated and will change depending on aperture, focus, and also for 
objects near and far. 

Before the corrective optics were installed in the orbiting Hubble Space 
Telescope, the focus of initial images was controlled using Fourier image processing. 
We will examine this technique in detail below. In short, the “fuzzyness” in a astro- 
nomical image can be dealt with by picking a distant star in the field of view. Under 
ideal conditions, this distant star might be detected in only one pixel. However, 

Figure 2 A lens system increases the amount of light for the photograph, but also intro- 
duces a depth of focus field. 
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the reality in the early days of Hubble was that the distant star’s light would smear 
over all the in a given area of the image in what photographers sometimes call 
“circles of confusion” of poor focus. From a signal processing point of view, 
the circles of confusion can be seen as a spatial impulse response of a wavenumber 
filter. Performing a 2-dimensional Fourier transform o f t  he spatial impulse response, 
or  point spread function gives the wavenumber frequency response. The optimal 
sharpening filter for the distant star is found from inverting the wavenumber fre- 
quency response for the fuzzy distant star and multiplying the entire image’s 
wavenumber frequency response by this corrective wavenumber filter. The inverse 
2-dimensional Fourier transform of the corrected wavenumber frequency response 
gives an image where the formerly fuzzy distant star appears sharp along with 
the rest of the image (assuming the fuzzyness was homogeneously distributed). 
The technique is analogous to measuring and inverting the frequency response 
of a microphone to calculate the optimal FIR filter via inverse 1-dimensional Fourier 
transform which will filter the microphone signals such that the microphone’s fre- 
quency response appears perfectly uniform. Astronomers have been applying these 
very powerful image restoration techniques for some time to deal with atmospheric 
distortions, ray multipaths, and wind buffeting vibrations of ground-based 
telescopes. 

7.1 SPATIAL FILTERING AND BEAMFORMING 

A very common coherent wavenumber system is the parabolic reflector used widely 
in radar, solar heating, and for acoustic sensors. Consider an axi-symetric 
paraboloid around the )*-axis with the equation j ’ = ~ r ~+ h ,  where r is a radial 
measure from the ji-axis. To find the focal point, or focus, one simply notes where 
the slope of the paraboloid is unity. Since the angle of incidence equals the angle 
of the reflected wave, the rays parallel to the 4,-axis reflect horizontally and intersect 
the )?-axis at the focus (see the lightly dotted line in Figure 3) .  This unity slope ring 
on the parabola will be at r = I / ( 2 a )  giving a focus height of 1’= I l (4a)+h. For 
rays parallel to the )*-axis, all reflected rays will have exactly the same path length 
from a distant source to the focus. Physically, this has the effect of integrating 
the rays over the dish cross-section of diameter d into the sensor located at the focus 
( 1 ) .  This gives a wavelength 1 dependent gain of 1 + 2 d / i , which will be presented in 
more detail in Section 12.2. For high frequencies where the gain is quite large, the 
dish provides a very efficient directional antenna which allows waves from a par- 
ticular direction to be received with high SNR. At low frequencies, the directional 
effect and gain are quite small. This gain defines a “beam” where the parabolic 
reflector can be aimed towards a source of interest for a very high gain communi- 
cation channel. 

The “beam” created by the parabolic reflector is the result of coherent 
wavenumber filtering. All waves along the “look direction” of the beam add 
coherently at the focus F in Figure 3.  Waves from other directions will appear 
as well at the focus, but much weaker relative to the look direction beam. For 
example, some waves will scatter in all directions at the reflector’s edges but the 
area for this scattering is extremely small compared to the area of the reflector 
as a whole which produces the coherent reflections for the look direction beam. 
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Figure 3 Parabolic reflectors focus substantial wave energy from one direction (one range 
of wavenumbers) onto the sensor. 

Parabolic reflectors are unique in that the amplification and beam geometry are 
identical for all frequencies provided the reflector can give a near perfect reflection of 
the wave. Therefore, the material of the parabolic reflector plays an important role in 
defining the frequency range of useful operation. For example, a mirror finish is 
required for visible light frequencies, a conductive wire mesh will suffice for radar 
frequencies, and a solid dense material such as plastic will provide an atmospheric 
acoustic reflection. For underwater applications, one might provide an air voulme 
in the shape of a parabolic dish to achieve a high reflection. The parabolic shape 
is somewhat problematic to manufacture, and often a spherical shape is used as 
an approximation. The parabolic reflector can be very useful as a movable “search 
beam’’ to scan a volume or plane for wave emitting sources or reflections from 
an adjacent active transmitter allowing the locations of the reflecting sources to 
be determined. As will be discussed below, applications to direction-finding and 
location of sources or wave scatterers is a major part of wavenumber filtering. 

Moving of the parabolic dish mechanically is sometimes inconvenient and 
slow, so many modern radar systems electronically “steer” the search beam. These 
operations are generally referred to as “array processing” because an array of 
sensors is used to gather the raw wavenumber data. The amount of computation 
is generally alarming for electronically steered beams, but the operations are 
well-suited for parallel processing architectures. Current microprocessors provide 
a very economical means to steer multiple search beams electronically as well as 
design beams which also have complete cancellation of waves from particular 
direct ions. 

Consider a “line array” of acoustic sensors (radio frequency antennae could 
also be used) as seen in Figure 4. where 3 distant sources “A”, “B”, and “C” over 
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Source A 0 

Source B 
0 

Source C 
Yl,, y2.t Y3.t 4 0 

e,= 0 

I Array Processor Output 

Figure 4 A line array of sensors can determine the direction of arrival of the plane waves 
from dist an t soLI rces. 

100 wavelengths away provide plane waves. The outputs of each of the array 
elements are filtered to control relative amplitude, time delay, and phase response 
and combined to give the line array the desired spatial response. 

If the array processing filters are all set to unity gain and zero phase for all 
frequencies and the sensor frequency responses are all identical in the array, the 
processor output for source A will be coherently summed while the waves from 
sources B and C will be incoherently summed. This is because the plane wave from 
source A has the same phase across the array while the phases of the waves from 
sources B and C will have a varying phase depending on the wavelength and the 
angle of incidence with respect to the array axis. A simple diagram for the first 
two array elements in Figure 5 illustrates the relative phase across the array from 
a distance source’s plane waves. Obviously, when 0 is 90 , the distance R to the 
source is the same, and thus, the plane wave phase is the same across the array 
and the summed array output (with unity weights) enhances the array response 
in the 0=90 direction. The phase of the wave at the first element J ’ ~ . ~relative 
to the phase of the source is simply k R ,  where k is the wavenumber. Remembering 
that the wavenumber has units of radians per meter, k can be written as either 2xlEb, 
or 27rf’lc = to/(‘, where j. is wavelength, 2xf =CO is the radian frequency, and c’ is the 
speed of the wave in meters per second (mlsec). With all the array weights A , =  1; 
i =  Z,2,...,A!, the summed array output s, is simply 

(7 .1 .1)  
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Figure 5 A distant source's plane wave will have a varying phase across the array 
depending on the angle of incidence. 

where R is the distance from the source and d is the array element spacing. Note the 
opposite sign of the tot and the k R  in the exponent. As time increases, the distance 
R must increase for a given phase point on the plane wave. When 0=90  .Y, is 
M times louder than if a single receiver was used to detect the incoming plane wave. 
The mathematical structure of Eq. (7.1.1) is identical to that of a Fourier transform. 
For other angles of arrival, the array output level depends on the ratio of dlE. and the 
resulting relative phases of the array elements determined by the exponent 
j274171 - I)cosO/i. in Eq. (7.1.1). When d / A is quite small (low frequencies and small 
array spacings) the spatial phase changes across the array will be small and the array 
output will be nearly the same for any angle of arrival. 

The net phase from the wave propagation time delay is really not of concern. 
The relative phases across the array are of interest because this information deter- 
mines the direction of arrival within the half-plane above the line array. Given that 
we can measure frequency and array element positions with great accuracy, a reason- 
able assumption for the speed of sound or even wavelength for a given plane wave 
frequency is all that is actually needed to turn the measured relative phase data into 
source bearing information. 

Clearly, the phase difference, found by subtracting the measured phase 
of sensor 1 from sensor 2 is simply kdcosB. Therefore, the bearing to the distant 
source can be measured from the phase difference by 

40 = cos-] (=)2 1 (7.1.2) 

TLFeBOOK



190 Chapter 7 

The simple formula in Eq. (7.1.2) is sometimes referred to as a “direction cosine” or  
“phase interferometric” bearing estimation algorithm. Early aircraft navigation sys- 
tems essentially used this direction-finding approach with a dipole antenna to deter- 
mine the direction to a radio transmitter beacon. This technique is extremely 
simple and effective for many applications, but it is neither beamforming nor array 
processing, just a direct measurement of the angle of arrival of a single plane wave 
frequency. If there are multiple angles of arrival for the same frequency then the 
direction cosine technique will not work. However, the relationship between 
measured spatial phase, the estimated wavenumber, and the angle of arrival provides 
the necessary physics for the development of direction-finding sensor systems. 

Returning now to the array output equation in (7.1.1), we see that the array 
output depends on the chosen number of array elements M ,  weights A , , source angle, 
and the ratio of element spacing to wavelength. Figure 6 displays the response of a 
16-element line array with unity weights for ratios of element spacing to wavelength 
((//A)of 0.05,O. 10, and 0.50. As the frequency increases towards a wavelength of 2ci. 
the beam at 90 becomes highly focused. If the element spacing is greater than half a 
wavelength their will be multiple angles of arrival where the array response will have 
high gain at a focused angle. These additional beams are called “grating lobes” after 
light diffraction gratings which separate light into its component colors using a peri- 
odic series of finely-spaced slits. The same physics are at work for the operation of 
the line array beamforming algorithm and the optical spectroscopy device using 
diffraction gratings to allow detection of the various color intensities in light. Figure 
7 shows the beam response as the frequency is increased to give (//A ratios of 0.85, 
1 .OO, and 1.50. In general, the array element spacing should be at most a half wave- 

Y 
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theta 

Figure 6 16 element line array output magnitude for ratios of element spacing to  wave- 
length (d/; .)  of 0.05, 0.1, and 0.5. 
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Figure 7 Beam response of a 16-element line array at high frequencies where the ratio d/ i ,  
is 0.85, 1.0, and 1.5. 

length to insure no grating lobes for any angle of arrival. The presence of grating 
lobes can be seen as aliasing in spatial sampling. Adding more elements to the array 
while keeping the same aperture will eliminate the grating lobes. Also, the 
narrowness of the main look direction beam depends on the total array aperture 
Md. It can be shown that for large arrays (M>> 16), the beamwidth in degrees 
is approximately 18OA/Mdn, so when the array aperture is many wavelengths in 
size, the resulting beam will narrow and highly desirable for detecting plane waves 
from specific directions. 

One of the more interesting aspects of the weights A,,, in Figure 4 and Eq. 
(7.1.1) is that the magnitudes of the weights can be “shaded” using the spectral data 
windows described in Chapter 5 to suppress the side lobe leakage. The expense of this 
is a slight widening of the main lobe, but this effect is relatively minor compared to 
the advantage of having a single main beam with smooth response. Figure 8 com-
pares a Hanning window to a rectangular window for the weights A,,,. Recall that 
the Hanning window is A,,, =‘/z [l - cos(2~nmlM)J for an M-point data window; 
i.e. nz= 1, 2, ..., M .  For large M ,  the narrowband data normalization factor is 
2, allowing “on-the-bin” spectral peaks to have the same amplitude whether a 
rectangular or Hanning window is used. For small arrays, we have to be a little 
more careful and integrate the window and normalize it  to M ,  the integral of 
the rectangular window. For the M =  16 Hanning window, the integral is 8.5 making 
the narrowband normalization factor 16/8.5 or 1.8823. As M becomes large the 
normalization factor approaches 2.0 as expected. 

The phase of the array weights A,,,can also be varied to “steer” the main lobe in 
a desired look direction other than 90”.Electronic beam steering is one of the main 
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Figure 8 Use of data windows to “shade” the array element outputs at either end greatly 
reduces sidelobe leakage. 

advantages of the array processing technique because it avoids the requirement for 
mechanical steering of devices such as the parabolic dish to move the beam. 
Furthermore, given the signals from each array element, parallel processing can 
be used to build several simultaneous beams looking in different directions. A 
snapshot of array data can be recorded and then scanned in all directions of interest 
to search for sources of plane waves. To build a steering weight vector one simply 
subtracts the appropriate phase from each array element to make a plane wave from 
the desired look direction Ocl,sum coherently in phase. The steering vector including 
the Hanning window weights is therefore 

(7.1.3) 

where A .  is the narrowband normalization scale factor for the Hanning window. 
Recalling Eq. (7.1.1), the application of the weights in Eq. (7.1.3) would allow a 
plane wave from a direction O,/ to pass to the array output in phase coherency giving 
an output M times that of a single sensor. Figure 9 shows the beam response for 
steering angles of 90 ,60 ,and 30 with a Hanning window and a spacing to aperture 
ratio of 0.5. 

Some rather important physics are revealed in Figure 9. As the beam is steered 
away from the broadside direction (0,/=90 ) towards the endfire directions 
(0,/=0 or 180 ), the beam get wider because the effective aperture of the line array 
decreases towards the endfire directions. This decrease in effective aperture can 
be expressed approximately as M d  sin O,, for steering angles near 90 . But,  as 
one steers the beam near the endfire directions, the beam response depends mainly 
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Figure 9 Adjusting the phase of the array weights allows the main look direction beam to 
be steered to a desired direction. 

on the spacing to wavelength ratio, as will be demonstrated shortly. Since the line 
array is 1-dimensional, its beam patterns are symmetric about the axis of the array. 
Figure 10 shows the complete 360" response of the line array for the three steering 
angles given in Figure 9. Note the appearance of a "backward" beam near 180 
for the beam steered to 30". This "forward-backward" array gain is often 
overlooked in poor array processing designs, but tends to go away at lower fre- 
quencies as seen in Figure 11  for several frequencies steered to 0'. 

The way one makes use of the steered beams in an electronic scanning system is 
to record a finite block of time data from the array elements and scan the data block 
in all directions of interest. The directions where the steered beam has a high output 
level correspond to the directions of distant sources, provided the beam pattern 
is acceptable. Figure 12 shows a scanned output for the 16-element line array where 
the 4 sources at 45", 85", 105", and 145" with levels of 10,20,25, and 15, respectively. 
The frequency to spacing ratio is 0.4 and a Hanning window is used to shade the 
array and suppress the sidelobe leakage. 

Figure 12 clearly shows 4 distinct peaks with angles of arrival and levels con- 
sistent with the sources (the array output magnitude is divided by 16). However, 
at  lower frequencies the resolution of the scanning beam is not sufficient to separate 
the individual sources. Limited resolution is due to the finite aperture M d  which 
must be populated with sufficient elements so that a reasonable high frequency limit 
is determined by the intra-element spacing to wavelength ratio. Obviously, one must 
also limit the number of elements to keep computational complexity and cost within 
reason. It is extremely important to understand the fundamental physics governing 
array size, resolution, element spacing, and upper frequency limits. 
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Figure 10 The complete 360' response of a line array shows the symmetry of the beam 
patterns around the array axis for steering angles of 90(-), 60(- -), (-.-) degrees. 

Figure 11 Complete beam response for steering angles of 0" at frequencies of d/;.= 0.05 
(solid curve), 0.1 (dashed curve), and 0.5 (dash-dot curve) showing forward-backward gain 
problems. 
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Figure 12 A scanned 16-element line array output clearly showing 4 distinct sources 
radiating plane waves. 

While a 1-dimensional line array can determine a plane wave angle of arrival 
within a half-plane space, a 2-dimensional planar array can determine the azimuth 
and elevation angles of arrival in a half space. We define the angle $ as the angle 
from the normal to the plane of the 2-dimensional array. If the array plane is 
horizontal, a plane wave from the direction $ =0 would be coming from a direction 
straight up, or normal to the array plane. Waves from t) =90’ would be coming 
from a source on the horizon with an azimuthal direction defined by 0, as defined 
earlier for the 1-dimensional line array. The elevation angle of the incoming plane 
wave is very important because it effects the measured wavelength in the array plane 
by making it  appear longer as the elevation angle approaches zero. Figure 13 
graphically depicts a 16 element planar array arranged in a 4 by 4 equally-spaced 
sensor matrix. 

Since the effective wave speed in the x-y plane of the 2-dimensional array is 
c, ,  =c/sin$, where c is the wave speed along the direction of propagation, we define 
the wavenumber k,,. for the x-y plane as 27tflcxJ,,or more explicitly, 2qf sin+/(,. 
Using the sensor layout in Figure 13 where the spacing along the x-axis d is the 
same as the spacing along the y-axis, we can define a beam steering weight A,,,.,,, 
by simply subtracting the appropriate phase for a given sensor to make the array 
output phase coherent for the desired look direction in 0 and +. 

(7.1.4) 

The frequency independent parameter in Eq. (7.1.4) represents the spatial data 
window for controlling side-lobe leakage. The 2-dimensional Hanning window is 
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Figure 13 A 2-dimensional planar array showing the azimuthal angle 0 and elevation angle 
Y relative to the cartesian coordinate system. 

defined as 

= +[XI*,( 1 - cos(%)] [1 - cos(%)] (7.1.5) 

where A. is the narrowband normalization factor to equalize the array output peak 
levels with what one would have using a rectangular window where all Ai;i,,lequal 
unity. For a desired beam look direction defined by 0‘1 and $(I, one calculates 
the array beam steering weights ( f )  for each frequency of interest. A convenient 
way to process the array data is to compute the Fourier spectra for each array 
element and multiply each Fourier frequency bin by the corresponding frequency 
steering weight in a vector dot product to produce the array output. One can then 
produce an array output spectrum for each desired look direction to scan for poten- 
tial source detections. The steering vectors for each frequency and direction are inde- 
pendent of the signals from the array elements. Therefore, one typically 
“precomputes” a set of useful steering vectors and methodically scans a block 
of Fourier spectra from the array elements for directions and frequencies of high 
signal levels. Many of these applications can be vectorized as well as executed in 
parallel by multiple signal processing systems. 

7.2 IMAGE ENHANCEMENT TECHNIQUES 

One of the more astute signal processing techniques makes use of two dimensional 
Fourier transforms of images to control focus, reduce noise, and enhance features. 
The first widespread use of digital image enhancement is found among the world’s 
astronomers, where the ability to remove noise from imagery allows observations 
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of new celestial bodies as well as increased information. Obviously, satellite imagery 
of Earth, has for some time now, been fastidiously examined for state surveillance 
purposes. The details of particular image enhancement techniques and how well they 
work for satellite surveillance are probably some of the tightest held state technology 
secrets. However, we can examine the basic processing operations through the use of 
simple examples which hopefully will solidify the concepts of wavenumber response 
and filtering. As presented in Section 4.3, image processing techniques can be applied 
to any two, or even higher, dimensional data to extract useful information. 

The point spread function (PSF) for an imaging system is analogous to the 
impulse response of a filter in the time domain. The input “impulse” to a lens system 
can be simply a black dot on a white page. If the lens system is perfectly focused, a 
sharp but not perfect dot will appear on the focal plane. The dot cannot be perfect 
because the index of refraction for a glass or  plastic lens is not exactly constant 
as a function of light wavelength. Blue light will refract slightly different from red, 
and so on. Our nearly perfect dot on the focal plane will upon close examination 
have a “rainbow halo” around it from chromatic aberrations as well as other lens 
system imperfections. The two-dimensional Fourier transform (2DFFT) of the 
PSF gives the wavenumber response of the camera. If our dot were perfect, the 
2DFFT would be constant for all wavenumbers. With the small halo around the 
dot, the 2DFFT would reveal a gradual attenuation for the higher wavenumbers 
(shorter wavelengths) indicating a small loss of sharpness in the camera’s imaging 
capability. As the lens is moved slightly out-of-focus, the high wavenumber attenu- 
ation increases. Focus can be restored, or at  least enhanced, by normalizing the 
2DFFT of the image by the 2DFFT of the PSF for the out-of-focus lens producing 
the image. This is analogous to inverse filtering the output of some system to obtain 
a signal nearly unchanged by that system. For example, one could amplify the bass 
frequency range of music before it passes through a loudspeaker with weak bass 
response to reproduce the music faithfully. However, for imagery, one’s ability 
to restore focus is quite limited due to limited signal-to-noise ratios and that fact 
that the PSF is attenuated rapidly into the noise when spread circularly in two 
dimensions. 

Astronomers can use distant stars in their images to try to measure the PSF, 
which includes the light refracting and scattering affect of the atmosphere as well 
as the telescope. The “twinkling” of stars actually happens due to atmospheric tur- 
bulence and scattering from dust. The PSF for a distant star can sometimes look 
like a cluster of stars which fluctuate in position and intensity. Inverting the 2DFFT 
for the distant star section of the image, one can use the inverse filter to clarify the 
entire image. The technique usually works well when the same refractive multipath 
seen in the distant star section of the image applies throughout the image, which 
is reasonable physically since the angle of the telescope’s field of view is extremely 
small. Recently, real-time feedback controllers have been used to bend flexible 
mirrors using a “point source” PSF criteria on a distant star to effectively keep 
the image sharp while integrating. 

Consider the house picture shown earlier in the book, but this time clipped into 
a 256 by 256 pixel image where each pixel is an %bit gray scale in Figure 14. The 
house image reveals some noise as well as pixelation. Figure 15 shows a 2DFFT 
of the house where a log base 10 amplitude scale is used to make the details more 
visible. The 2DFFT reveals some very interesting image characteristics. The 
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Figure 14 The house picture shown earlier clipped to be 256x256 8-bit gray scale pixels. 

Figure 15 A 2DFFT of the house image in Figure 14 shown on a loglo scale to make more 
of the higher wavenumber details visible. 
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equation for computing the 2-dimensional Fourier transform of an image i ( s ,1‘) is 

(7.2.1) 
--x -w’ 

The equation for the inverse 2-dimensional Fourier transform is seen in Eq. (7.0.1). 
One can easily see some dominant horizontal bands near k,,=O (across the 

middle of Figure 15) indicating large horizontal bands of light and dark across 
the original image in Figure 14 (the dark tile roof, white stucco, and dark ground). 
Horizontally, the arched windows and many different vertical band widths give 
a “sinusoidal” pattern in the region along k ,  =0 (the vertical band in the middle 
of Figure 15). The phase information in the 2DFFT places the various bright/dark 
regions on the correct spot on the original image. One can see a fair amount of 
noise throughout the 2DFFT as well as the original image, which we will show 
can be suppressed without much loss of visual information. 

In the 2-dimensional wavenumber domain, one can do filtering to control 
sharpness just like one can filter audio signals to control “brightness” or 
“treble”, The high wavenumber components which correspond to the sharp edges 
in the image are found in the outskirts of the 2DFFT in Figure 15. We can suppress 
the sharp edges by constructing a 2-dimensional wavenumber filter for the M by 
A4 discrete wavenum ber spectrum. 

d P ( m , ,  n?J = [1 - cos ( 2 7 ) ] 1 2 [  1 -cos ( 2 3 1 ”  (7.2.2)~ -

For an N by N image, the discrete 2-dimensional Fourier transform is 

N N 

(7.2.3) 

Multiplying the wavenumber transform in Eq. (7.2.3) by the low-pass filter in Eq. 
(7.2.2) one obtains a “low-pass filtered” wavenumber transform of the house image 
as seen in Figure 16 on a log scale. This is not a matrix multiply, but rather a matrix 
“dot product”, where each wavenumber is attenuated according to the filter func- 
tion in Eq. (7.2.2). The filter function is rather steep in its “roll-off’ so that the 
effect on focus is rather obvious. 

Given the filtered A4 by A4 wavenumber spectrum ( M  is usually equal to  N) I’p 
( in , ,  in,) = 1(IN,.,m,,) the low pass filtered N by N image ilp(ti,., / I ) , )d’(m,, mJ3), 
can be computed using a 2-dimensional inverse Fourier transform. 

(7.2.4) 

The result of the low pass filtering can be seen in Figure 17. 
What happened to all the sharp edges in Figure 17? We can find out by 

examining what was removed from the original image using a high-pass filter some- 
what more gradual than the low pass filter. The high-pass filter is unity at the highest 
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Figure 16 Low pass filtering of the 2D wavenumber transform suppresses all but the long 
wavelengths represented near the center of the spectrum. 

Figure 17 Low pass filtering of the wavenumber spectrum has the effect of “softening” or 
“defocusing” the image by removal of the short wavelengths. 
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wavenumbers and declines to zero for zero wavenumber (at the center) as l l k .  
The inverse Fourier transform of the removed high frequency components is seen 
in Figure 18. 

From an engineering point of view, one must ask how much visual information 
is actually in a given image. hoi+T can one determine what information is important. 
and how one can manage visual information to optimize cost. A reasonable 
approach is to threshold detect the dominant wavenumbers and attempt to 
reconstruct the image using inforination compression based on the strongest 
wavenumber components. But, the practical situation turns out to be even a bit more 
complicated than that since important textures and features can be lost by discarding 
all but the most dominant wavenunibers. The short answer is that the optimal image 
data compression generally depends on the type of image data being compresses. The 
dominant wavenumber approach would work best on images with periodic patterns. 
Simple thresholding in the image domain would work well for line art. or images with 
large areas on one solid shade. One of the dominant strategies in MPEG and MPEG2 
image 'movie compression algorithms is run length encoding, where large areas of 
constant shade can be reduced to only a few bytes of data without loss of any 
information. For our case, we can eliminate nearly half the image data by focusing 
on the strong vertical and horizontal energy as seen in the filtered wavenumber 
response in Figure 19 on a log scale. The result is seen in Figure 20 showing very 
little loss of visual information. Overall the image is much softer than the original, 
the sharpness along the dominant horizontal and vertical edges is not lost. This 
can be clearly seen along the arches of the windows where strong horizontal and 
vertical edges are seen next to softer curves. 

Figure 18 High-frequenc~~components of the imagc found by high-pass u.aveiiumber 
filtering and in\.erse Fourier transforming the \va\znumbei- spectrum. 
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Figure 19 Filtered wavenumber response to suppress unnecessary noise and sharpness 
along diagonal directions while keeping useful high frequency information along the vertical 
and horizontal. 

Figure 20 The resulting image from the wavenumber filtering in Figure 19 which reduces 
the necessary image data by about half without significant loss of visual information. but 
notice the horizontal and vertical matting (canvas effect) froin the wavenuinber filtering. 
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Clearly, many interesting and useful visual effects can be implemented using 
wavenumber filtering on image data. Even a brief survey of all the popular tech- 
niques is beyond the scope of this book. However, wavenumber processing can 
be used for many applications, even on non-visual images made up from 2 or more 
dimensional data. Our attempt here is to explain the physics and signal processing 
of the wavenumber transform with some useful examples of image data. 

7.3 COMPUTER-AIDED TOMOGRAPHY 

Computer-aided tomography, or “CAT-Scans” are becoming well known to the 
general public through its popular use in medical diagnosis. While the medical 
CAT-Scan is synonymous with an X-ray generated “slice” of the human body, 
without actually cutting any tissue, it also has many industrial uses for inspection 
of pipes and vessels, structures, and in the manufacture of high technology materials 
and chemicals. Webster’s definition of tomography reads simply as “roent-
genography of a selected plane in the body”. After looking up “roentgenography”, 
we find that it is named after Wilhelm Konrad Roentgen 1845-1923, the German 
physicist who discovered X-rays around the turn of the last century in 1895. X-rays 
have extremely short wavelengths (approximately 10- ‘Om) and are produced when 
electrons accelerated through a potential difference of perhaps 1 kV to 1 MV strike 
a metal target. The electrons in the inner atomic electron shells jump into higher 
energy states in the surrounding electron shells and produce the X-rays when they 
return to their equilibrium state back in the original shell. This electron-to-photon 
“pumping” also occurs between the outermost electron shells at  much lower voltages 
producing only visible light. The obvious utility of X-rays is their ability to penetrate 
many solid objects. Continued animal exposure to high levels of X-rays has been 
shown to cause radiation poisoning and some cancers. But, modern engineering 
has nearly perfected low-level X-ray systems for safe periodic use by the medical 
community. 

An X-ray image is typically created using high resolution photographic film 
placed on the opposite side of the subject illuminated by the X-ray source. The 
extremely short wavelength of X-rays means that plane wave radiation is achieved 
easily within a short distance of the source. The X-ray image is composed of 
3-dimensional translucent visual information on a 2-dimensional medium. Exam- 
ination of X-ray images requires a specially trained medical doctor called a rudi-
ologist to interpret the many subtle variations due to flesh, organs, injury, or 
pathology. It was not until 1917 when Radon (2) published what is now referred 
to as the Radon transform, that the concept of combining multiple 2-dimensional 
images to produce a volumetric cross-slice was available. It took another 50 years 
of computing and signal processing technology advancement before G.N. 
Hounsfield at  EM1 Ltd in England and A.M. Cormack at Tufts University in 
the United States developed a practical mathematical approach and electronic hard- 
ware making the CAT scan a real piece of technology in 1972. In 1979, Hounsfield 
and Cormack shared the Nobel prize for their enormous contribution to humanity 
and science. 

A straightforward walk-through tour of the Radon transform and its appli- 
cation to the CAT scan follows. The reader should refer to an outstanding book 
by J.C. Russ (3) for more details on the reconstruction of images. We start by 
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selecting some artwork representative of a CAT scan of a human brain as seen in 
Figure 21. The top part of the drawing is the area behind the forehead while the 
bottom part shows the cerebellum and brain stem. 

Figure 22 shows a sketch of a single scan along an image angle of + 40 above 
the horizontal. The scan line could be simply a line sampled from a 2-dimensional 
X-ray image or simply an array of photovoltaic cells sensitive to X-ray energy. 

The bright and dark areas along the detection array are the result of the inte- 
gration of the X-ray absorption along the path from the source through the brain 
to the detectors. I f  the X-ray propagation were along the horizontal from left to 
right, the spatial Fourier transform of the detector array output corresponds exactly 
to a k ,  = 0, k , .2-dimensional Fourier transform where the result would be graphed 
along the k,. vertical axis passing through the k ,  =0 origin. At the 40 angle in Figure 
22, the wavenumber-domain line would be along 130’ (the normal to this line is 40 ), 
as seen in Figure 23. 

For an N x N Fourier transform, we can write 

(7.3.1) 

where t d ,  =I I I , C O S ~+ 111, sinO,m’, =t?i,.cosO nt,sinO, n‘, =n,cosO + ti,.sinO, and t i :  = 
n,cos0 - ri,sinO. One simply rotates the Y-axis to align with the X-ray propagation 
path so that the rotated )!’-axis aligns with the sensor array. The Fourier transform 
of thej!’ data gives the wavenumber spectra for with tn’, = 0. With the integration 
of the absorption along the propagation path of the X-rays being done physically, 

Figure 21 Cross-section drawing of the human brain used for tomographic reconstruction 
demonstration. 
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Figure 22 Layout of a single scan line produced by X-rays along a f40" angle with respect 
to the horizontal. 

Figure 23 The spatial Fourier transform line corresponding integration of the brain 
cross-section along a 40" angle with respect to the horizontal. 
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rather than mathematically, only one of the summations in Eq. (7.3.1) is necessary 
(mi is zero). The inverse Fourier transform of the data in Figure 23 is seen in Figure 
24. Equation (7.3.1) is known as a discrete Radon transform. For the simple case 
where 8=0, we are given a response where the only variation is along the vertical 
y-axis in the spatial image domain. The corresponding wavenumber response only 
has data along the vertical y-axis where k,  =0. For k ,  =0, we have an infinite wave- 
length (k=2/R), hence the straight integration along the x-axis. 

Increasing the number of scan directions will begin to add additional image 
information which is combined in the wavenumber domain and then inverse Fourier 
transformed to present a reconstruction of the original image. Figure 25 shows the 
wavenumber response for 8-scans, each at 22.5" spacing. The corresponding inverse 
Fourier transform is seen in Figure 26. Only the basic structures of the brain 
are visible and many lines are present as artifacts of the 65k pixel image being rep- 
resented by only 256 times 8, or 2048 pixels in wavenumber space. Figures 27 
and 28 show the wavenumber response and image reconstruction when using 32 
scans. Figure 29 and 30 show the wavenumber response and image reconstruction 
when using 128 scans. A typical high resolution CAT scan would use several hundred 
scan angles over a range from 0" to 180". Its not necessary to re-scan between 180" 
and 360°, and even if one did, the chances of misregistration between the upper 
and lower scans are great in many applications using human or animal subjects. 

It is truly amazing that a "slice" through the cross-section of the subject can be 
reconstructed from outside one-dimensional scans. The utility of being able to 
extract this kind of detailed information has been invaluable to the lives of the 
millions of people who have benefitted by the medical CAT scan. However, what 
is even more fascinating is that the Fourier transforms can be completely eliminated 

Figure 24 Inverse Fourier transform of the single scan wavenumber response in Figure 23. 
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Figure 25 8 scans as seen in the wavenumber domain for the brain image. 

Figure 26 Reconstruction of the Fourier wavenumber data for the 8 scans. 
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Figure 27 32 scans of the brain cross-section in wavenumber space. 


Figure 28 32 scans of the brain cross-section in wavenumber space. 
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Figure 29 128 scan wavenumber response for the brain image. 


Figure 30 Corresponding image reconstruction from the 128 scan data seen in Figure 29. 
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by using the filtered backprojection technique. The largest computational burden i5 
not all the individual scans, but the inverse 2-dimensional Fourier transform. 
For a 256 x 256 pixel crude image, each 256-point FFT requires only 2048 multiply 
operations, but the 256 x 256 inverse Fourier transform to reconstruct the image 
requires over 4 million multiplies. A typical medical CAT scan image will have 
millions of pixels (over 1024 x 1024) requiring hundreds of millions of multiplies 
for the 2-dimensional inverse FFT, as well as consist of dozens of “slices” of 
the patient to be processed. 

The filtered backprojection technique is extremely simple, thereby making 
CAT-scan equipment even more affordable and robust. In back propagation, 
one simply “stacks” or adds up all the scan data (as seen in Figure 24) on a single 
image without doing any Fourier transforms. Adding all this scan data up pixel 
by pixel gives a sharp, yet foggy, image as seen in Figure 31 for 128 scans. The 
effect is due to the fact that the pixels in the center of the image are “summed” 
and “resummed” with essentially the same low wavenumber scan information with 
each added scan. The high wavenumber data near the center of the image tends 
to sum to zero for the different scan angles. In the wavenumber domain, this means 
that the low wavenumbers near the origin are being overemphasized relative to 
the high wavenumbers which correspond to the sharp edges in the image. A simple 
high-pass wavenumber filter corrects the fogginess as seen in Figure 32 yielding 
a clear image without a single Fourier transform. The wavenumber filtering can 
be accomplished very simply in the time domain using an FIR filter on the raw 
scan data. The filtered backprojecttion technique also allows filtering to enhance 
various image features to help medical diagnosis. Newer techniques such as the 
backpropagation technique even allow for propagation multipath and wave 

Figure 31 Unfiltered backprojection reconstruction of the brain cross-section from 128 
scans. 
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Figure 32 High-pass filtered backprojection reconstruction of the 128 scan image data. 

scattering effects to be (at least in theory) be controlled for tomographic applications 
in ultrasonic imaging. 

7.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

Waves can be represented in either time or space as a Fourier series of sinusoids 
which can be filtered in the time-frequency or spatial-wavenumber domain 
depending on the chosen wave representation. We have shown that for sensor arrays 
spaced fractions of a wavelength apart (up to half of a wavelength), spatial filtering 
can be used to produce a single array output having very high spatial gain in a desired 
look-direction. The look direction “beam” can be electronically steered using signal 
processing to give a similar search beam to that for a parabolic reflector which would 
be mechanically steered. Using parallel signal processing, one could have several 
simultaneous beams independently steerable, where each beam produces a high-gain 
output on a signal from a particular angle of arrival. Later in the book, Chapters 12 
and 13 will discuss in detail adaptive beamforming techniques for sonar and radar 
which optimization of the search beam by steering beam nulls in the directions 
of unwanted signals. 

Examination of images from optical sensors as wavenumber systems requires 
consideration of a whole different set of physics. Visible light wavelengths range 
around 1 x 10K6m, or 1 pm, and frequencies around 1 x 1014 Hz, making spatial 
filtering using electronic beamforming impossible with today’s technology. 
However, when optical wave information is projected on a screen using either a 
pinhole aperture or lens system, we can decompose the 2-dimensional image data 
into spatial waves using Fourier’s theorem. The image element samples, or pixels, 
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form a 2-dimensional set of data for Fourier series analysis. We can control the 
sharpness of the image by filtering the wavenumbers in an analogous manner to 
the way one can control the treble in an audio signal by filtering frequencies. 
The short wavelengths in an audio time-domain signal correspond to the high fre- 
quencies while the short wavelengths in image data correspond to the high 
wavenumbers making up the sharp edges in the picture. If the pixels have enough 
bits of resolution, an out-of-focus image can be partially recovered by inverting 
the “point spread function” for the lens in its out-of-focus position. The success 
of focus recovery is sensitive to the number of bits of pixel brightness resolution 
because the out-of-focus lens spreads the light information out in 2-dimensions into 
adjacent pixels, which attenuates the brightness substantially in the surrounding 
pixels. We can also use the 2-dimensional Fourier transform to detect the strongest 
wavenumber components, rejecting weaker (and noisier) wavenumbers, and thereby 
compress the total image data while also reducing noise. 

For scanning systems such as X-rays, the massive 3-dimensional data on an 
X-ray image can be resolved into a synthetic thin “slice” cross-wise by combining 
many rays from a wide range on angles. The technique of computer-aided 
tomography solves an important problem in X-ray diagnosis by simplifying the 
amount of information on the translucent X-ray image into a more organized virtual 
slice. Radon recognized the need and solved the problem mathematically in the early 
part of the 20th century. But, it was not until the arrival of computers and the genius 
of Cormack and Hounsfield in the early 1970s that the CAT-Scan became practical. 
The understanding of the Radon transform and wavenumber domain signal 
processing allows an even more simple approach to be used called the filtered 
backpropagation tomographic reconstruction. Filtered backprojection produces a 
sharp image without the computational demands of Fourier transforms by filtering 
each scan to better balance the wavenumbers in the final image. The CAT-Scan 
is considered one of the premier technological achievements of the 20th century 
because of the technical complexities which had to be solved and the enormous posi- 
tive impact it has achieved for the millions of people who have benefitted from its use 
in medical diagnosis. 

PROBLEMS 

1. For an arbitrary 3-element planer (but not linear) sensor array with sensor 
spacings 1-2 and 1-3 each less than 1 / 2  wavelength, derive a general for- 
mula to determine the angle-of arrival of a plane wave given the phases 
of the three sensors at a particular frequency. 

2. A linear array of 16 1-m spaced hydrophones receives a 50 Hz acoustic 
signal from a distant ship screw. If  the angle of arrival is 80‘ relative 
to the array axis (the line of sensors), what is the steering vector which 
best detects the ship’s signal? Assume a sound speed of 1530 mlsec. 

3 .  Consider a circular array of 16 evenly-spaced microphones with diameter 
2 m  (sound speed in air is 345mlsec). Derive an equation for the array 
response as a function of k and 0 when the array is steered to 0’. 

4. Show that the sharpness operator w‘ in Eq. (2.1.14) is a high pass filter by 
examining the operator’s response in the wavenumber domain. 
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Adaptive System Identification and Fi I ter ing 

Adaptive signal processing is a fundamental technique for intelligent sensor and 
control systems which uses the computing resources to optimize the digital system 
parameters as well as process the digital signals. We generally use microprocessors 
today as a stable, flexible, and robust way to filter sensor signals precisely for in- 
formation detection, pattern recognition, and even closed-loop control of physical 
systems. The digital signal processing engine allows for precise design and consistent 
filter frequency response in a wide range of environments with little possibility for 
response drift characteristic of analog electronics in varying temperatures, etc. 
However, the microprocessor is also a computer which while filtering digital signals 
can also simultaneously execute algorithms for the analysis of the input-output sig- 
nal waveforms and update the digital filter coefficients to maintain a desired filter 
performance. An adaptive filter computes the optimal filter coefficients based on 
an analytic cost minimization function and adapts the filter continuously to maintain 
the desired optimal response. This self-correction feature requires some sort of 
simple cost function to be minimized as a means of deciding what adjustments must 
be made to the filter. In general, a quadratic cost function is sought since i t  only 
has one point of zero slope, which is either a maximum or minimum. For linear 
time-invariant filters, the cost function is usually expressed as the square of the error 
between the adaptive filter output and the desired output. Since the filter output is a 
linear (multidimensional) function of the filter coefficients, the squared-error is a 
positive quadratic function of the filter coefficients. The minimum of the 
squared-error cost function is known as a least squared-error solution. 

In Chapter 8, we present a very concise development of a least squared-error 
solution for an FIR filter basis function using simple matrix algebra. A projection 
operator is also presented as a more general framework which will be referred 
to in the development of adaptive lattice filter structures latter in Chapter 9. 
The recursive adaptive algorithms in Chapters 9 and 10 allow the implementation 
of real-time adaptive processing where the filter coefficients are updated along u'ith 
the filter computations for the output digital signal. All adaptive filtering algorithms 
presented are linked together through a common recursive update formula. The most 
simple and robust form of the recursive update is the least mean-square (LMS)  error 
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adaptive filter algorithm. We present some important convergence properties of the 
LMS algorithm and contrast the convergence speed of the LMS to other more com- 
plicated but faster adaptive algorithms. Chapter 10 details a wide range of adaptive 
filtering applications including Kalman filtering for state vector adaptive updates 
and frequency-domain adaptive filtering. Recursive system identification is also 
explored using the adaptive filter to model an “unknown” system. The issues of 
mapping between the digital and analog domains arc again revisited from Chapter 
2 for physical system modeling. 
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We owe the method of least-squares to the genius of Car1 Friedrich Gauss 
(1777-1855), who at  the age of only 24, made the first widely accepted application 
of least-squared error modeling to astronomy in the prediction of the orbit of 
the asteroid Ceres from only a few position measurements before it was lost from 
view (1). This was an amazing calculation even by today's standards. When the aster- 
oid reappeared months later, i t  was very close to the position Gauss predicted it 
would be in, a fact which stunned the astronomical community around the world. 
Gauss made many other even more significant contributions to astronomy and 
mathematics. But, without much doubt, least-squared error modeling is one of 
the most important algorithms to the art and science of engineering, and will likely 
remain so well into the 21st century. 

8.1 BLOCK LEAST-SQUARES 

We begin my considering the problem of adaptively identifying a linear 
time-invariant causal system by processing only the input and output signals. Figure 

E nX n  Unknown Y n  
b System 

b 

f 

y'n+ H[ZI 

Figure 1 Block diagram depicting adaptive system identification using least-squared error 
system modeling. 
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1 depicts the process with a block diagram sketch showing the “unknown” system, 
its digital input s [ n ]=xI1,its digital output JT,,,our digital FIR filter model H [ z ] ,  
and the model output ~ ’ 1 ~ .The difference between the unknown system output JT,) 

and the model output gives an error signal E,, which is a linear function of i t ; ,  

the model filter coefficients. I f  we can find the model filter coefficients which give 
an error signal of zero, we can say that our model exactly matches the unknown 
system‘s response to the given input signal -Y,,. If . Y , ~ is spectrally white (an impulse, 
zero-mean Gaussian noise, sinusoidal chirp, etc.), or even nearly white (some signal 
energy at all frequencies), then our model’s response should match the unknown 
system. However, if the unknown system is not well represented by an FIR filter, 
or  if our model has fewer coefficients, the error signal cannot possibly be made 
exactly zero, but can only be minimized. The least-squured error solution represents 
the best possible match for our model to the unknown system given the constraints of 
the chosen model filter structure (FIR) and number of coefficients. 

Real-world adaptive system identification often suffers from incoherent noise 
interference as described in Section 6.2 for frequency domain transfer functions. 
In general, only in the sterile world of computer simulation will the error signal 
actually converge to zero. The issue of incoherent noise interference will be addressed 
in Section 10.3 on Weiner filtering applications of adaptive system identification. The 
FIR filter model H[z]has M +  1 coefficients as depicted in Eq. (8.1.1). 

We define a hcr.si.~Jictwtiorzfor the least-squared error model as a 1 by A4 + 1 row 
vector 

and a model impulse response M +  1 by 1 column vector as 

The FIR filter model output y; can now be written as a simple vector dot product. 

J,:, = (b,, H (8.1.4) 

For this application of FIR system identification, the basis function is a vector 
of the sampled digital inputs from sample n back to sample n -M .  Other forms of 
basis functions are possible such as a power series, function series (exponents, 
sinusoids, etc.), or other functions defined by the structure of the model which 
one wishes to obtain a least-squared error fit to the actual unknown system of 
interest. Least-squares modeling using other forms of basis function will be 
addressed in Section 8.3. The model error is simply the unknown system output 
minus the modeled output signal. 

(8.1.5) 

The least-squared error solution is computed over an observation window 
starting at sample n and ranging backwards to sample n -N+l, or a total of N 
samples. The error signal over the observation window is written as a N by 1 column 
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vector. 

yt1- I 

J’t1-2 

. . .  
?‘ri-N+I l = [  J’n 

(8.1.6) 

Eq. (8.1.6) is written more ompactly in matrix form 

(8.1.7) 

where the rows of X are the basis functions for the individual input-output signal 
samples. 

We now write a compact matrix expression for the sum of the squared error 
over the observation window by computing a complex inner product for the error 
signal vector (superscript H denotes Hermitian transpose-transpose and complex 
conjugate). 

(8.1.8) 

If H is a scalar ( M  =0), the sum of the squared error in Eq. (8.1.8) is clearly a 
quadratic function of the FIR filter coefficient /zo. If M =  1,  one could visualize 
an bowl-shaped error “surface” which is a function of h0 and h l .  For M > 1, the 
error surface is multi-dimensional and not very practical to visualize. However, from 
a mathematical point of view, Eq. (8.1.8) is quadratic with respect to the coefficients 
in H .  The desirable aspect of a quadratic matrix equation is that there is only one 
extremum where the slope of the error surface is zero. The value of H where 
the slope of the error surface is zero represents a minimum of the cost function 
in Eq. (8.1.8) provided that the second derivatives with respect to H is positive 
definite, indicating that the error surface is concave up. If the second derivative with 
respect to H is not positive definite, the Eq. (8.1.8) represents a “profit” function, 
rather than a cost function, which is maximized at  the value of H where the error 
slope is zero. 

Calculating the derivative of a matrix equation is straightforward with the 
exception that we must include the components of the derivative with respect to 
H and H H  in a single matrix-dimensioned result. To accomplish this, we simply 
compute a partial derivative with respect to H (treating H H  as a constant) and 
adding this result to the Hermitian transpose of the derivative with respect to 
H H  (treating H as a constant). Note that this approach of summing the two partial 
derivatives provides a consistent result with the scalar case. 

(8.1.9) 
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The solution for the value of HHwhich gives a zero error surface slope in Eq. (8.1.9) 
1s 

The Hermitian transpose of (8.1.10)gives the value of H for zero slope. 

Given that we now have a value for H where the error surface is flat, the second 
derivative of the squared error is calculated to verify that the surface is concave up 
making the solution for H in Eq. (8.1.11) a least-squared error solution. 

(8.1.12) 

Closer examination of the complex inner product of the basis function reveals that 
the second derivative is simply the autocorrelation matrix times a scalar. 

(8.1.13) 

where R; =E {-~-fi.~-,,- is thejth autocorrelation lag of .I-,,.I f  s,,is spectrally white, 
the matrix in Eq. (8.1.13) is diagonal and positive. If  .I-,,is nearly white, then 
the matrix is approximately diagonal (or can be made diagonal by Gaussian elim- 
ination or QR decomposition). In either case, the autocorrelation matrix is positive 
definite even for complex signals, the error surface is concave up, and the solution 
in Eq. (8.1.1 1) is the least-squared error solution for the system identification prob- 
lem. As the observation window grows large, the least-squared error solution 
can be seen to asymptotically approach 

where Ri’ = E  [-Y:?*,, -,I is the cross correlation of the input and output data for the 
unknown system and the scale factor N divides out of the result. 

Equation (8.1.14) has an exact analogy in the frequency domain where the 
frequency response of the filter H[z] can be defined as the cross spectrum of the 
input-output signals divided by the autospectrum of the input signal as described 
in Section 6.2. This should come as no surprise, since the same information (the 
input and output signals) are used in both the frequency domain and adaptive system 
identification cases. It makes no difference to the least-squares solution, so long as 
the Fourier transform resolution is comparable to the number of coefficients chosen 
for the filer model (i.e. M-point FFTs should be used). However, as we will see in 
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Chapters 9 and 10, the adaptive filter approach can be made to work very efficiently 
as well as can be used to track nonstationary systems. 

Figure 2 presents an example where a 2-parameter FIR filter ( M =  1)  with 
ho= - 1.5 and hl = -2.5 showing the squared-error surface for a range of model 
parameters. The least-squared error solution can be seen with the coordinates of 
H matching the actual “unknown” system where the squared-error is minimum. 

The term “block least-squares” is used to depict the idea that a least-squared 
error solution is calculated on a block of input and output data defined by the 
N samples of the observation window. Obviously, the larger the observation 
window, the better the model results will be assuming some level of noise interference 
is unavoidable. However, if the unknown system being modeled is not a linear func- 
tion of the filter coefficients H ,  the error surface depicted in Figure 2 would have 
more than one minima. Nonlinear system identification is beyond the scope of this 
book. In addition, it is not clear from the above development what effect the chosen 
model order A4 has on the results of the least-squared error fit. If the unknown system 
is linear and FIR in structure, the squared error will decline as model order is 
increased approaching the correct model order. Choosing a model order higher than 
the unknown FIR system will not reduce the squared error further (the higher-order 
coefficients are computed at or near zero). If the unknown system is linear and IIR in 
structure, the squared error will continue to improve as model order is increased. 

8.2 PROJECTION-BASED LEAST-SQUARES 

In this section we present the least-squared error solution for modeling a linear 
time-invariant system in the most general mathematical terms. The reasons for this 
development approach many become of more interest later when we develop the 

Figure 2 Squared-error surface for 2-parameter FIR system with ho = -1.5 and hl = -2.5 
showing the minimum error for the correct model. 

TLFeBOOK



222 Chapter 8 

fast-converging adaptive least-squares lattice filter and Schur recursions. The sys- 
tems presented in this book can all be modeled as a weighted sum of linearly inde- 
pendent functions. For example, Chapter 2 showed how any pole-zero filter 
could be expressed as a weighted sum of resonances, defined by conjugate pole pairs. 
For a stable causal system with real input and output signals, the conjugate pole 
pairs each constitute a subsystem with impulse response representable by a simple 
damped sinusoid, or mode. The total system response to any set of initial conditions 
and excitation signal can be completely described by the proper weighted sum of 
modes. The system response can be seen as a finite subset of the infinite number 
of possibilities of signals. 

An abstract Hilbert space k is an infinite-dimensional linear inner product 
space (2). A lines! time-invariant system can be seen as a linear manifold spanned 
by the subspace C .  The difference between a Hilbert space and a subspace is that 
the Hilbert space has an infinite number of linearly independent elements and 
the subspace has only a finite number of linearly independent elements. Casting 
our linear time-invariant system into a subspace allows us to write the least-squared 
error signal as an orthogonal projection of the system output signal onto the 
subspace. Why do we care? The subspace can be expanded using mathematically- 
defined orthogonal projections, which represent by definition, the minimum distance 
between the old subspace and the new expanded subspace. For new observations 
added to the signal subspace, the orthogonal expansion represents the least-squared 
error between the model output prediction and the unknown system output. The 
mathematical equations for this orthogonal expression give exactly the same 
least-squared error solution derived in the previous section. 

The signal subspace can also be expanded in model order using orthogonal 
projections, allowing a least-squared error M + 1st system model to be derived from 
the Mth order model, and so on. Given a new observation, one would calculate the 
111 = O  solution, then calculate the m = 1 solution using the 171 = O S  information, 
and so on up to the n z  =Mth order model. Since the response of linear time-invariant 
systems can be represented by a weighted sum of linearly independent functions, it is 
straightforward to consider the orthogonal-projection order updates a well matched 
framework for identification of linear systems. The projection operator framework 
allows the subspace to be decomposed in time and order as an effective means 
to achieve very rapid convergence to a least-squared error solution using very 
few observations. The block least-squares approach will obtain exactly the same 
result for a particular model order, but only that model order. The projection 
operator framework actually allows the model order to be evaluated and updated 
along with the model parameters. Under the conditions of noiseless signals and 
too high a chosen model order, the required matrix inverse in block least-squares 
is ill-conditioned due to linear dependence. Updating the model order in a projection 
operator framework allows one to avoid over determining the model order and the 
associated linear dependence which prohibits the matrix inversion in the 
least-squares solution. The projection operator framework can also be seen as a 
more general representation of the Eigenvalue problem and singular value 
decomposition. The recursive update of both the block least-squares and projection 
operator framework will be left to Chapter 9. 

Without getting deep into th,e details of linear operators and Hilbert space 
theory, we can simply state that G is a subspace of the infinite Hilbert space ff. 
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Given a new observation y,] in the vector but not in the subspace spanned by G , we 
define a vector g as then projection of? onto the subspace G, andf as a vector orthog- 
onal to the subspace G which connects g to 7.One can think of the projection of a 
3-dimensional vector onto a 2-dimensional plane as the “shadow” cast by the vector 
onto the plane. Simply put, j=g +f.  One can think of g as the component of -1. 
predictable in the subspace G, andf  is the least-squared error (shortest distance 
between the new observation and the prediction as defined by an orthogonal vector) 
of the prediction for J. The prediction error is E =f = -7 -g. Substituting the 
least-squared error solution for our model H ,  we can examine the implications 
of casting our solution in a projection operator framework. 

(8.2.1) 

The projection o f j  onto the subspace G,denoted as the vector g above is simply 

where Px is a projection operator for the subspace G spanned by the elements of k. 
The projection operator outlined in Eqs (8.2.1)-(8.2.2) has the interesting properties 
of being hounded, having unit), norm, and being self-adjoint. Consider the square of a 
projection operator. 

(8.2.3) 

The projection operator orthogonal to the subspace G is simply 

thus, it is easy to show that (I - Px)Px = 0,where I is the identity matrix (all 
elements zero except the main diagonals which are all unity). Therefore, the error 
vector can be written as the orthogonal projection of the observations to the sub- 
space as seen in Figure 3 and Eq. (8.2.5). 

E = (I - Px)j (8.2.5) 

This still seems like a roundabout way to re-invent least-squares, but consider 
updating the subspace spanned by the elements of X to the spacz spanned by 
X + S .  We can update the subspace by again applying an orthogonal projection. 

x + s = x + S ( I  -P*) (8.2.6) 

The projection operator for the updated subspace is 

(8.2.7) 
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0bsewation 

Figure 3 Graphical depiction of projection-based least-squared error prediction showing 
the error vector as an orthogonal projection. 

The orthogonal projection operator to the updated subspace S + X is simply 

I - P { X + S )  = I - P/y - (I- Px)S[SN(I- Px)q-'S"(I - Px) (8.2.8) 

Equation (8.2.8) can be used to generate a wide range of recursive updates for 
least-squared error algorithms. The recursion in Eq. (8.2.8) is remarkably close 
to the recursion derived from the matrix inversion lemma presented in Chapter 
9. But, this difference is due only to the different applications of matrix inversion 
and orthogonal projection and will be revisited in more detail in Chapter 9. However, 
i t  is enlightening to observe the mathematical uniformity of least-squares recursions. 
Casting an error signal as an orthogonal projection by definition guarantees the 
minimum error as the shortest distance between a plane and a point in space is 
a line normal to the plane and intersecting the point. 

8.3 GENERAL BASIS SYSTEM IDENTIFICATION 

Consider a more general framework for least-squared error system modeling. We 
have shown a straightforward application for system identification using a digital 
FIR filter model and the input-output signals. The basis function for the FIR filter 
model was a digital filter's tapped delay line, or input sequence 

where s,,is the input signal to the filter. Gauss's technique, developed nearly two 
centuries ago, was used for many things long before digital filters even existed. 
By applying several other basis functions, we will see the great power of 
least-squared error system modeling, even for non-linear systems. The reader should 
understand that any basis function can be used to produce a linear least-squared 
error model. But the choice of basis function(s) will determine the optimality of 
the the least-squared error model. 
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Consider a very simple task of fitting a polynomial curve to four pairs of obser- 
vations ,I. = [1.1 6.0 8.0 26.51 at  the ordinates s= [I 2 3 41. For a linear curve fit, the 
basis function is simply 4n= [s,,I] and the subspace X is spanned by the elements 
x of defined by 11x = "  (8.3.2) 

4 1  

The least-squared error solution for a linear (straight line) fit is 

0.2 - O S ] [ '  2 3 4 1 1  (8.3.3) 
-9.15 -0.5 1.5 1 1 1 1 1 

If we were to write to write the equation of the line in slope-intercept form, j*= 7.82s 
- 9.15, where the slope is 7.82 and the intercept of the jT-axis is -9.15. The 
projection operator for the linear fit is symmetric about both diagonals, but the main 
diagonal does not dominate the magnitudes indicating a rather poor fit as seen in the 
error vector. 

0.7 0.4 0.1 -0.2 ][ [z]p* = 0.4 0.3 0.2 0.1 E = ( I  - Px)?;= (8.3.4)0.1 0.2 0.3 0.4 
-0.2 0.1 0.4 0.7 

The mean-squared error for the linear fit in Eqs (8.3.2) through (8.3.4) is 16.26. 
Fitting a quadratic function to the data simply involves expanding the basis 

function as = [.Y,,~ x, I]. 

0.25 -1.25 .:ij][ 1 4 9 l:] [ (8.3.5)
1 2 3 4  ]1.25 -6.75 7.75 1 1 1 

26.5 

The projection operator and error vector for the quadratic fit are 

0.95 0.15 -0.15 -0.05 [ -0.97 ]0.15 0.55 0.45 -0.151 E = ( I  - PX),. = -2*91;:LI; 

-0.15 0.45 0.55 0.15 
0.05 -0.15 0.15 0.95 

(8.3.6) 

The mean-squared error for the quadratic fit is 4.75, significantly less than the linear 
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fit. Clearly, the projection operator for the quadratic fit, while still symmetric about 
both diagonals, is dominated by the main diagonal element magnitudes, indicating 
a better overall fit for the data. Fitting a cubic basic function to the data we get 
the model parameters H =[3.233 -20.85 44.82 -26.10 3, Px is the identity matrix, 
and the error is essentially zero. Figure 4 shows the linear, quadratic, and cubic 
modeling results graphically. 

It is expected that the least-squared error fit for the cubic basis function would 
be zero (within numerical error limits -the result in this case was 1 x lo-’?). This is 
because there are only 4 data observations and four elements to the basis function, or 
four equations and four unknowns. When the data is noisy (as is the case here), 
having too few observations can cause a misrepresentation of the data. In this case 
the data is really from a quadratic function, but with added noise. If we had many 
more data points it would be clear that the quadratic model really provides the best 
overall fit, especially when comparing the cubic model for the 4-observation data 
to a more densely-populated distribution of observations. In any modeling problem 
with noisy data i t  is extremely important to overdetermine the model by using many 
more observations than the basis model order. This is why distribution measures 
such as the Student’s [-test, F-test, etc., are used extensively in clinical trials where 
only small numbers of subjects are available. In most adaptive signal processing 
models, large data sets are readily available, and this should be exploited wherever 
possible. 

Consider the highly nonlinear frequency-loudness response of the human ear as 
an example. Audiologists and noise control engineers often use a weighted dB value 
to describe sound in terms of human perception. According to Newby (3 ) ,  the A 
weighted curve describes a dB correction factor for the human ear for sound levels 
below 55 dB relative to 20 pPa, the B curve for levels between 55 and 85 dB, 

I I 1 1 I30 I 

I 1 1 4 1 

Figure 4 Linear, quadratic, and cubic least-squared error models fitting 4 observation 
points. 
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and the C curve for levels over 85 dB. The A and C curves are predominantly used. 
Most hearing conservation legislation uses the A curve since occupational hearing 
impairment occurs in the middle frequency range where the A curve is most sensitive. 
For loud sounds, the brain restricts the levels entering the ear via tendons on the 
bones of the middle ear and neural control of the mechanical response of the cochlea 
in the organ of Corti. This action is analogous to the action of the iris in the eye 
closing down in response to bright light. In the age of signal processing tools such 
as spectrum analyzers and Matlab, it is useful to have audioband curves to quickly 
convert a narrowband sound spectrum to an A weighted level. To obtain a 
straightforward algorithm for curve generation, the method of least-squared error 
is employed to fit a curve accurately through a series of well-published dB-frequency 
coordinates. The ear is an absolutely remarkable intelligent sensor system which uses 
adaptive response to optimize hearing in a wide range of environments. It is very 
useful from a sensor technology point-of-view, to analyze the physics and physiology 
of the ear in the context of the least-squared error modeling of its frequency-loudness 
response to acoustic signals. 

Mechanics of the Human Ear 

The human ear is a remarkable transducer, which by either evolution or divine 
design, has mechanisms to adapt to protect itself while providing us detection of 
a wide range of sounds. If we define 0 dB, or 20 pPa, as the “minimum” audible 
sound detectable above the internal noise from breathing and blood flow for an 
average ear, and 130 dB as about the loudest sound tolerable, our ears have typically 
a 106dynamic pressure range. This is greater than most microphones and certainly 
greater than most recording systems capable of the ear’s frequency response from 
20 Hz to 20 kHz. We know that a large part of human hearing occurs in the brain, 
and that speech is processed differently from other sounds. We also know that 
the brain controls the sensitivity of the ear through the auditory nerve. Figure 5 
shows the anatomy of the right ear looking from front to rear. 

Like the retina of the eye, overstimulation of the vibration-sensing “hair cells” 
in the cochlea can certainly lead to pain and even permanent neural cell damage. The 
brain actually has two mechanisms to control the stimulation levels in the cochlea. 
First, the bones of the middle ear (mallus, incus, and stapes) can be restricted from 
motion by the tendon of Stapedious muscle as seen in Figure 5 in much the same 
way the iris in the eye restricts light. As this muscle tightens, the amplitude of 
the vibration diminishes and the frequency response of the middle ear actually 
flattens out so that low, middle, and high frequencies have nearly the same 
sensitivity. For very low-level sounds, the tendon relaxes allowing the stapes to move 
more freely. The relaxed state tends to significantly enhance hearing sensitivity in the 
middle speech band (from 300 to 6000 Hz approximately). Hence the A weighting 
reflects a significant drop in sensitivity a t  very low and very high frequencies. 
The second way the brain suppresses overstimulation in the cochlea involves the 
response of the hair cells directly. It is not known whether the neural response 
for vibration control affects the frequency response of the ear, or whether the tendon 
of Stapedious in conjunction with the neural response together cause the change in 
the ear’s frequency response as a function of loudness level. However, the average 
frequency responses of healthy ears have been objectively measured for quite some 
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Figure 5 Anatomy of the right human ear looking from front to rear showing the tendons 
used by the brain to control the loudness of the sound reaching the inner ear cochlea and 
auditory nerve. 

time. The “loudness” button on most high fidelity music playback systems inverts 
the ear’s frequency response in conjunction with the “volume” control so that music 
can have a rich sounding bass response at low listening levels. Figure 6 shows the 
relative frequency correction weightings for the A, B, and C curves. 

It is useful to have the ability to precisely generate the A, B, or C weighting 
curves for the human ear’s response for any desired frequency in the audible range. 
This capability allows one to easily convert a power spectrum in dB re 20 pPa 
of some arbitrary frequency resolution directly to an A, B, or C-weighted dB reading. 
The American National Standards Institute (ANSI) standard for sound level meter 
specifications provides tables of relative dB weightings as a function of frequency 
for the human ear (4). Additional tables are given specifying the accuracy required 
in fdB vs. frequency for a sound level meter (SLM) to be considered Type 0 (most 
accurate), Type 1 (roughly f l  dB in the 50 Hz to 4000 Hz range), or Type 2 
(economical accuracy). The ANSI standard does not specify A, B, and C curve 
equations, just the Tables representing the accepted “normal” human response. 

Least-Squares Curve Fitting 

To generate a model for a continuous curve to be used to map narrowband FFT 
spectra calibrated in Pascals to A, B, or C weighted sound pressure levels, the 
least-squared error technique is employed. We begin with 7 decibel observations 
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Figure 6 A, B, and C, weighting curves for modeling the human ear‘s relative frequency 
response to sound at various levels of loudness. 

Table 1 dB Correction Factors for A, B, and C Weightings 

Freq 
HZ 19.95 50.12 100 199.5 1000 1995 3981 6310 10000 20000 

A -50.5 -30.2 -19.1 -10.9 0 1.2 +1.0 -0.1 -3.0 -9.3 
B -24.2 - 1  1.6 -5.6 -2 0 -0.1 -0.7 -1.9 -4.3 - 1 1 . 1  
C -6.2 -1.3 -0.3 0 0 -0.2 -0.8 -2.0 -4.0 -11.2 

at 7 frequencies which are simply read from existing A, B, and C curves in the litera- 
ture given in Table l .  These data observations can be easily seen in Figure 6 as the 
symbols plotted on the corresponding curves. As noted earlier, the B curve is gen- 
erally only used in audiology, but is useful to illustrate the sensitivity changes in 
the ear between 55 dB and 85 dB. 

To improve the conditioning of the curve-fitting problem, we use the base-10 
logarithm of the frequency in kHz in the basis function and a curve model of 
the form 

(8.3.7) 
171 =1 

whereh is the log base 10 of the frequency in kHz, the superscript bbs”refers to either 
A, B, or C weighting, and the subscript “H” means the dB value is predicted using 
the weights H,,,.The use of the base 10 logarithm of the frequency in kHz may seem 
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unnecessary, but it helps considerably in conditioning the matrices in the 
least-squares fitting problem over the 9 octave frequency range from 20 Hz to 
20 kHz.  The error between our model in Eq. (8.2.7) and the ANSI table data is 

where the subscript "7"' means that the dB data is from the ANSI tables. We want 
our model, defined by the weights H,,, and basis function [1 ji?. . .&*'-'I, to provide 
minimum error over the frequency range of interest. Therefore, we define Eq. (8.3.8) 
in matrix form for a range of N frequencies. 

Equation (8.3.9) is simply written in compact matrix form as 

E = D - F j l r  (8.3.10) 

Therefore, the least-squared error solution for the weights which best fit a curve 
through the ANSI table dB values is seen in Eq. (8.3.1 1 ) .  The resulting 5th-order 
model coefficients for the A, B, and C-weighted curves in Figure 6 are given in 
Table 2. 

Pole-Zero Filter Models 

However, historically, the functions for the A, B, and C curves are given in terms of 
pole-zero transfer functions, which can be implemented as an analog circuit directly 
in the SLM. The method for generating the curves is wisely not part of the ANSI 
standard, since there is no closed form model defined from physics. One such 
pole-zero model is given in Appendix C of ANSI S1.4-1983 (with the disclaimer 

Table 2 5th Order Least-Squares Fit Coefficients for A, B, and C Curves 

m HA H R  Hc 

1 -0.1940747 +O. 1807204 -0.07478983 
2 +8.387643 +1.257416 +O. 3047574 
3 -9.6 16735 -3.32772 -0.25 13878 
4 -0.2017488 -0.7022932 -2.4 I6345 
5 - 1 . 1  11944 -1.945072 -2.006099 
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“for informational purposes only”). The C-weighting curve in dB is defined as 

(8.3.12) 

where K ,  is 2.24288 1 x 10I6,f i  =20.598997, f4 = 12194.22, andfis  frequency in Hz. 
The B-weighting is defined as 

where K. is 1.0251 19 and f s  is 158.48932. The A-weighting curve is 

(8.3.14) 

where K 3  is 1.562339, f2 is 107.65265, and f 3 is 737.86223. The curves generated by 
Eqs (8.3.12)-(8.3.13) are virtually identical to those generated using least-squares. 
A comparison between the least-squares fit and the “ANSI” pole-zero models is 
seen in Figure 7. 

Since the highest required precision for a SLM is Type 0 where the highest 
precision in any frequency range is f 0 . 7 d B ,  the variations in Figure 7 for the 
least-squares fit are within a Type 0 specification. The European Norm EN6065I 
(IEC651) has slightly different formulation for a pole-zero model for the A, B, 
and C curves, but the listed numbers tabulated are identical to the ANSI curve 
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responses. Using either curve definition, one can access the A, B, and C weightings 
for conversion of narrowband spectra to broadband weighted readings for modeling 
the human ear's response to sound. Accuracy of the least-squared error model can be 
improved by using more frequency samples in between the samples given in Table 1. 
In general, the least-squares fit will best match the model ut the husisfunction sumplc 
points. In between these input values, the model can be significantly off the expected 
trend most notably when the number of input samples in the basis function N is close 
to the model order M .  N must be greater than M for a least-squared error solution to 
exist, but N >> M for a very accurate model to be found from potentially noisy data. 

As our final example basis function in this section, we consider the Fourier 
transform cast in the form of a least-squares error modeling problem. The basis 
function is now a Fourier series of complex exponentials of chosen particular fre- 

L r t I lquencies and our N observationsj = y n- I ... J ' , ~- ,v+ are of some time series 
of interest. 

The least-squared error solution for the chosen basis functions (choice of (usand M )  
is simply 

t n'=n-N+l 


(8.3.16) 

which is consistent with the normalized discrete Fourier transform presented in 
Chapter 5 ,  Eq. (5.1.2). The solution is greatly simplified by the orthogonality of 
the complex sinusoids (provided that the span of N samples constitute an integer 
number of wavelengths in the observation window). Orthogonality of the basis 
functions simplifies the matrix inverse (XHX)-'by making it essentially a scalar 
N - '  times the identity matrix I .  Complex sinusoids are also orthonormal when 
the factor of N is removed by scaling. Non-orthogonal basis functions can always 
be used in a least-squared error model, but the matrix inverse must be completely 
calculated. 

If the basis function is a spectrum of the input to an unknown system X(co),and 
the observations are a spectrum of the output signal from an unknown system Y(to), 
then the model is the frequency response of the unknown system H(co).I t  is useful to 
compare the least-squared error spectrum solution to the transfer function meas- 
urement previously developed in Section 6.2 .  The transfer function solution using 
least squares and time-domain input-output data is seen in Eq. (8.3.17) for X(co) 
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white. 

(8.3.17) 

Equation (8.3.17) is the same result presented in Eq. (8.1.14) in the limit as .V 
approaches infinity. Since X(to) is spectrally white, the basis functions are all 
"digital" Dirac delta functions making the matrix inverse in Eq. (8.3.17) a simple 
scalar inverse. Taking Fourier transforms of both sides of Eq. (8.3.17) we have 
the transfer function expression from Section 6.2. 

(8.3.18) 

The projection operator is the identity matrix when the input signal is orthog- 
onal for the observation window N .  For large N and reasonably white X ( w ) the 
characteristics of Eqs (8.3. 17)-(8.3.18) generally hold as stated. However, for 
non-orthogonal N (spectral leakage cases), the frequency domain solution for 
the frequency response H ( m ) in Eq. (8.3.18) may have significant error compared 
to the time domain solution including the full matrix inverse. The reason for this 
is that in the time domain solution, the model is free to move its zeros anywhere 
to best match the dominant peaks in the spectral response. But with a frequency 
domain basis function, the specific frequencies are pre-chosen and can result in 
a bias error in the model. Obviously, for very large N and high model orders, 
the two solutions are essentially identical. 

8.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

The manual computations required in Gauss's day severely limited the applications 
of least-squares to only a few well-defined problems. It is humbling, to say the least, 
that an individual at the turn of the 19th century could manually make the numerical 
calculations necessary to predict the position of an asteroid 9 months in adlTance. 
Remarking once that the least-squares technique would be useful on a much wider 
scale if a suitable machine could be built to automate some of the calculations, Gauss 
made probably the greatest understatement of the last two centuries! The advent of 
the digital computer has made application of least-squared error modeling as 
pervasive in business law, sociology, psychology, medicine, and politics as i t  is 
in engineering and the hard sciences. 

The least-squared error problem can be cast into a projection operator inner 
product space which is very useful for derivation of fast recursive adaptive 
processing algorithms. The observation data for a particular problem can be seen 
as a subspace where the system of interest is a linear manifold, the response of which 
can be modeled as a weighted linear combination of orthogonal eigenvectors. The 
subspace spanned by the observations of the system input signal form the basis 
of a projection operator. The orthogonal projection of the observed system output 
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signal vector onto the input signal subspace determines the least-squared error 
solution. The value of the projection operator framework is that the subspace 
can be expanded using orthogonal projections for model order as well as observation 
window size. The orthogonal decomposition of the subspace allows for very efficient 
(fast converging) recursive adaptive algorithms to be developed such as the 
least-squares lattice adaptive algorithm. 

We have shown a very straightforward application of least-squared error 
modeling on an FIR filter where the basis function is a simple delay line of filter 
input samples. However, a much wider range of basis functions can be used, includ- 
ing nonlinear functions. What is critical is that the error response, the difference 
between the actual and predicted outputs, be a linear function of the model 
coefficients. The linear error model allows a quadratic squared error surface which 
is minimized through the choice of model coefficients which gives a zero gradient 
on the error surface. The fact that the zero-gradient solution is a minimum of 
the error surface is verified by examination of the second derivative for a positive 
definite condition. 

PROBLEMS 

I .  Given 4 temperatures and times, find /? and To for the model 
T( t )=Toe-' 'I. T(60)=63.8, T(120)= 19.2, T(180)=5.8, and T(240) = 
1.7. Assume t is in seconds and T is 'C. 

2. Do basis functions have to be orthogonal for the least-squared error tech- 
nique to work? 

3.  Does the underlying error model have to be linear for the least-squared 
error technique to work? 

4. A stock market index has the following values for Monday through 
Thursday: [ 1257, 1189, 1205, 1200). 
( a )  Using a 4-day moving average linear model fit, what do you predict the 

index will be by Friday close? 
( b )  Using a 5-day period sinusoidal basis function, what do you expect 

Friday's index to be? 
5 .  Show that the optimal mean-squared error can be written as 

C H C  = &F"(/ - PX.).?. 
6. Show that the projection operator is self-adjoint and has unity norm. 
7. Show that as the projection operator P,y approaches the identity matrix, 

the mean square error must go to zero. 
8. Show that Px-F = XHU, where Ho is the least-squared error set of 

coefficients. 
9. You buy a stock at $105 /share. Mondays closing price is $ 1  10. Tuesday's 

closing price drops to $100. Wednesday's closing price is back up to $108. 
But then Thursday's closing price only drops to $105. Based on a linear 
model, should you sell on Friday morning'? 
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Recursive Least-Squares Techniques 

The powerful technique of fitting a linear system model to the input-output response 
data with least-squared error can be made even more useful by developing a recursive 
form with limited signal data memory to adapt with nonstationary systems and 
signals. One could successfully implement the block least-squares in Section 8.1 
on a sliding record of N input-output signal samples. However, even with today’s 
inexpensive, speedy, and nimble computing resources, a sliding-block approach 
is ill-advised. It can be seen that the previous N - 1 input-output samples and their 
correlations are simply being recomputed over and over again with each new sample 
as time marches on. By writing a recursive matrix equation update for the input data 
autocorrelations and input-output data cross correlations we can simply add on the 
necessary terms for the current input-output signal data to the previous correlation 
estimates, thereby saving a very significant amount of redundant computations. 
Furthermore, the most precise and efficient adaptive modeling algorithms will gen- 
erally require the least amount of overall computation. Every arithmetic operation 
is a potential source of numerical error, so the fewer redundant computations 
the better. Later we will show simplifications to the recursive least-squares algorithm 
which require very few operations but converge more slowly. However, these 
simplified algorithms can actually require more operations over many more 
iterations to reach a least-squared error solution and may actually not produce 
as precise a result. This is particularly true for non-stationary signals and systems. 

To make the recursive least-squares algorithm adaptive, we define an 
exponentially decaying memory window, which weights the most recent data the 
strongest and slowly “forgets” older signal data which is less interesting and likely 
from an “out-of-date” system relative to the current model. Exponential memory 
weighting is very simple and only requires the previous correlation estimate. 
However, a number of other shapes of recursive data memory windows can be found 
( l ) ,  but are rarely called for. Consider a simple integrator for a physical parameter kt’, 

for the wind speed measured by a cup-vane type anemometer. 

(9.0.1) 

237 
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The parameter N in Eq. (9.0.1)is the exact length of a linear memory window in 
terms of number of wind samples. If the linear memory window starts at  N = 1, (x =0 
and /?=1, at N = 2  x = % and /J= %, at N =  3, x = $and /I=i,N = 4  x = ‘/4 and p =  $, 
and so on. For any given linear data window length N,the computed x and /?provide 
an unbiased estimate of the mean wind speed. However, if at  sample 100 we fix 
x =0.99and f l =  0.01,we have essentially created an exponentially- weighted data 
memory window effectively 100 samples long. In other words, a wind speed sample 
100 samples old is discounted by 1 / e in the current estimate of the mean wind speed. 
The “forgetting factor” of 0.99on the old data can be seen as a low-pass moving 
average filter. The wind speed data is made more useful by averaging the short-term 
turbulence while still providing dynamic wind speeds in the changing environment. If 
the anemometer is sampled at  a 1 Hz rate, the estimated mean applies for the pre- 
vious 2 minutes (approximately), but is still adaptive enough to provide measure- 
ments of weather fronts and other events. The basic integrator example in Eq. 
(9.0. I )  is fundamental in its simplicity and importance. All sensor information 
has a value, time and/or  spatial context and extent, as well as a measurement con- 
fidence. T o  make the most use of raw sensor information signals in an intelligent 
signal processing system, one must optimize the information confidence as well 
as context which is typically done through various forms of integration and filtering. 

9.1 THE RLS ALGORITHM AND MATRIX INVERSION LEMMA 

The recursive least-squares (RLS) algorithm simply applies the recursive mean esti- 
mation in Eq. (9.0.1)to the autocorrelation and crosscorrelation data outlined 
in Section 8.1 for the block least-squares algorithm. Using the formulation given 
in Eqs (8.1.1)-(8.1.7),a recursive estimate for the input autocorrelation matrix data 
is 

where we do  not need a /? term on the right since 

(9.1.2) 


where N is the size of the data memory window. A similar relation is expressed for the 
cross correlation of the input data x f  and output data y r .  

(9.1.3) 


A recursive update for the cross correlation is simply 

(9.1.4) 


However, the optimal filter H requires the inverse of Eq. (9.1.1)times (9.1.4). 
Therefore, what we really need is a recursive matrix inverse algorithm. 

The matrix inversion lemma provides a means to recursively compute a matrix 
inverse when the matrix itself is recursively updated in the form of ‘‘Aneh = + 
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BCD". The matrix inversion lemma states 

( A  +BcD)-' = A-' - A-IB(C-1 + DA-lB)- 'DA-'  (9.1.5) 

where A ,  C and D A  - ' B ,  and BCD are all invertible matrices or  invertible matrix 
products. It is straightforward to prove the lemma in Eq. (9.1.5) by simply 
multiplying both sides by ( A  + BCD). Rewriting Eq. (9.1.1) in the A +BCD form, 
we have 

Taking the inverse and applying the matrix inversion lemma gives 

(9. I .7) 

which is more compactly written in terms of a Kalman gain vector K,,+1 in Eq. 
(9.1.8). 

(9.1.8) 

The Kalman gain vector K,,+I has significance well beyond a notational con- 
venience. Equations (9.1.7) and (9.1.9) show that the denominator term in the 
Kalman gain is a simple scalar when the basis function vector Qs,,+l is a row vector. 

(9.1.9) 

Clearly, inversion of a scalar is much less a computational burden than inversion of a 
matrix. When A-,, is stationary, one can seen that the Kalman gain simply decreases 
with the size of the data memory window N as would be expected for an unbiased 
estimate. However, if the statistics (autocorrelation) of the most recent data is dif- 
ferent from the autocorrelation matrix, the Kalman gain will automatically increase 
causing the recursion to "quickly forget" the old outdated data. One of the more 
fascinating aspects of recursive adaptive algorithms is the mathematical ability 
to maintain least-squared error for nonstationary input-output data. Several 
approximations to Eq. (9.1.9) will be shown later which still converge to the same 
result for stationary data, but more slowly due to the approximations. 

Our task at the moment is to derive a recursion for the optimal (least-squared 
error) filter H , , + I ,given the previous filter estimate H,,  and the most recent data. 
Combining Eqs (9.1.8) and (9.1.4) in recursive form gives 

which can be shown to reduce to the result in Eq. (9.1.1 1 ) .  

(9.1.11 )  
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(denoted as J * ; ~ + ~ )The prediction of j ~ , ~ + ~  is derived from S , l + l H , l ,and in some 
texts is denoted asj.,,+II,,, which literally means “the prediction ofj*, ,+I given a model 
last updated at  time H . ”  Again, the significance of the Kalman gain vector can be seen 
intuitively in Eq. (9.I .  1 1). The filter does not change if the prediction error is zero. 
But, there is always some residual error if not due to extraneous noise or model 
error is due to the approximation of the least significant bit in the analog-to-digital 
convertors in a real system. The impact of the residual noise on the filter coefficients 
is determined by the Kalman gain K,,+,, which is based on the data memory window 
length and the match between the most recent basis vector statistics and the 
long-term average in the correlation data. It is humanistic to note that the algorithm 
has to make an  error in order to learn. The memory window as well as variations on 
the Kalman gain in the form of approximations determine the speed of convergence 
to the least-squared error solution. 

The RLS Algorithm is summarized in Table 1 at  step “ r z + l ”  given new input 
sample .Y, ,+~ and output sample J * , ~ + I ,  and the previous estimates for the optimal 
filter H,,  and inverse autocorrelation matrix P,,= (Xf’X),; ’  

Approximations to RLS can offer significant computational savings, but at the 
expense of slower convergence to the least-squared error solution for the optimal 
filter. So long as the convergence is faster than the underlying model changes being 
tracked by the adaptive algorithm through its input and output signals. one can 
expect the same optimal solution. However, as one shortens the data memory 
window, the adaptive algorithm becomes more reactive to the input-output data 
resulting in more noise in the filter coefficient estimates. These design trades are 
conveniently exploited to produce adaptive filtering systems well-matched to the 
application of interest. The largest reduction in complexity comes from eliminating 
PI, from the algorithm. This is widely known as the projection algorithm. 

(9.1.13) 

I t  will be shown later in the section on the convergence properties of the LMS algo-
rithm why -,’ must be less than 2 for stable convergence. Also, when 2 is positive 
K , , t l  remains stable even if the input data becomes zero for a time. 

Table 1 The Recursive Least Squares (RLS)  Algorithm 

Descript ion Equation 

Basis function containing .Y,~+I = [ . ~ , l + l . ~ , l - \ - , l  - I  . . . .V,I ZIcll  
- / I - 1 .

I nver se a11tocorrel;It ion matrix : pfl = (X .)*:ItI = + 1Hn3 


output prediction 

Kalman gain using RLS and exponential pn4,/,:I 
memory window N samples long. K l + l  = 

+ ( b , l + l  Pdb!! I 
x = (,Y - l ) / , Y  

Update for autocorrelation matrix inverse Pn+1 = rpl[l- K + I ~ , I + ~ I P ~  

Optimal filter update using prediction error Hn+1 H n  + k ; i +  I Li,,i+ I - j v i l+ I I 
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Another useful approximation comes from knowledge that the input data will 
always have some noise (making 44Hnonzero) allowing the elimination of ct which 
makes the memory window essentially of length M . This is known as the stochastic 
approximation to RLS. Of course, choosing a value of 1’ < 2 effectively increases 
the data memory window as desired. 

(9.1.14) 

By far the most popular approximation to RLS is the least-mean squared error, 
or LMS algorithm defined in Eq. (9.1.15). 

(9.I .  15) 

The LMS algorithm is extremely simple and robust. Since the adaptive step size p is 
determined by the inverse of the upper bound of the model order M+l times 
the expected mean-square of the input data, it is often referred to as the normalized 
LMS algorithm as presented here. The beauty of the LMS adaptive filtering algo- 
rithm is that only one equation is needed as seen in Eq. (9.1.16), and no divides 
are needed except to estimate p. In the early days of fixed-point embedded adaptive 
filters, the omission of a division operation was a key advantage. Even with today’s 
very powerful DSP processors, the simple LMS adaptive filter implementation is 
important because of the need for processing wider bandwidth signals with faster 
sample rates. However, the slowdown in convergence can be a problem for large 
model-order filters. Still, an additional factor prc, l  < 1 seen in Eq. (9.1.16) is generally 
needed in the LMS algorithm as a margin of safety to insure stability. A small p,.,,/has 
the effect of an increased memory window approximately as N = 1 /p, . ( , / ,which is 
often beneficial in reducing noise in the parameter estimates at the expense of even 
slow convergence. We will see in the next Section that the LMS algorithm conver- 
gence depends on the eigenvalues of the input data. 

(9.1.16) 

The parameter p,,;,, = 1 / [cT:,) and 0;is the variance of the input data q ! I l l + l  and 
prelis the step size component which creates an effective “data memory windour” 
with an exponential forgetting property of approximate length N = 1 /p,.,,,.I t  can 
be seen that the shortest possible memory window length for a stable LMS algorithm 
is the filter length M +  1 and occurs if prC, /=1 / ( M+ 1 )  such that pr,,i,\plf8/< 

l/{Sh,,+lq!If+lL 

9.2 LMS CONVERGENCE PROPERTIES 

The least-mean squared error adaptive filter algorithm is a staple technique in the 
realm of signal processing where one is tasked with adaptive modeling of signals 
or systems. I n  general, modeling of a system (system of linear dynamical responses) 
requires both the input signal exciting the system and the system’s response in  
the form of the corresponding output signal. A signal model is obtainable by 
assuming the signal is the output of a system driven by zero-mean Gaussian (ZMG). 
or spectrally white, random noise. The signal model is computed by “whitening” the 
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available output signal using an adaptive filter. The inverse of the converged filter 
can then be used to generate a model of the signal of interest from a white noise 
input, called the innovation. We will first discuss the dynamical response of the 
LMS algorithm by comparing it to the more complicated RLS algorithm for system 
modeling, also known as Wiener filtering, where both input and output signals 
are available to the “unknown system”, as seen in Figure 1. 

System modeling using adaptive system identification from the input-output 
signals is a powerful technique made easy with the LMS or RLS algorithms, Clearly, 
when the input-output response (or frequency response) of the filter model H [ z ]  in 
Figure 1 closely matches the response of the unknown system, the matching error 
E,, =J * , ~- j*i1will be quite small. The error signal is therefore used to drive the adapt- 
ive algorithm symbolize by the system box with the angled arrow across i t .  This 
symbolism has origins in the standard electrical circuitry symbols for variable 
capacitance, variable inductance, or the widely used variable resistance 
(potentiometer). It’s a reasonable symbolic analogy except that when the error signal 
approaches zero, the output of H [ z ] is not zero, but rather H[z]stops adapting and 
should in theory be closely matched to the unknown system. 

The LMS algorithm offers significant savings in computational complexity 
over the RLS algorithm for adaptive filtering. Examination of the convergence 
properties of the LMS algorithm in detail will show where the effects of the 
simplification of the algorithm are most significant. We will show both mathemat- 
ically and through numerical experiment that the performance penalty for the 
LMS simplification can be seen not only for the modeling of more complex systems, 
but also for system input excitation signals with a wide eigenvalue spread. System 
identification with a ZMG “white noise” input excitation and the LMS algorithm 
will converge nearly identically to the more complex RLS algorithm, except for sys- 
tems with large model orders (requiring a smaller, slower, step size in the LMS 
algorithm). When the input signal has sinusoids at the low and/or  high frequency 
extremes of the Nyquist band, the resulting wide eigenvalue spread of the input sig- 
nal correlation matrix results in very slow convergence of the LMS algorithm. 

X n  Unknown Y n  
b 


System 
I 

Figure 1 Block diagram depicting adaptive system identification using an adaptive filter 
with input .\-,,.output j*,,,predicted output and error signal cn. 
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Consider the LMS coefficient update in Eq. (9.1.16) where we set prc,/= 1 for the 
moment and write the predicted output signal yir+l as $, l+ lHn.  

Rearranging and taking expected values, we have 

we can write the LMS recursion as a coefficient vector error as given in Eq. (9.2.4). 

(9.2.4) 

We note that R', the input signal autocorrelation matrix (see Eqs (8.1.13) and 
(8.1.14)) is positive definite and invertible. In a real system, there will always be 
some residual white noise due to the successive approximation error in the 
analog-to-digital convertors for the least significant bit. The autocorrelation matrix 
can be diagonalized to give the signal eigenvalues in the form D = QHR'Q, where 
the columns of Q have the eigenvectors which correspond to the eigenvalues &, 
k =0, 1,2,  ..., M on the main diagonal of D.Since the eigenvectors are orthonormal, 
QHQ= I and Eq. (9.2.4) becomes 

We can now define an upper limit for p,  the LMS step size to insure a stable 
adaptive recursion where the coefficient vector error is guaranteed to converge 
to some small stochastic value. The estimated eigenvalues will range from a mini- 
mum value Aminto some maximum value A,,,. For each coefficient to converge 
to the optimum value 11 - 2 ,uR, I < 1. Therefore 0 < p c 1/(2 lAmaxl). Setting 
/ L  to the maximum allowable step size for the fastest possible convergence of the 
LMS algorithm, one can expect the kth coefficient of H to converge proportional 
to 

Therefore the coefficient components associated with the maximum eigenvalue 
(signal component with the maximum amplitude) will converge the fastest while 
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the components due to the smaller eigenvalues will converge much more slowly. For 
input signals consisting of many sinusoids or harmonics with wide separation in 
power levels, the time-domain LMS algorithm performs very poorly. 

Determining i,,,;,,in real time in order to set ,H for the fastest possible stable 
convergence performance of the LMS algorithm requires a great deal of com-
putation, defeating the advantages of using the LMS algorithm. If  the input signals 
are completely known and stationary one could solve for p once (in theory at least), 
set up the LMS algorithm, and enjoy the fastest possible LMS performance. 
However, in practice, one usually does not know the input signal statistics U priori  
requiring some efficient method to make p adaptive. We note that for the white 
noise input signal case, the eigenvalues will all be identical to the signal variance, 
making the sum of the eigenvalues equal to the signal power times the adaptive filter 
model order. For sinusoidal inputs, the eigenvalues (and eigenvalue spread) depend 
on the amplitudes and frequencies of the input sinusoids. However, if one kept 
the amplitudes the same and varied the frequencies, the sum of the eigenvalues stays 
the same while the eigenvalue spread changes as seen in the below examples. 
Therefore, we can be guaranteed that Eb,,,x is always less than the adaptive filter 
model order times the input signal variance. Adaptive tracking of the input signal 
power using an exponential memory data window as described in Eq. (9.0.1) 
provides a real-time input signal power estimate which can be used to very simply 
compute ,U for reasonable LMS performance. The Norrnulized L M S  Algori thm is 
the name most commonly used to describe the use of an input signal power tracking 
p in the adaptive filter. 

Consider a system identification problem where the input signal consists of 
unity variance ZMG white noise plus a 25 Hz sinusoid of amplitude 5 where the 
sample rate is 1024 samples/sec. To further illustrate the parameter tracking abilities 
of the LMS and RLS adaptive filter algorithms, we twice change the parameters of 
the so-called unknown system to test the adaptive algorithms' ability to model these 
changes using only the input and output signals from the system. The "unknown 
system" simply consists of a pair of complementary zeros on the unit  circle which 
start at  f100 Hz, then at iteration 166 immediately changes to f 2 5 6  Hz, then 
again at iteration (time sample) 333 immediately changes to f 4 0 0  Hz. Since the 
zeroes are on the unit circle, only h l  changes in the unknown system as seen in 
Figure 2. 

Figure 2 shows poor convergence performance of the LMS algorithm relative 
to the more complicated RLS algorithm in the beginning and end of the trial, where 
the unknown system's zero is away from the ccnter of the Nyquist band. I n  the center 
region, the two algorithms appear comparable, even though the input signal 
autocorrelation matrix has a fairly wide eigenvalue spread of - 1 1.2 and 38.2. Note 
that the sum of the eigenvalues is 27, or 2( 1+12.5) which is the model order times 
the noise variance plus the sinusoid power ( 2 5 1 2 ) .The parameter prC,/in Eq. (9.1.16) 
was set to 0.05 for the simulation which translates to an equivalent exponential mem- 
ory window of about 20 samples (r=0.95 in the RLS algorithm). Note that the time 
constant for the RLS algorithm (and LMS algorithm in the middle range) in response 
to the step changes is also about 20 samples. The error signal response corresponding 
to the trial in Figure 2 is seen in Figure 3. Separating the LMS step size into a fiictor p 
set adaptively to inversely track the input signal power, and p,',/to control the effec- 
tive data memory window length (approximately equal to 1 /p, . ' , / )for the algorithm is 
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Figure 2 LMS and RLS hl coefficient tracking for an input signal s,,consisting of unity 
variance white Gaussian noise plus a 25 Hz sinusoid of amplitude 5 with a sampling rate 
*A of 1024 Hz. 
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Figure 3 Error signal responses for the LMS and RLS algorithm for the trial seen in 
Figure 2. 
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very useful. However, the LMS convergence properties will only be comparable to 
the RLS algorithm for cases where the input signal is white noise or has frequencies 
in the center of the Nyquist band. 

If we move the 25 Hz sinusoid to 256 Hz in the input signal we get the far 
superior coefficient tracking seen in Figure 4 which shows essentially no difference 
between the RLS and LMS algorithms. The eigenvalues are both 13.5 for the 
ZMG white noise only input signal autocorrelation matrix. Note that the sum 
of the eigenvalues is still 27 as was the case for the 25 Hz input. The factors p,.(,/ 
and zt are set to 0.05 and 0.95 as before. The exponential response of the LMS 
and RLS coefficient convergence is completely evident in Figure 4. Yet, the 
LMS is slightly slower than the RLS algorithm for this particular simulation. 
Further analysis is left to the student with no social life. Clearly, the simplicity 
of the LMS algorithm and the nearly equivalent performance make it  highly advan- 
tageous to use LMS over RLS is practical applications where the input signal is 
white. The error signal for this case is seen in Figure 5.  

Signal modeling using adaptive signal-whitening filters is another basic adapt- 
ive filtering operation. The big difference between system modeling and signal 
modeling is that the input to the unknown system generating the available output 
signal is not available. One assumes a ZMG unity variance white noise signal as 
the innovution for the available output signal. The signal can be thought to be gen- 
erated by a digital filter with the signal innovation as input. The frequencies of 
the signal are thus the result of poles in the generating digital filter very near 
the unit circle. The relative phases of the frequencies are determined by the zeros 
of the digital filter. Therefore, our signal model allows the parameterization of 
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Figure 4 LMS and RLS HI coefficient tracking with an input signal consisting of unity 
variance white Gaussian noise and a 256 Hz sinusoid sampled at 1024 Hz. 
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Figure 5 Error signals for the LMS and RLS coefficient tracking trial seen in Figure 4. 

the signal in terms of poles and zeros of a digital filter with the white noise 
innovation. By adaptively filtering the signal to remove all the spectral peaks 
and dips (whitening the signal to reproduce the ZMG white noise innovation as 
the error signal), one can recover the modeled signal parameters in the form of 
the poles and/or zeros of the whitening filter. The converged adaptive whitening 
filter models the inverse of the signal generation filter. In other words, inverting 
the converged adaptive whitening filter provides the digital generation filter par- 
ameters which are seen as the underlying model of the signal of interest. Figure 
6 depicts the signal flow and processing for signal modeling using adaptive whitening 
filters. 

The block diagram in Figure 6 shows a typical whitening filter arrangement 
where, rather than a full blown ARMA signal model (see Section 3.2), a simpler 
AR signal model is used. The whitening filter is then a simple MA filter and the 
resulting error signal will be approximately (statistically) hon~,,if the correct model 
order A4 is chosen and the whitening filter is converged to the least-squared error 
solution. Chapter 10 will formulate the ARMA whitening and other filter forms. 
Note the sign change and the exclusion of the most recent input jqf, to the linear 
prediction signal ?'if. For the AR signal model, the prediction is made solely from 
past signal outputs (the input signal innovation is not available). 

Development of an LMS whitening filter also provides an opportunity to illus-
trate an alternative heuristic approach to the development of the LMS algorithm. 
We start with the linear prediction model. 

(9.2.7) 
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In novation b0 
Signal to be Modelled 

b 
1 + a$+ ... + $ b 

w" yn 

I Adaptive Whitening Filter I 

Figure 6 Block diagram showing adaptive whitening filtering to recover signal parameters 
in terms of a digital generating filter. 

In the RLS whitening filter, one simply makes (bn = [ - j ; r - l  -J - ,~ -? .  . . -I*,,-,bf] 
and omits the 0th coefficient (which is not used in whitening filters) from the 
coefficient vector. But in the LMS algorithm the sign must be changed on the 
coefficient update to allow u k , , ,  = a k , , ,  - - 2pjirC,,I!,,- E,, rather than the plus sign 
used in Eq. (9.1.16). One can see the need for the sign change by looking at the 
gradient of the error, E,, =J*,~- j1i1,which is now positive with respect to the whitening 
filter coefficients. To achieve a gradient decent algorithm, one must step-\tiisc>d u p t  
tlic. L M S  cocjficaimt \tx>iglits in the opposite dirwtiori q f t h e  error grm' iwt .  Whitening 
filters have a positive error gradient with respect to the coefficients, while a system 
identification LMS application has a negative error gradient. Therefore, an LMS 
whitening filter has a negative sign to the coefficient update while a system identi- 
fication LMS coefficient update has a positive sign. Setting this sign incorrectly leads 
to very rapid divergence of the LMS algorithm. Note that the model orders for the 
system identification and whitening filter examples are both two, even though 
the system identification filter has three coefficients while the whitening filter only 
has two. The third whitening filter coefficient is fixed to unity by convention for 
an AR process. 

A numerical example of a whitening filter is seen in Figure 7 where a 50 H z  
sinusoid (1024 Hz sample rate) of amplitude 1 .0 is mixed with ZMG white noise 
of standard deviation 0.01 (40 dB SNR). To speed up convergence, jiIC,/= 0.2 
and 2 = 0.8, giving an approximate data memory window of only 5 data samples. 
The signal autocorrelation matrix eigenvalues are - 0.4532 and 1.4534 giving a slow 
convergence of the whitening filter. The sum of the eigenvalues gives the model order 
times the signal power a s  expected. Figure 8 shows the error signal response for the 
whitening filter. 

Simply moving the sinusoid frequency up to 200 Hz (near the midpoint of the 
Nyquist band) makes the eigenvalue spread of the signal autocorrelation matrix 
closer at 0.1632 and 0.8370. A much faster convergence is seen in Figure 9 for 
the LMS algorithm. The convergence of the RLS and LMS filters are identical 
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Figure 7 Whitening filter N I  coefficient response for a 50 Hz sinusoid in white noise for the 
LMS and RLS algorithms. 
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Figure 8 Error signal for the 50 Hz whitening filter. 
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Figure 9 Whitening filter parameter (11 for a 200 H z  signal near the center of the Nyquist 
band for the LMS and RLS filters. 

for the sinusoid at 256 Hz. LMS whitening performance is best for signal frequencies 
are in the center of the Nyquist band. 

The convergence properties of the LMS and RLS algorithms have been pre- 
sented for two basic adaptive filtering tasks: system identification and signal 
modeling. The LMS algorithm is much simpler than the RLS algorithm and has 
nearly identical convergence performance when the input signal autocorrelation 
matrix for the adaptive filter have narrow eigenvalue spreads (ZMG white noise 
or sinusoids in the middle of the Nyquist band). When the signal frequency range 
of interest resides at  low or high frequencies in the Nyquist band, the LMS perform- 
ance becomes quite slow, limiting applications to very stationary signal processes 
where slow convergence is not a serious drawback. The reason the RLS algorithm 
performs gracefully regardless of input eigenvalue spread is that the Kalman gain 
vector is optimized for each coefficient. In the more simplified LMS algorithm, 
the upper limit for a single step size j i  is determined by the maximum eigenvalue 
and this "global" step size limits the convergence performance of the algorithm. 
Generally, one approximates the maximum step size for p by the inverse of the 
adaptive filter model order times the variance of the input signal as described 
for the normalized LMS algorithm. 

9.3 LATTICE AND SCHUR TECHNIQUES 

Lattice filters are of interest because they offer the fast convergence properties of the 
RLS algorithm with a significant reduction in computational complexity for large 
model order adaptive filter applications. The lattice filter structure contains a series 
of nearly independent stages, or Sections, where the filter coefficients are called 
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partial correlation, or PARCOR, coefficients. One stage is needed for each model 
order increment. Each stage passes two signals: a forward error signal is passed 
directly; and a backward error signal is passed through a time delay of one sample. 
The cross correlation of the forward and delayed backward error signals are cal- 
culated in the PARCOR coefficients. The PARCOR coefficients times their respect- 
ive forward and backward error signals are used to subtract any measurable 
cross correlations from the error signals before they exit the stage. The structure 
of successive lattice stages, each removing the correlation between forward and 
backward error signals, is unique in that adding an M+lst  stage has no effect 
on any of the lower-order stage PARCOR coefficients. Increasing the model order 
for an RLS or  LMS filter requires that all the adaptive filter coefficients change. 
While the PARCOR coefficients (also called Schur coefficients) and the LMS or 
RLS filter coefficients are not the same, the equivalent FIR filter coefficients for 
the lattice are computed by using a Levinson recursion. Forward and backward 
prediction error, PARCOR coefficients, and the Levinson recursion are new con- 
cepts which are introduced below. 

The “forward” prediction error is the error signal defined in the previous 
Sections. It represents the error in making a future prediction for our signal j l f l  using 
an Mth order linear combination of past samples. 

The predicted signal in Eq. (9.3.1) is simply 

The backward prediction error represents a prediction backward in time A4 + 1 
samples using only a linear combination of the available M samples from time I I  to 
n - M + 1 .  

Clearly, the backward prediction error given in Eq. (9.3.3) is based on the prediction 
backward in time of 

where J $ - ~ , ~ - ~is a linear prediction of the data M +  1 samples in the past. Why 
bother? We had the sample yt7- - available to us just one sample ago. 

The reason for backward and forward prediction can be seen in the symmetry 
for linear prediction for forward and backward time steps. Consider a simple 
sinusoid as Given a 2nd-order linear predictor for J ’ ~ ~~ y ~ ~ . two past samples, i.e. 
jlil = - -a2, l jy t1-~- a2,2yt1-2,one can show that a2,1 is approximately -2c0s(27rf0/~)
and a2,2 is approximately unity. The approximation is to insure that the magnitude 
of the poles is slightly less than unity to insure a stable AR filter for generating 
our modeled estimate of y t I .Sinusoids have exactly the same shape for positive 

1 -’ ~and negative time. Therefore, one could predict ~ ~using the linear predictor 
coefficients in opposite order, i.e. ykF3= -a2,2 y I I - - ~ 2 . ~jTfI-2 .  Note that the 
highest indexed coefficient is always the farthest from the predicted sample. An 
important aspect of the forward-backward prediction symmetry is that for a station-
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ary signal the backward prediction coefficients are always equal to the forward 
predictor coefficients in reverse order. For complex signals the backward coefficients 
are the complex conjugate of the forward coefficients in reverse order. Therefore, one 
of the reasons adaptive Iattice filters have superior convergence performance over 
transversal LMS filters is that for non-stationary signals (or during convergence 
of the algorithm) the forward-backward prediction symmetry is not the same, 
and the algorithm can use twice as many predictions and errors to “learn” and con- 
verge. A sketch of an adaptive lattice filter and the equivalent LMS transversal filter 
is seen in Figure 10. 

Figure 10 shows that the lattice filter is clearly much more complicated than the 
LMS filter. The complexity is actually even worse due to the need for several divide 
operations in each lattice stage. The LMS algorithm can be executed with simple 
multiplies and adds (and fewer of them) compared to the lattice. However, if 
the model order for the whitening filter task is chosen higher than the expected model 
order needed, the lattice PARCOR coefficients for the extraneous stages will be 
approximately zero. The lattice filter allows the model order of the whitening filter 
to be estimated from the lattice parameters when the lattice model order is over 
determined. The fast convergence properties and the ability to add on stages without 
affecting lower-order stages makes the lattice filter a reasonable choice for high per- 
formance adaptive filtering without the extremely high computational requirements 
of the R L S  algorithm. 

To derive the PARCOR coefficients from the signal data, we need to examine 
the relationship between the signal autocorrelation and the prediction error cross 
correlation. We begin with the prediction error in Eq. (9.3.1)and proceed to derive 

Lattice Whitening Filter 
. . . . . . . . . . . . . . . . . . . . . . 
T-&-
I: ; E-

~ U: . ,  

. c j  r-
rDw ............................ ......................... 
. . . . . . . . . . . . . . . . . . . .  


1st Stage 2nd Stage Mth Stage 

LMS Whitening Filter 

z4 Y“ 

I * 6-

Figure 10 Mth order recursive least squares lattice and FIR transversal LMS whitening 
filters for the signal J’,,. 
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the respective correlations. 

(9.3.5) 
i= I 

The subscripts M,, l  mean that the error a t  time n is from a whitening filter model order 
M .  For the linear prediction coefficients, the subscripts , t f % l  refers to the ith coefficient 
of an Mth order whitening filter model. Multiplying both sides of (9.3.5) by y,, -,and 
taking expected values (averaging) yields 

(9.3.6) 

where R i f  is the Mth order forward prediction error variance. The reason the 
forward prediction error cross correlation with the signal J ' ,~is zero f o r j  > 0 is that 
c , ~ ~ , , ,  - jis uncorrelated with jytI-,as well as L - ~ , ~ , since the current signal innovation 
can only appear in past predictions. Following a similar approach for the backward 
prediction error in Eq. (9.3.3). 

As with the forward prediction error, the current backward prediction error is 
uncorrelated with future backward prediction errors. We now may write a matrix 
equation depicting the forward and backward error correlations and their relation- 
ship to the signal autocorrelation matrix. 

(9.3.8) 

Rif  0 0 . . .= [  0 . . .  0 0 RL 

The signal autocorrelation matrix in Eq. (9.3.8) has a symmetric Toeplitz struc- 
ture where all the diagonal elements are equal on a given diagonal. For a complex 
signal, the positive and negative lags of the autocorrelation are complex conjugates. 
This can also be seen in the covariance matrix in Eq. (8.1.13). If we neglect the 
backward error components, Eq. (9.3.8) is also seen as the Yule-Walker equation, 
named after two British astronomers who successfully predicted periodic sunspot 
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activity using an autoregressive filter model around the beginning of the 20th 
century. Note that Eq. (9.3.8) is completely solvable by simply assuming a white 
prediction error for the given signal autocorrelations. However, out motivation here 
is to examine the algebraic relationship between successive model orders as this will 
lead to an algorithm for generating the p +  1st order whitening filter from the 
pth model. 

Suppose we make a trial solution for the M + 1st order whitening filter 
coefficients by simply letting U M + I , k  =aM,k and let L I M + I , ~ + I= O .  As seen in 
Eq.(9.3.9) this obviously leads to a non-white prediction error where the 
autocorrelation of the error is no longer zero for the non-zero time lags. 

However, we can make the M +  1st order prediction error white through the 
following multiplication. 

R 1% . . .  

RI; R.I' . . .  

. . .  Rl: (9.3.10) 

From Eq. (9.3.10) we have a Levinson recursion for computing the M + 1st model 
order whitening filter from the Mth model coefficients and error signal 
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correlations. 

(9.3.1 1) 

The error signal cross correlations are seen to be 

(9.3.12) 

i= 1 

where for the complex data case A L t I  equals the complex conjugate of A:tr+l, 
depicted by the H symbol for Hermitian transpose in Eq. (9.3.12). Even though 
we are deriving a scalar lattice algorithm, carrying the proper matrix notation 
will prove useful for reference by latter Sections of the text. To more clearly 
see the forward and backward error signal cross correlation, we simply write 
the expression in terms of expected values. 

(9.3.13) 

The PARCOR coefficients are defined as 

We also note that from Eq. (9.3.10) the updates for the M+lst  forward and back- 
ward predict ion error variances are, respectively 

(9.3.15) 

and 

It follows from Eqs (9.3.13)-(9.3.16) that the forward and backward error signal 
updates are simply 

and 

(9.3.18) 
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The structure of a lattice stage is determined by the forward and backward 
error signal order updates given in Eqs (9.3.17) and (9.3.18). Starting with the 
1st stage, we let c ~ ) , , ~= rO,,l and estimate the cross correlation A I ,  between= ) i n  

the forward error I : ~ ) , , , .  and the delayed backward error signal rO,,r-i .  The 0th stage 
error signal variances are equal to I?;, the mean square of the signal I*,*.The 
PARCOR coefficients are then calculated using (9.3.14) and the error signals 
and error signal variance are updated using Eqs (9.3.15)-(9.3.18). Additional stages 
are processed until the desired model order is achieved, or until the cross correlation 
between the forward and backward error signals becomes essentially zero. 

The PARCOR coefficients are used to calculate the forward and backward 
linear predictors when desired. The process starts off with - K ; = U ~ , ~and 
-K‘ , -- U ; . , , .  Using the Levinson recursion in Eq. (9.3.1 1) we find ~ 1 2 . 2= -K(  and 
(11.1 = ~ ~ . ~ - K ~ U ~ , ~ ,and so on. A more physical way to see the Levinson recursion 
is to consider making a copy of the adaptive lattice at some time instant allowing 
the PARCOR coefficients to be “frozen” in time with all error signals zero. Imputing 
a simple unit delta function into the frozen lattice allows the forward linear 
prediction coefficients to be read in succession from the forward error signal output 
of the stage corresponding to the desired model order. This view makes sense because 
the transversal FIR filter generated by the Levinson recursion and the lattice filter 
must have the same impulse response. One of the novel features of the lattice filter 
is that using either the Levinson recursion or frozen impulse response technique, 
the linear prediction coefficients for all model orders can be easily obtained along 
with the corresponding prediction error variances directly from the lattice 
parameters. Figure 1 1  shows the detailed algorithm structure of the p + 1st lattice 
filter stage. The lattice structure with its forward and backward prediction allows 
an adaptive Gram-Schmidt orthogonalization of the linear prediction filter. The 
backward error signals are orthogonal between stages in the lattice allowing each 
stage to adapt as rapidly as possible independent of the other lattice stages. 

The orthogonality of the stages in the lattice structure is seen as the key feature 
which makes adaptive lattice filters so attractive for fast convergence without the 
computational complexity of the recursive least-squares algorithm for transversal 

E 

Figure 11 Detailed structure of an adaptive lattice filter stage. 
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FIR-type filters. The error signal variances and cross-correlations can be estimated 
using simple expected values such as that suggested in Eq. (9.0.1) for the 
exponentially weighted data memory window. Since the PARCOR coefficients 
are the error signal cross correlation divided by the variance, a common bias in 
the cross correlation and variance estimates is not a problem. For a exponentially 
decaying data window of effective length N ,  the cross correlation for the is estimated 
using 

where N is effectively 1/ ( 1 - a )  and Ap+l,t l  2 N E(E, , ,~r,,,, - 1.. The forward error 
signal variance is 

(9.3.20) 

and the backward error signal variance is 

(9.3.21) 

The PARCOR coefficients are calculated using the expressions in Eq. (9.3.22). 

(9.3.22) 

We show the lattice cross correlation, variances, and PARCOR coefficients as 
time dependant in Eqs (9.3.19)-(9.3.22) to illustrate the recursive operation of 
the lattice algorithm. For stationary data and time periods long after the start-up 
of the lattice Eqs (9.3.19)-(9.3.22) are optimum. However, for nonstationary signals 
and/or  during the initial start up of the lattice, some additional equations are needed 
to optimize the lattice algorithm. Consider that the delay operators in the backward 
error of the lattice do  not allow the residual for the data into thepth stage untilp + 1 
time samples have been processed. The transient effects on the PARCOR coefficients 
will persist slowing the algorithm convergence. However, if we use the orthogonal 
decomposition of the Hilbert space spanned by the data outlined in Section 8.2, 
we can make the lattice recursions least-squared error even during the transients 
from start up or nonstationary data. While somewhat complicated, subspace 
decomposition gives the lattice algorithm an effective convergence time on the order 
of the number of lattice stages on start up and N for tracking data nonstationarity. 

9.4 THE ADAPTIVE LEAST-SQUARES LATTICE ALGORITHM 

Projection Operator Subspace Decomposition can also be used to derive the com- 
plete least squares lattice algorithm including the optimal time updates for the error 
signal variances and cross correlations. As shown in Figure 1 1 ,  the PARCOR 
coefficients may be computed any number of ways including even an LMS-type 
gradient descent algorithm. One of the interesting characteristics about adaptive 
processing is that even if the algorithm is not optimal, the result of the learning 
processing still gives reasonable results, they’re just not the best result possible. 
We now make use of the projection operator orthogonal decomposition given in 
Section 8.2 and in particular in Eqs (8.2.6)-(8.2.8) to optimize the lattice equations 
for the fastest possible convergence to the least-squared error PARCOR coefficients. 
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Application of orthogonal subspace decomposition to the development of fast 
adaptive filtering can be attributed to a PhD dissertation by Martin Morf (2). 
The lattice structure was well-known in network theory, but its unique processing 
properties for adaptive digital filtering generally were not well appreciated until 
the 1970s. By the early 1980s a number of publications on lattice filters (also called 
ladder or even "wave" filter structures) appeared, one of the more notable by 
Friedlander (3). A slightly different notation is used below from what has previously 
been presented in Section 8.2 to facilitate the decomposition matrix equations. We 
start by constructing a vector of signal samples defined by 

?. 'n-N:n- l  = LYn-N * * .Yn-2Yn-11 (9.4.1) 

For a time block of N samples and a whitening filter model order p, we define a 
p r o w ,  N-column data matrix. 

The linear prediction error from time n -N + l  to time n can now be written as seen in 
Eq. (9.4.3) 

where is the second linear prediction coefficient in a pth order whitening filter. 
The least squared error linear prediction coefficients can be written as 

which is essentially the transpose form of Eq. (8.1. I 1). Equation (9.4.3) is expressed 
in the form of a orthogonal projection 

E p , n - N + l  : n  = ?'n-N+I : ,?(I- P Y p  J (9.4.5) 

where PY,,,= Y:N( Yp,NY:v)- Yp,,v is the projection operator. Equations 
(9.4.1)-(9.4.5) can be compared to Eqs (8.2.1)-(8.2.5) to see that the effect of 
the change in variable definitions is really only a simple transpose. We can "pick 
out" the prediction error at time n by adding a post-multiplication of the form 

where x=[ 0 0 ... 0 1 1. Shifting the data vector y , l -N+l:np+l  samples to the right 
yields a data vector suitable for computing the backward prediction error 

where 
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We have gone to some lengths to present the projection operator back in Sec- 
tion 8.2 and here to cast the lattice forward and backward prediction errors into 
an orthogonal projection framework. After presenting the rest of the lattice variables 
in the context of the projection operator framework, we will use the orthogonal 
decomposition in Eq. (8.2.8) to generate the least-squared error updates. The error 
signal variances for the order p are given by post-multiplying Eqs (9.4.6)-(9.4.7) 
by their respective data vectors. 

(9.4.9) 

(9.4.10) 

The error signal cross correlation is simply 

(9.4.11 )  

However, a new very important variable arises out of the orthogonal projection 
framework called the likelihood variable. It is unique to the least-squares lattice 
algorithm and is responsible for making the convergence as fast as possible. The 
likelihood variable i fp-I , n - can be seen as a measure of how well the most data 
statistically matches the older data. For example, as the prediction error tends 
to zero, the main diagonal of the projection operator tends toward unity, as seen 
in the example described in Eqs (8.3.1)-(8.3.6). Pre-multiplying and post-multiplying 
the orthogonal projection operator by the n: vector gives 1 -y,, - - I .  

(9.4.12) 

If the projection operator is nearly an identity matrix, the likelihood variable 
y p  - - 1 approaches zero (the parameter 1 - y p  - I,n- I will tend toward unity) 
for each model order indicating the data-model fit is nearly perfect. As will be seen 
for the update equations below, this makes the lattice adapt very fast for the 
near-perfect data. If the data is noisy or from a new distribution, 1 - y p  - I , t ,-

approaches zero (lip- I , n  - 1 approaches unity) and the lattice will weight the recent 
data much more heavily, thereby “forgetting” the older data which no longer fits 
the current distribution. This “intelligent memory control” is independent of the 
data memory window, which also affects the convergence rate. The ingenious part 
of the likelihood variable is that it naturally arises from the update equation as 
an independent adaptive gain control for optimizing the nonstationary data per- 
formance in each lattice stage. 

Consider the update equation for the Hilbert space orthogonal decomposition 
back in Section 8.2. We now pre- and post-multiply by arbitrary vectors V and 
WH,respectively, where the existing subspace spanned by the rows of Yr.,, is being 
updated to include the space spanned by the rows of the vector S.  

V ( I  - ~ { Y , . , V + S ) )W H= V ( I- PY,.,J W H  

- V ( I  - PYP,h)s[SH(I- PYp, .v )s ] - ’ sH(r- PY,.,,)W H  
(9.4.13) 
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I f  we add a row vector on the bottom of Yp,Nwe have an order update to the subspace 
spanned by the rows of Y p , N .  

(9.4.14) 

Therefore, choosing S = j$Th+l ,,f allows the following order updates when 
V = y l l - .~+I  and W = n, 

(9.4.15) 

(9.4.15) 

Setting V =  W = n  yields one of several possible expressions for the likelihood 
variable. 

(9.4.17) 

The likelihood variable gets its name from the fact that the probability density func- 
tion for the backward error is simply 

(9.4.18) 

where the probability density for the backward error signal is the same as the prob- 
ability density for the data because they both span the same subspace. When 

-1 - I !, p , t f  - I is nearly unity ( Y ~ , , ~is small), the exponent in (9.4.18) is nearly zero, 
making the probability density function a very narrow Gaussian function centered 
at zero on the ordinate defined by the backward error signal for thepth lattice stage. 
If the lattice input signal y,, changes level or spectral density distribution, both the 
forward and backward error signal probability density functions become wide, indi- 
cating that the error signals have suddenly grown in variance. The likelihood vari- 
able detects the error signal change before the variance increase shows up in the 
error signal variance parameters, instantly driving 1 - yI, - I , r ,  - I towards zero 
and resulting in rapid updates the lattice estimates for error variance and cross 
correlation. This will be most evident in the time-update recursions shown below, 
but it  actually occurs whether one uses the time update forms, or the time and order, 
or order update forms for the forward and backward error signal variances. 
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Consider a time-and-order subspace update which amounts to adding a row to 
the top of Yp,Nwhich increases the model order and time window by one. 

Therefore, for the subspace spanned by the rows of Y N we can choose S - hf+1:,, 

allowing the following order updates when V = y,l-N+l and W =  n,PQi 

(9.4.20) 

and when V = yLT,L+ : and W = :n ,  

(9.4.2 1) 

Setting V =  W = n  yields another one of the several possible expressions for the 
likelihood variable. 

Finally, we present the time update form of the equations. A total of 9 
equations are possible for the lattice, but only 6 update equations are needed 
for the algorithm. The error signal cross correlation can only be calculated using 
a time update. The importance and function of the likelihood variable on the lattice 
equation will become most apparent in the time update equations. 

(9.4.23) 

It’s not clear from our equations how one augments the signal subspace to 
represent the time update. However, we can say that the projection operator Py, , .N+l  
is N + l  by N+l  rather than N by N in size. So, again for the subpace spanned by the 
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rows of Y , , N  a time update to the projection operator can be written as 

(9.2.24) 

Equation (9.4.24) can be seen to state that the projection operator for the sub- 
space augmented by n is actually the previous time iteration projection operator! 
However, recalling from Section 8.3,  as the data are fit more perfectly to the model, 
the projection operator tends toward an identity matrix. By defining the time update 
to be a perfect projection (although backwards in time) we are guaranteed a least- 
squared error time update. The orthogonal projection operator for the time-updated 
space is 

(9.4.25) 

which means V(I-Pi Y f , N  + ,)) WHin the decomposition equation actually corre- 
sponds to the old parameter projection, and the term V(I- P Y f . N )W" corresponds 
to the new time updated parameter. This may seem confusing, but the time updates 
to the least squares lattice are by design orthogonal to the error and therefore 
optimum. Choosing S =  7t, V = y ,  - + I : nand W = yiTk+l:nwe have the time update 
for the cross correlation coefficient. A forgetting factor (x has been added to facilitate 
an exponentially decaying data memory window. Note the plus sign which results 
from the rearrangement of the update to place the new parameter on the left-hand 
side. 

Choosing S = n  and V =  W = J * , ~ - ~ + ~ : , ,gives a time update for the forward error 
signal variance. 

R;.,] = q , * - 1  + & p , n [ l  - l~p-l ,n-*l  
- 1  H (9.4.27)' p , n  

Choosing S = n and V = W = J ~ ~ ~ ~ , + ~ : ~gives a time update for the backward error 
signal variance. 

Comparing equations to (9.3.26)-(9.3.28) we immediately see the role of the 
likelihood variable. If the recent data does not fit the existing model, the likelihood 
variable (and corresponding main diagonal element for the projection operator) will 
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be small, causing the lattice updates to quickly “forget” the old outdated data and 
pay attention to the new data. Eqs (9.4.17) and (9.4.22) can be combined to give 
a pure time update for the likelihood variable which is also very illustrative of 
its operation. 

(9.4.29) 

Clearly, if either the forward or backward error signals start to change, 1 - y,,,? will 
tend towards zero giving rise to very fast adaptive convergence and tracking of signal 
parameter changes. Figure 12 compares the whitening filter performance of the 
least-squares lattice to the RLS and LMS algorithms for the 50 Hz signal case seen 
previously in Figure 7. 

The amazingly fast convergence of the lattice can be attributed in part to the 
initialization of the error signal variances to a small value (1 x IO-’). Many 
presentations of adaptive filter algorithms in the literature performance comparisons 
which can be very misleading due to the way the algorithms are initialized. If  we 
initialize the signal covariance matrix P-’of the RLS algorithm to be an identity 
matrix times the input signal power, and initialize all of the forward and backward 
error signal variances in the lattice to the value of the input signal power, a more 
representative comparison is seen in Figure 13. 

Figure 13 shows a much more representative comparison of the RLS and 
Lattice algorithms. The lattice filter still converges slightly faster due to the 
likelihood variable and its ability to optimize each stage independently. The effec- 
tive memory window is only 5 samples, and one can see from Figures 12 and 
13 that the convergence time is approximately the filter length (3 samples) plus 
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Figure 12 Comparison of LMS, RLS and Lattice for the case of the 50 Hz Whitening filter 
corresponding to Figure 7. 
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Figure 13 Comparison of the LMS, RLS, and Lattice where both the RLS and Lattice 
algorithms have identical initial signal covariances equal to the input signal power. 

the memory window length, but also depends on the initialization of the algorithms. 
Initialization of the lattice error signal variances to some very small value makes 
any change in error signals rapidly drive the convergence by the presence of the 
likelihood variable in the updates, making the lattice converge astonishingly fast 
in time intervals on the order of the filter length. Initialization of the lattice error 
variances at  higher levels makes the start-up transients in the error signals seem 
less significant and the parameters converge at a rate determined mainly by the 
memory window length. 

Table 2 summarizes the least-squares lattice implementation. There are 9 poss-
ible update equations where only 6 are actually needed. Naturally. there is some 
flexibility available to the programmer as to which equation forms to choose based 
o n  storage requirements and convenience. The equation sequence in Table 1 is just 
one possible implementation. Note that the error signal variances cannot be 
initialized to zero due to the required divisions in the algorithm. Divisions are much 
more computationally expensive than multiplications in signal processing engines. 
However, the availability of fast floating-point processors makes the lattice filter 
an attractive choice for high performance adaptive filtering in real-time. 

The linear prediction coefficients for all model orders up to the lattice whiten- 
ing filter model order M can be calculated from an updated set of PARCOR 
coefficients using the Levinson recursion in Table 3. Another way to visualize 
how the Levinson recursion works is to consider the impulse response of the lattice. 
As the impulse makes its way down each stage of the lattice, the forward error signal 
at the Mth stage yields the Mth-order linear prediction coefficients. I t  can be very 
useful for the student to calculate this sequence manually for a small lattice of 
say three stages and compare the results to the Levinson recursion. Checking 
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Table 2 The Least-Squares Lattice Algorithm 

Description Equation 

Initialization at time n = 0 for 
p = o , 1 , 2 , . . . ,  M 

Input error signals at 1st stage CO.11 = rO,rl = ?’,I 

Lattice stage update sequence .for p = 0,  1 . 2 , .  . . . M 
Q = ( N  - 1 ) / N  

Time update for error signal cross 
correlation 

Time update of forward prediction error 
variance 

Time update of backward prediction error 
variance 

Order update of likelihood variable 

Forward PARCOR coefficient 

Backward PARCOR coefficient 

Order update of forward error signal 

Time and order update of backward error 
signal 

Table 3 The Levinson Recursion 

Description Eq ua t ion 

Lowest forward and backward prediction ap,O= u ; , ~= 1 for .  p = 0, I ,  2. . . . ,M 
coefficients 

-Highest forward and backward prediction % + l / J + I  = q + I ($+l.p+l - - q + 1
coefficients 

rLinear prediction coefficient recursion ap+1.r = -up., - K;,+P;./J-,*I j =  1 , 2. . . . , p  
Clp+l.p-,+l - ap,p-/+1 - ~ / , + P P . I  

the impulse response is also a useful software debugging tool for lattice Levinson 
recursion algorithms. 

Consider the case where both the input and output are known and we use a 
lattice filter for system identification rather that just signal modeling. The system 
identification application of adaptive filter is generally known as Wiener filtering. 
It is well-timed to introduce the lattice Wiener filter here, as the changes necessary 
from the whitening filter arrangement just presented are very illustrative. Since 
we have both s,,and J’,, and wish to fit an FIR filter model to the unknown linear 
system relating s,,and J’,~,recall that s,,is the input to the LMS Wiener filter in  
Section 9.2. The same is true for the Wiener lattice as seen in Figure 14. To see 
what to do with the output we have to revisit the backward error signal definition 
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. ... ..... _....._._._.___.._..__._.-....-.----. ..... .. ..... .... ..__.......... 
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1st Stage 2nd Stage Mth Stage 

Figure 14 The Wiener lattice filter structure for adaptive system identification given both 
the input A-,, and out y,,. 

in Eq. (9.3.4), replacing (used in the whitening filter 

' 1 0  . . .  
cr: I 1 0  . . .  O 1 1 c0 :, -

The lower triangular matrix L in Eq. (9.4.30) also illustrates some interesting 
properties of the lattice structure. Post-multiplying both sides by and taking 
expected values leads to R', = LRX,LH where and Rb = c h g  (RbR; . . . & }  and 
R i f  = E(#q&}, the covariance matrix for the input data signal. The importance 
of this structure is seen when one considers that the covariance matrix inverse is 
simply 

[Rjt,]-'= L"R:,]-'L (9.4.31) 

where the inverse of the diagonal matrix Rb is trivial compared to the inverse of a 
fully populated covariance matrix. The lower triangular backward error predictor 

~matrix inverse L and inverse Hermitian transpose L ~"are the well-known 
LU Cholesky factors of the covariance matrix. The orthogonality of the backward 
error signals in the lattice makes the Cholesky factorization possible. The forward 
error signal are not guaranteed to be orthogonal. 

Also recall from Eqs (8.1.4) and (9.4.30) that the predicted output is 
~ 3 ~:= g),H = HTL-'F&, A t t , t f .We can therefore define a PARCOR coefficient vector 
K i , L I= [ K i K r .. .K:,] which represents the cross correlation between the backward 
error signals and the output signal J ' ~ ~as seen in Figure 14. 

The prediction error for the output signal is simply 

= ?'n - q r p J  p = 1, . . . , M (9.4.32)$ , t f  

Since the backward error signals for every stage are orthogonal to each other, we can 
write an error recursion similar to the forward and backward error recursions in the 
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lattice filter. 

The PARCOR coefficients for the output data are found in an analogous manner to 
the other lattice PARCOR coefficients. The output error signal signal cross corre- 
lation is 

and K;,,, = A:,tl/RL,t,= A;,!!;;?. The updates of the additional equations for the 
Wiener lattice are very intuitive as can be seen in Figure 14.To recover H one simply 
computes H = LHK;::, in addition to the Levinson recursion in Table 3 for the 
whitening filter problem. The transpose of the lower-triangular backward predictors 
times the output PARCOR vector reduces to  

M 

hp = K j  + aLrpKF p = 0, 1 , 2 , . . .,M (9.4.35) 
i=p+ 1 

which is a very straightforward recursion using the backward error prediction 
coefficients and lattice output signal PARCOR coefficients. 

Figure 15shows the Wiener lattice performance compared to the standard RLS 
and LMS algorithms for the exact same data case as presented in Figure 2 where the 
input signal is unity variance white noise plus a 25 Hz sinusoid of amplitude 5.  The 
Wiener lattice and RLS algorithms have clearly nearly identical parameter tracking 

2.5 1 

2 -

1.5 

I 

0.5 

0 

-0.5 
c" 

-1 

-1.5 
-

-2 
I I I 1 

Figure 15 Comparison of LMS, standard RLS, and Wiener lattice performance on the 
nonstationary system identification previously seen in Figure 2. 
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performance for this case. However, the lattice results in Figure 15 do indicate some 
additional numerical noise is present. 

While generally not seen for a whitening filter application, the additional 
divides in the Wiener lattice can be seen as a source of numerically-generated noise 
due to roundoff error. It is fortunate that this particular example happens to show 
an excellent example of numerical error processing noise in an adaptive algorithm. 
We can suppress the noise somewhat by eliminating some of the division operations. 
Believe it or not, even double precision floating-point calculations are susceptible to 
roundoff error. Implementing an adaptive filter on a signal processing chip requires 
careful attention, because double precision floating-point is not usually available 
without resorting to very slow software-based double precision calculations. 
Roundoff error is a major concern for any fixed-point signal processing 
implementation. Figure 16 shows the same comparison but with the use of the 
double/direct Weiner lattice algorithm developed by Orfanidis (4), which 
demonstrates superior numerical performance compared to the conventional lattice 
algorithm. 

The Double/Direct lattice gets its name from the use of double error signal 
updates (one set updated with the previous PARCOR coefficients and one updated 
the conventional way) and a direct PARCOR update equation. The Double/Direct 
lattice eliminates the divisions involving the likelihood variable by making error 
signal predictions u priori to the PARCOR coefficient updates, and combining them 
with ~ipostc~riorierror signals (as computed in the conventional lattice) in the updates 
for the PARCOR coefficients. An important formulation is the direct PARCOR 
update, rather than the computation of a cross correlation involving a divide, 
and then the PARCOR coefficient involving a second divide. The a priori forward 
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Figure 16 Comparison of the Double/Direct Wiener lattice to the RLS and LMS Wiener 
f i1ter ing ;I1gorit hms. 
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and backward error signals are simply 

(9.4.36) 

and the updates are done using the previous PARCOR coefficients. 
- +  + 

Fp++l,I? - % I ?  - K;;+l,,l-lrp,,?-l (9.4.37) 

(9.4.38) 

(9.4.39) 

The a posteriori error signals are updated the conventional way. 

[+ -
-q+p s 1 . I 1  - $ , I 2  I ,,h+ (9.4.41 )

I , I ?  

rp+ I . I 1  = rp,,,- I - K;+ I ,,&I1 
(9.4.42) 

The a priori error signals are mixed into the conventional time, order and time 
and order updates to essentially eliminate the likelihood variable and its divisions 
from the algorithm. The likelihood variable can still be retrieved if desired by 
dividing the conventional a posteriori error signals by the a priori error signals 
as can be seen from Eq. (9.4.36).The direct update for the forward PARCOR 
coefficient is derived in Eq. (9.4.43).Elimination of the divides and the direct form 
of the PARCOR update are seen as the reasons for the improved numerical pro- 
pert ies. 

The complete set of updates for the DoublelDirect RLS Wiener lattice algo- 
rithm are given in Table 4. Considering the effect of the likelihood variable. which 
is not directly computed but rather etnbodded in the algorithm, it can be seen that 
there will be very little difference between the a priori and a posteriori error signals 
when the data is stationary and the lattice PARCOR coefficients have converged. 
When the data undergoes spectral changes the PARCORs adapt rapidly due to 
the difference in a priori and a posteriori error signals. 
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Table The Least-Squares Lattice Algorithm 

Description Equation 

Initialization at time n = 0 for 
p = o , 1 . 2  ( . . . (M 

Input error signals at 1st stage input 

A priori output error signal a? 1st stage 

Output PARCOR update 

A posteriori output error signal update 
at 1st stage 

Lattice stage update sequence for p = O , 1 , 2  , . . . , M 
IX = ( N  - I)/N 

A priori forward error 

A priori backward error 

Forward PARCOR update 

Backward PARCOR update 

A posteriori forward error update 

A posteriori backward crror update 

Forward error variance time update 

Backward error variance time update 

A priori output error update 

Output PARCOR coefficient update 

Output error a posteriori update 

Execute Levinson recursion in Table 9.4.2 
then for p = 0. 1 , 2 , .. . ,A4 

The Double/Direct algorithm may at first appear to be more complicated than 
the conventional least-squares lattice algorithm, but we are trading computationally 
expensive divides for far more efficient (and numerically pure) multiplies and adds. 
Most modern signal processing and computing chips can execute a combination 
multiply and accumulate (MAC operation) in a single clock cycle. Since a floating 
point divide is generally executed using a series approximation (integer divides often 
use table a look-up technique), a divide operation can take from 16 to 20 clock cycles 
to execute. The Double/Direct Wiener lattice in Table 4 requires 13 MACs and 3 
divides per stage while the conventional Wiener lattice requires only 11 MACs, 
but 8 divides. The DoubleIDirect lattice algorithm is not only more numerically 
accurate, but is also more computationally efficient than the conventional lattice 
algorithm. 
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9.5 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

One of the truly fun aspects of digital signal processing is that the computer can be 
used not only to execute a digital filter for the signals, but also to implement a 
learning algorithm to adapt the filter coefficients towards the optimization of some 
criteria. Frequently, this criteria is expressed in terms of a cost function to be 
minimized. Since the digital filtering operation is linear, an error signal which is 
linear can be easily expressed in terms of the difference between the filter model’s 
output and some desired output signal. The squared error can be seen as a quadratic 
surface which has a single minimum at the point which corresponds to the optimum 
set of filter coefficients. Solving for the least-squared error set of filter coefficients 
can be done using a “block” of N signal samples, or recursively using a sliding mem- 
ory window where the optimum solution is valid only for the most recent signal 
samples. The latter technique is extremely useful for intelligent signal processing 
algorithms which adapt in real-time to changing environments or even commands 
(from humans or even other machines) changing the optimum criteria or cost func- 
tion to be minimized. 

The tradeoff between computational complexity and optimality is presented in 
detail. For the block solution with model order M and N data points, computing the 
optimal FIR filter coefficients requires N M ( 1+ N M )  multiplies and adds just to com- 
pute the co-variance matrix and cross correlation vector. Inverting the co-variance 
matrix requires approximately M’ plus an expensive divide operation. For a model 
order of 10 and a 100 sample rectangular data memory window, the block 
least-squaters algorithm requires 1,002,000 multiplies and adds, plus one divide. 
Repeating this calculation for every time sample of the signals (to create a sliding 
rectangular memory window) would be extremely computationally expensive. 
For example, a 50 MFLOPS (50 million floating-point operations per sec) DSP chip 
could only run real-time for an unimpressive sample rate of about 49 Hz. Using the 
RLS algorithm with an exponentially-forgetting data memory window, only 
M’+2M2+2M plus 2 divides are needed per time update. For the example model 
order of 10, this is about 1220 plus 2 divides per time update. The 50 MFLOPS 
DSP can now run real-time at  a sample rate of about 40,000 samples per sec using 
the RLS algorithm getting almost exactly the same results. 

Switching to the RLS Wiener lattice algorithm, we get exactly the same per- 
formance as the RLS algorithm at a cost of 13 multiplies plus 3 divides per stage, 
plus 4 multiplies and a divide at the input stage. For the model order of 10 example, 
and that a divide equals about 16 multiplies in terms of operations, the RLS Wiener 
lattice requires 61M+20 operations, or 630 operations per time update. The 50 
MFLOPS DSP can now run at  about 79,000 samples per sec giving exactly the same 
results as the RLS algorithm. The improved performance of the lattice is not only 
due to its orthogonal order structure, it is due to the fact that the Levinson recursion 
(which requires M 2  operations) and output linear predictor generation (which 
requires M 2 - A4 operations) algorithms need not be computed in real-time. If 
the linear predictors are needed in real time, the RLS Wiener lattice and RLS 
algorithms are nearly equal in computational complexity. 

If convergence speed is less of a concern, we can trade adaptive performance 
for significant reductions in computational complexity. The shining example of this 
is the very popular LMS algorithm. Assuming a recursive update is used to estimate 
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the signal power, the step size can be calculated with 3 multiples and a divide, or 
about 19 operations. The LMS update requires 3 multiplies and an add for each 
coefficient, or about 3M operations since multiplies and adds can happen in parallel. 
The normalized LMS filter can be seen to require only 3M+19 operations per time 
update. For the example model order of 10, a 50 MFLOPS DSP can run real-time 
at  a sample rate of over 1 million samples per sec. If the input signal is white noise, 
the LMS algorithm will perform exactly the same as the RLS algorithm, making 
it  the clear choice for many system identification applications. For applications 
where the input signal always has a known power, the step size calculation can 
be eliminated making the LMS algorithm significantly efficient. 

PROBLEMS 

1. Prove the matrix inversion lemma. 
3 How many multiplies and adds/subtractions are needed to execute the I .  

Levinson recursion in Table 3 in terms of model order M? 

3.  Compare the required operations in the RLS, Lattice, and LMS 
algorithms, in terms of multiplies, additions/subractions, and divides 
per time update for a M = 64 tap FIR whitening filter (including Levinson 
recursion for the lattice). 

4. Compare the required operations in the RLS, Wiener Lattice, and 
LMS algorithms for Wiener filtering, in terms of multiplies, 
additions/subractions, and divides per time update for a M = 6 4  tap 
FIR Wiener filter (including Levinson recursion and output predictor gen- 
eration for the lattice). 

5 .  An LMS Wiener filter is used for system identification of an FIR filter 
system. Should one use a large number of equally spaced in frequency 
sinusoids or random noise as a system input signal? 

6. Given the autocorrelation data for a signal, calculate directly the uvhiten- 
ing PARCOR coefficients. 

7 .  Given the whitening filter input signal with samples ( - 2 +1 0 - 1 +2 1 ,  
determine the PARCOR coefficients for the first 5 iterations of a single 
stage least squares lattice. 

8. Compare the result in problem 7 to a single coefficient LMS whitening 
filter with / i  =0.1. 
( a )  Compare the PARCOR coefficient to the single LMS filter 

coefficient, 
(b)  What is the maximum 11 allowable (given the limited input data)? 
(c)  Compare the PARCOR and LMS coefficients for ,U = 5 .  

9. Show that for a well-converged whitening filter lattice, the forurard and 
backward PARCOR coefficients are approximately equal (for real data) 
and the likelihood variable approaches uni ty .  

10. Can a Choleshy factorization of the autocorrelation matrix be done using 
the forward prediction error variances in place of the backward error 
va r iances'? 
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10 

Recursive Adaptive Filtering 

In this chapter we develop and demonstrate the use of some important applications 
of adaptive filters as well as extend the algorithms in Chapter 9 for multichannel 
processing and frequency domain processing. This book has many examples of 
applications of adaptive and non-adaptive signal processing, not just to present 
the reader with illustrative examples, but as a vehicle to demonstrate the theory 
of adaptive signal processing. Chapter 9 contains many examples of adaptive whiten- 
ing filters and Wiener filtering for system identification. Part IV will focus entirely on 
adaptive beamforming and related processing. There are of course, many excellent 
texts which cover each of these areas in even greater detail. This chapter explores 
some adaptive filtering topics which are important to applied adaptive signal 
processing technology. 

In Section 10.1 we present what is now well-known as adaptive Kalman 
filtering. Signal processing has its origins in telephony, radio and audio engineering. 
However, some of the most innovative advances in processing came with Bode’s 
operational amplifier and early feedback control systems for Naval gun stabilization. 
Control systems based on electronics were being developed for everything from elec- 
tric power generation to industrial processes. These systems were and still are quite 
complicated and are physically described by a set of signal states such as, 
temperature, temperature rate, temperature acceleration, etc. The various 
derivatives (or integrals) of the measured signal are processed using +6 dB/oct high 
pass filters (for derivatives) and or -6 dB/oct low pass filters (for integration). The 
f 6  dB/oct slope of the filter represents a factor of J’cL) ( + 6  dB/oct for 
differentiation), or 1ljo ( - 6 dB/oct for integration), the plant to be controlled 
can be physically modeled with a set of partial differential equations. Then sensors 
are attached to the plant and the various sensor signal states are processed using 
high or low pass filters to create the necessary derivatives or integrals, respectively. 
Simple amplifiers and phase shifters supplied the required multiplies and divides. 
Current addition and subtraction completed the necessary signal processing 
operations. Signals based on control set points and sensor responses could then 
be processed in an analog cornputer literally built from vacuum tubes, inductors, 
capacitors, resistors, and transformers to execute closed-loop feedback control 

275 
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of very complex physical systems. This very elegant solution to complex system con- 
trol is known as a “white-box” control problem, since the entire plant and 
input-output signals are completely known. (An elegant solution is defined as a sol-
ution one wishes one thought of first.) 

By the end of the 1950s, detection and tracking of satellites was a national 
priority in the United States due to the near public panic over the Soviet Union’s 
Sputnik satellite (the world’s first man-made satellite). The implications for national 
defense and security were obvious and scientists and engineers throughout the world 
began to focus on new adaptive algorithms for reducing noise and estimating 
kinematic states such as position, velocity, acceleration, etc. This type of control 
problem is defined as a “black-box” control problem because nothing is known 
about the plant or input-output signals (there is also a “grey box” distinction, where 
one knows a little about the plant, a little about the signals, but enough to be quite 
dangerous). In 1958 R. E. Kalman ( 1 )  published a revolutionary paper in which 
sampled analog signals were actually processed in a vacuum tube analog computer. 
The work was funded by E.1 du Pont de Nemours & Co., a world leader chemical 
manufacturer. Many of the complex processes in the manufacture of plastics, 
explosives, nylon, man-made textiles, etc., would obviously benefit from a 
“self-optimizing” controller. This is especially true if the modeled dynamics as 
described by the physicals in a benchtop process do  not scale linearly to the full-scale 
production facility. Physical parameters such as viscosity, compressibility, 
temperature, and pressure do not scale at all while force, flow, and mass do. This 
kind of technical difficulty created a huge demand for what we now refer to as 
the Kalman filter where one simply commands a desired output (such as a tempera- 
ture setpoint). and the controller does the rest, including figuring out what the plant 
is. Section 10.1 presents a derivation of the Kalman filter unified with the 
least-squared error approaches of Chapters 8 and 9. The recursive least-squares tra- 
cking solution is then applied to the derivation of the Y-P-;~tracker (presented in 
Section 4.2) which is shown to be optimal if the system states have stationary 
cov aria nce s. 

In  Section 10.2 we extend the LMS and lattice filter structures to IIR forms, 
such a s  the all-pole and pole zero filters presented in Sections 3.1 and 3.2. Pole-zero 
filters, also known as autoregressive moving average ARMA filters, pose special 
convergence problems which must be carefully handled in the adaptiiee filters which 
whiten ARMA signals, or attempt to identify ARMA systems. These constraints 
art‘ generally not a problem so long as stability constraints are strictly maintained 
in the adaptive algorithms during convergence and, the signals at hand are stable 
signals. Transients in the input-output signals can lead to incorrect signal modeling 
as well as inaccurate ARMA models. ARMA models are particularly sensitive 
to transients in that their poles can move slightly on or outside the unit  circle 
on the complex ,--plane, giving an unstable ARMA model. An embedding technique 
will be presented for both the LMS and lattice filters which also shoivs how many 
channels of signals may be processed in the algorithms to minimize a particular error 
signal. 

Finally in  this chapter we present frequency domain adaptive processing with 
the LMS algorithm. Frequency domain signals have the nice property of 
orthogonality. which means that an independent LMS filter can be assigned to each 
FFT frequency bin. Very fast convergence can be had for frequency domain 
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processing except for the fact that the signals represent a time integral of the data. 
However, this integration is well-known to suppress random noise, making fre- 
quency domain adaptive processing very attractive to problems where the signals 
of interest are sinusoids in low signal-to-noise ratio (SNR). This scenario applies 
to a wide range of adaptive signal processing problems. However, the frequency 
domain adaptive filter transfer functions operations are eventually converted back 
to the time domain to give the filter coefficients. Spectral leakage from sinusoids 
which may not be perfectly aligned to a frequency bin must be eliminated using 
the technique presented in Section 5.4 to insure good results. Presentation of the 
Kalman filter, IIR and multichannel forms for adaptive LMS and lattice filters, 
and frequency domain processing complement the applications of signal processing 
presented throughout the rest of this book. 

10.1 ADAPTIVE KALMAN FILTERING 

Consider the problem of tracking the extremely high-velocity flight path of a 
low-flying satellite from its radio beacon. It is true that for a period of time around 
the launching of Sputnik, the world’s first satellite, many ham radio enthusiasts pro- 
vided very useful information on the time and position of the satellite from ground 
detections across the world. This information could be used to refine an orbit state 
model which in turn is used to predict the satellites position at  future times. The 
reason for near public panic was that a satellite could potentially take pictures 
of sensitive defense installations or even deliver a nuclear bomb, which would cer- 
tainly wreck one’s day. So with public and government interest in high gear. the 
space race would soon join the arms race, and networks of tracking radio stations 
were constructed not only to detect and track enemy satellites, but also to comniuni- 
cate with one’s own satellites. These now-familiar satellite parabolic dishes would 
swivel as needed to track and communicate with a satellite passing overhead at 
incredible speeds of over 17,500 miles per hour (for an altitude of about 50 miles). 
At about 25,000 miles altitude, the required orbital velocity drops to about 6500 
mi/hr and the satellite is geosj~nchronous,meaning that i t  stays over the same 
position on the ground. 

For clear surveillance pictures, the satellite must have a very low altitude. But, 
with a low altitude, high barometric pressure areas on the ground along the flight 
path will correspond to the atmosphere extending higher up into space. The variable 
atmosphere, as well as gravity variations due to the earth not being perfectly 
spherical, as well as the affects of the moon and tides, will cause the satellite’s orbit 
to change significantly. A receiver dish can be pointed in the general direction 
of the satellite’s path, but the precise path is not completely known until the tracking 
algorithm “locks in” on the trajectory. Therefore, today adaptive tracking systems 
around the world are used to keep up to date the trajectories of where satellites 
(as well as orbital debris) are at all times. 

Tracking dynamic data is one of the most common uses of the Kalman filter. 
However, the distinction between Kalman filtering and the more general recursive 
least-squares becomes blurred when the state vector is replaced by other basis 
functions. In this text we specifically refer to the Kalman filter as a recursive least 
squares estimator of a state vector, most commonly used for a series of differentials 
depicting the state of a system. All other “non-state vector“ basis functions in this 
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text are referred to in the more general terms of a recursive least squares algorithm. 
The Kalman filter has enabled a vast array of 20th Century mainstay technologies 
such as: world-wide real-time communications for telephones, television, and the 
Internet; the global positioning system (GPS) which is revolutionizing navigation 
and surveying; satellite wireless telephones and computer networks; industrial 
and process controls; and environmental forecasting (weather and populations, dis- 
eases, etc); and even monetary values in stock and bond markets around the world. 
The Kalman filter is probably even more ubiquitous than the FFT in terms of 
its value and uses to society. 

The Kalman filter starts with a simple state equation relating a column vector 
of rz: measurements, z ( t ) , at time t ,  to a column vector of n ,  states, x(t) ,  as seen 
in Eq. (10.1.1). The measurement matrix, H ( t ) ,  has n= rows and n ,  columns and 
simply relates the system states linearly to the measurements. H ( t )  usually will 
not change with time but i t  is left as a time variable for generality. The column 
vector U*( / )has n, rows and represents the measurement noise, the expected value 
of which will play an important part in the sensitivity of the Kalman filter to 
the measurement data. 

:(t) = H ( r ) . y ( t ) + b c ( t )  (10.1.1) 

I t  is not possible statistically to reduce the difference between z( t )  and H s ( t )  
below the measurement noise described by the elements of w( t ) .  But, the states 
in s(t )  will generally have significantly less noise than the corresponding measure- 
ments due to the “smoothing” capability of the Kalman filter. We can therefore 
define a quadratic cost function in terms of the state to measurement error to 
be minimized by optimizing the state vector. 

( 10.1.2)11 
The cost function is defined over N iterations of the filter and can be more compactly 
written as 

(10.1.3) 

where J( N )  is a scalar, z’” is Nnz rows by 1 column (Nnz x I ), H” is (Nri,  x t i , ) ,  R” is 
( N n ,  x N n , ) ,  and .Y is ( r z ,  x 1) .  Clearly, RA‘can be seen as E{i tv ( t )w( / )H;giving a diag-
onal matrix for uncorrelated Gaussian white noise. Instead of solving for the FIR 
filter coefficients which best relates an input signal and output signal in the block 
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least-squares algorithm presented in Section 8.1, we are solving for the optimum 
state vector which fits the measurements z ( t ) .Granted, this may not be very useful 
for sinusoidal states unless the frequency is very low such that the N measurements 
cover only a small part of the wavelength. It could also be said that for digital 
dynamic system modeling, one must significantly over sample the time updates 
for Kalman filters to get good results. This was presented for a mass-spring dynamic 
system in Section 4.1. 

The cost function is a quadratic function of the state vector to be optimized as 
well as the error. Differentiating with respect to the state, we have 

where a second derivative with respect to x is seen to be positive definite, indicating a 
"concave up" error surface. The minimum error is found by solving for the least 
squared error estimate for the state vector based on N observations, s ' ( N ) , which 
gives a zero first derivative in Eq. (10.1.4). 

s ' ( N )= { [ H N I H [ R y - " H N ]1 - l  [H"]"[R"]-'z" (10.1.5) 

The matrix term in the braces which is inverted in Eq. ( 10.1.5) can be seen as the 
covariance matrix of the state vector x prediction error. The state prediction error is 
simply 

(10.1.6) 

making the covariance matrix of the state prediction error 

(10.1.7) 

For a recursive update, we now augment the vectors and matrices in 
(10.1.2)-( 10.1.3) for the N + 1st iteration and write the state prediction error as 
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an inverse covariance matrix. 

= [ H J \ ' ~ H ( N + [T R ( N + I ) ] - I [  H ( i ' L 1 )  

= [ H " ' ] " [ R 1 ' ] - l [ H 1 v ]+ H ( N  + l ) H R ( N+ I ) - *  H ( N  

= P ( N ) - '  + H ( N  + I)"R(N + I ) - ' H ( N  + 1 )  

( 10.1.8) 

Equation (10.1.8) is of the form where the matrix inversion lemma (Section 9.1) 
can be applied to produce a recursive update for P ( N +  I ) ,  rather than its inverse. 

P ( N  + I )  = P ( N )- P ( N ) H H ( N+ I ) [ R ( N + 1 )  + H(N + I ) P ( N ) l f H ( . 2 '+ 1 ) ] - I  

x H ( N  + I ) P ( N )  

(10. I .9) 

The quantity in the square brackets which is inverted is called the covariance of the 
measurement prediction error. The measurement prediction error is found by com- 
bining Eys (10.1.1) and (10.1.5). 

; ( N +  I ) = z ( N +  1 

= : ( N + 1  

= H ( N +  (10.1.10) 
= H ( N  + 
= H ( N +  

The covariance of the measurement prediction error, S(N + 1 ), (also known as the 
covariance of the innovation), is seen to be 

We can also define the update gain, or Kalman gain, for the recursion a s  

wrhere Eqs (10.1.11 )  and (10.1.12) are used to simplify and add more intuitive 
meaning to the state error covariance inverse update in Eq. ( 10.1.9). 

There are several other forms the update for the inverse state error covariance. The 
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state vector update is 

(10.1.14) 

where it  is straightforward to show that P ( N +  1)  = [ I - K ( N +  l ) H ( N +  l)] P(N)and 
that the Kalman gain can be written as K ( N +  l ) = P ( N +  1)  HH(N+ l ) R - ' ( N +  1) .  
The update recursion for the state vector can now be written in the familiar form 
of old state vector minus the Kalman gain times an error. 

x'(N + 1) = .Y'(N) + K ( N  + l) i(N + 1) (10.1.15) 

All we have done here is apply the recursive least squares algorithm to a state 
vector, rather than an FIR coefficient vector, as seen in Section 9.1. The basis func- 
tion for the filter here is the measurement matrix defined in Eq. ( lO.l . l) ,  and 
the filter outputs are the measurement predictions defined in Eq. (10.1.10). The 
RLS algorithm solves for the state vector which gives the least-squared error for 
measurement predictions. As seen in Eq. (10.1.5), the least-squares solution 
normalizes the known measurement error RN, and as seen in Eq. (10.1.7), as the 
number of observations N becomes large, the variance of the state error becomes 
smaller than the variance of the measurement error. This smoothing action of 
the RLS algorithm on the state vector is a valuable technique to obtain good esti- 
mates of a state trajectory, such as velocity or  acceleration, given a set of noisy 
measurements. A summary of the RLS state vector filter is given in Table 1 .  

The Kalman filter is really just a recursive kinematic time update form of an 
RLS filter for dynamic state vectors. Examples of dynamic state vectors include 
the position, velocity, acceleration, jerk, etc., for a moving object such as a satellite 
or  aircraft. However, any dynamic data, such as process control information (boiler 
temperature, pressure, etc.), or even mechanical failure trajectories can be tracked 
using a dynamic state Kalman filter. The Kalman filter updates for the dynamic 
state vector are decidedly different from RLS, which is why we will refer to the 
dynamic state vector RLS filter specifically as Kalman filtering. I t  is assumed that 
an underlying kinematic model exists for the time update of the state vector. Using 
Newtonian physics, the kinematic model for a position-velocity-acceleration type 
state vector is well known. The modeled state vector update can be made for time 
N +  1 using information available at  time N .  

.Y(N+ 1 )  = F ( N  + l).y(N) + v ( N )+ G ( N ) u ( N )  (10.1.16) 
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Table 1 The RLS State Vector Filter 

Description Equation 

Basis function (measurement matrix) H ( N  + 1 )  

Kalman gain update P(N)H”(  N + 1)
K ( N  + 1)  = 

R ( N  + 1) + H ( N  + I ) P ( N ) H ” ( N+ I )  
= P ( N ) H f ’ ( N+ I ) [S (N+ 1 , ] - I  

I nc‘erse au t ocor re1ation matrix 
update 

M easu rem e n t prediction error ; ( N  + 1) = z ( N  + I )  - z ’ (N + 1 )  

= z ( N  + 1) - H ( N  + I).Y’(‘V) 

Optimal state vector update using .Y‘( N + I ) = 
prediction error 

);(1+NK (+. v ’ (N)  h‘ + 1) 

The term v ( N ) in Eq. (10.1.16) represents the process noise of the underlying 
kinematic model for the state vector updates, while G(N) u(N) represent a control 
signal input, which will be left to Part V of this text. The matrix F ( N +  1)  is called 
tlw sfuft’ trunsition rmitrix and is derived from the kinematic model. As with the 
measurement matrix H ( N +  l ) ,  usually the state transition matrix is constant with 
time, but we allow the notation to support a more general context. Consider the 
case of a state vector comprised of a position, velocity, and acceleration. Proceeding 
without the control input, we note that our best “a priori” (meaning before the state 
is updated with the least-squared error recursion) update for the state at time N + 1, 
given information at time N is 

.Y’(N + 1 IN) = F ( N ) s ( N J N )  

(10.1.17) 

where T is the time interval of the update in seconds. The process noise is not 
included in the a priori state vector prediction since the process noise is assumed 
uncorrelated from update to update. However, the state prediction error variance 
must include the process noise covariance. A typical kinematic model for a position, 
velocity, and acceleration state vector would assume a random change in acceler-
ation from state update to state update. This corresponds to a constant white jerk 
variance (not to be confused with a relentless obnoxious Caucasian (see Section 4.2)) 
which results in an acceleration which is an integral of the zero-mean Gaussian white 
jerk. Assuming a piecewise constant acceleration with a white jerk allows the state 
transition in Eq. ( 10.1.17) where the process noise variance for the acceleration 
is E [ v ( N ) , ~ “ ( N ) ~=c,’. The acceleration process variance scales to velocity by a 
factor of T,and to position by a factor of !AT2leading to the process noise covariance 
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Q ( N )  in Eq. (10.1.18). 

( 10.1.18) 

The process noise Q, state transition F and measurement matrix H are usually con- 
stants, but our notation allows time variability. If one were to change the update 
rate Tfor the Kalman filter, Q must be re-scaled. There are quite a number of process 
noise assumptions which can be implemented to approximate the real situation for 
the state kinematics. Bar-Shalom and Li (2) provide a detailed analysis of various 
process noise assumptions. An a priori state error covariance can be written as 

P’(N + 1IN) = F ( N ) P ( N I N ) F H ( N )+ Q ( N )  (10.1.19) 

The a priori state error estimate is then used to update the innovation 
covariance 

S ( N  + 1) = H ( N  + I)P’(N+ lIN)HH(N+ 1) + R(N + 1 )  (10.1.20) 

and finally to update the Kalman gain. 

K ( N  + 1) = P’(N + lIN)HH(N + l)[S(N + I)]-’ (10.1.2 1 )  

Given the latest measurement z ( N +  1) at time N +  1, an a posteriori update of 
the least-squared error state vector and state vector error covariance are completed 
as given in Eqs (10.1.22) and (10.1.23). 

x ( N  + 1IN + 1) 1x’(N + 1IN) + K ( N  + l){z(N + 1)  - H ( N  + I).Y’(N+ 1IN)) 

(10.1.22) 

Equations (10.1.17)-( 10.1.23) constitute a typical Kalman filter for tracking a 
parameter along with its velocity and acceleration as a function of time. There 
are countless applications and formulations of this fundamental processing solution 
which can be found in many excellent texts in detail well beyond the scope of this 
book. But, it is extremely useful to see a derivation of the Kalman filter in the context 
of the more general RLS algorithm, as well as its similarities and differences with 
other commonly used adaptive filtering algorithms. 

One of the more useful aspects of Kalman filtering is found not in its ability to 
smooth the state vector (by reducing the affect of measurement noise), but rather 
in its predictive capabilities. Suppose we are trying to intercept an incoming missile 
and are tracking the missile trajectory from a series of position measurements 
obtained from a radar system. Our anti-missile requires about 30 sec lead time 
to fly into the preferred intercept area. The preferred intercept area is determined 
by the highest probability of hit along a range of possible intercept positions defined 
by the trajectories of the two missiles. Equations (10.1.17)-( 10.1.19) are used to 
determine the incoming missile trajectory and variance of the trajectory error, which 
in three dimensions is an ellipsoid centered around a given predicted future position 
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for the incoming missile. The further out in time one predicts the incoming missile's 
position, the larger the size of prediction error ellipsoid becomes. The state error 
prediction can be seen in this case as a three-dimensional Gaussian probability den- 
sity "cloud", where the ellipsoid is a one-standard deviation contour. Using Baye's 
rule and other hypothesis scoring methods, one can solve the kinematic equations 
in ;I computer for the launch time giving rise to the most likely intercept. This is 
not always easy nor straightforward, since the tracking filter is adaptive and the 
states and measurement noise are dynamically changing with time. 

Some of the best evidence of the difficulty of missile defense was seen with the 
Patriot system during the Gulf War of 1991. To be fair, the Patriot was designed 
to intercept much slower aircraft, rather than ballistic missiles. But, in spite of 
the extreme difficulty of the task, the missile defense system brought to the attention 
o f  the general public the concept of an intelligent adaptive homing system using 
Kalman filters. Track-intercept solutions are also part of aircraft collision avoidance 
systems and may soon be part of intelligent highway systems for motor vehicles. 
Using various kinematic models, Kalman filters have been used routinely in financial 
markets, prediction of electrical power demand, and in biological /environmental 
models for predicting the impact of pollution and species populations. If one 
can describe a phenomena using differential equations and measure quantities sys- 
tematically related to those equations, tracking and prediction filters can be of great 
uti l i ty in the management and control of the phenomena. 

Table 2 summarizes the Kalman filter. The type of measurements used deter- 
mine the measurement matrix H ( N +  1) and measurement noise covariance 
R ( N +  I ) .  The state kinematic model determines the process noise covariance 
Q ( N + I )  and state transition matrix F ( N +  1) .  As noted earlier, H ,  R ,  Q ,  F. CT:..-:,and Tare typically constant in the tracking filter algorithm. As can be seen from 
Table 2, the Kalman filter algorithm is very straightforward. One makes a priori 
state and state covariance predictions, measures the resulting measurement 
prediction error, and adjusts the state updates according to the error and the define 
measurement and process noise variances. However, the inverse state error 
covariance update given in the table can be reformulated to promote lower numerical 
roundoff error. The expression in Eq. (10.1.24)algebraically equivalent to that 0'Tiven 
in 

P(iV + 1 I N ) = [ I  - K ( N  + l ) H ( N + l ) ] P ( N+ 1 IN) [ I - K ( N  + I ) H ( N + 1 )I" 
+ K ( N  + l ) R ( N + I ) K W  + 1)" 

(10.1.24) 

Table 3, but its structure, known as Joseph form, promotes symmetry and reduces 
numerical noise. 

An example of the Kalman filter is presented following the simple rocket height 
tracking example given in Section 4.2 for the x-/&iy tracker. As will be seen belour, the 
zt-/&;f tracking filter is a simple Kalman filter where the Kalman gain has been fixed to 
the optimal value assuming a constant state error covariance. In the rocket example, 
we have height measurements every 100 msec with a standard deviation of 3 m. The 
maximum acceleration (actually a deceleration) occurs at  burnout due to both grav- 
ity and drag forces and is about 13 m/sec'. Setting the process noise standard 
deviation to 13 is seen as near optimal for the z-p-;~ tracking filter. allowing 
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Table 2 The Kalman Filter 

Basis function (measurement matrix) 

State transition matrix 

Process noise covariance matrix 

Measurement noise covariance 
matrix 

A priori state prediction 

A priori state error prediction 

A priori measurement prediction 

Innovation covariance update 

Kalman gain update K ( N  + 1 )  = P’(N + 1 IN)H”(N+ 1 )[S(h‘+ 1 )I-’  
Measurement prediction error i ( N  + 1) = z ( N  + 1) - H(h’  + I).Y‘(“ 

Optimal state vector update s ( N  + 1IN + 1 )  = s ’ ( N + 1”) + K ( N  + I)<(iV+ 1 )  
using prediction error 

Inverse state covariance matrix 
update 

non-adaptive tracking of the changes in acceleration, velocity, and position of the 
rocket’s height. The adaptive Kalman gain, on the other hand, depends on the ratio 
of the state prediction error covariance to the measurement noise covariance. 
The Kalman gain will be high when the state error is large and the measurements 
accurate (o,,and R small), and the gain will be low when the state error is small 
and/or  the measurements inaccurate. The adaptive gain allows the Kalnian filter 
to operate with a lower process noise than the non-adaptive cc-p-y tracking filter, 
since the gain will automatically increase or decrease with the state prediction error. 
In other words, if one knows the maneuverability of the target (the maximum 
acceleration, for example), and the measurements are generally noisy, the cr-p-;! tra-
cking filter is probably the best choice, since the measurement noise will not effect 
the filter gain too much. But if one does not know the target maneuverability. 
the Kalman filter offers fast convergence to give the least-squared error state vector 
covariance. However, when the measurements are noisy, the Kalman filter also 
suffers from more noise in the state vector estimates when the same process noise 
is used as in the U-p-7 tracking filter. Figures 1 and 2 illustrate the noise sensitivity 
for the rocket example given in Section 4.2. 

Comparing the filter gains used in Figures I and 2 we see that the x-p -y  tracking 
filter used [0.2548 0.3741 0.27461 while the Kalman filter calculated a gain vector of 
[0.5046 1.7545 3.04991. The higher Kalman gain fit the state vector more accurately 
to the measurements, but resulted in more velocity and acceleration noise. In 
the simulation, if we let the measurement noise approach zero, the responses of 
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Figure 1 Non-adaptive cc-P-7 tracking filter (from Section 4.2) where the measurement 
noise is 3 and process noise 13. 

the two filters become identical and the gain vector converges to [ I  1 / T 1 /(2T2)], or [ 1 
20 2001 when T= 100 msec. By comparing the gain vectors for a given measurement 
noise (and process noise for the x-,!l-;t tracking filter), we can adjust the Kalman filter 
process noise so that the filter gains are roughly the same when the measurement 
noise is still a relatively high 3 m. We find that the Kalman filter process noise 
can be reduced to about 1 .O to give a Kalman gain vector of [0.2583 0.3851 0.28711, 
which is very close to the gain vector for the x-/j--y tracking filter. Figure 3 shows 
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Figure 2 Kalman filter for the same measurement and process noise as seen in Figure I .  

the Kalman filter tracking results which are nearly identical to the z-p-;~tracking 
filter with a high process noise of 13. 

The significance of determining the Kalman filter process noise which gives the 
same filter gain as the a-p-y tracking filter when the measurement noise is high is that 
this gives an indication of the minimum process noise needed to track the target 
maneuvers without significant overshoot. Note that for a near zero measurement 
noise, the gain vectors are only identical for the same process noise. Given a reason- 
able minimum process noise for the Kalman filter, it gives superior tracking per- 
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Figure 3 Kalman filter results using the same measurement data a s  seen i n  Figures 1 2. but 
L+.ith the process noise of 1 .  

formance to the %-/)-;I tracking filter when the measurement noise is Ion. as seen in 
Figures 4 and 5 .  

The examples in Figures 1-5 and in Section 4.2 indicate that the c r - / G ; l  tracking 
filter is the algorithm of choice when the measurements are noisy. Unfortunately, 
there is not an algebraic expression which can tell us simply how to set the process 
noise in a Kalman filter for optimum performance. The reason is that the Kalman 
gain is not only ii function of measurement noise, process noise, and time update 
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Figure 4 Low measurement noise (0.1) improves the ~ - p - ; ltracking filter with the same 
process noise of 13. 

(as is the case with the (x-p-ytracking filter), but it also depends on the state prediction 
error covariance, which is a function of target maneuvers. In most situations, one 
knows a reasonable expected target track maneuverability and the expected meas- 
urement noise a priori. This information allows one to execute simulations for a 
covariance analysis of the Kalman filter's performance on the expected data. With 
the measurement noise small (or near zero), one can set the Kalman filter process 
noise to almost any large value and the filter will perform nearly perfectly. With 
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Figure 5 The Kalman filter with 0.1 measurement noise and a process noise o f  1 gives 
improtred performance over the u-/j-;b tracking filter for the same data and a process noise 
o f  13. 

high measurement noise, it is easier to determine the minimum Kalman process noise 
empirically for a given target maneuver. Setting the process noise to the maximum 
expected acceleration is a good starting point (and ending point for the 8 u - / & ; t  tracking 
filter), but the Kalman filter generally allows a lower process noise due to the 
enhanced ability of the adaptive updates to help the state error converge rapidly 
to target maneuvers. 
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The a-b-y tracking filter is a Kalman filter with fixed state error covariance. In 
Section 4.2 we introduced the cc-fl-y tracking filter as an important application of a 
state-variable filter and its derivation was referenced to this Section. Its derivation 
is rather straightforward, but algebraically tedious. We show the approach of 
Bar-Shalom (3) to demonstrate the technique. But more importantly, the solution 
for the a-b-y tracking filter shows that a, /I,and y cannot be chosen independently. 
For a given amount of position noise reduction (as determined by ct < l), p and 
-y are systematically determined from the measurement error G , ~and update time 
T. Setting a therefore also sets the process noise, and the state prediction error 
covariances to constant “steady-state” values. However, the filter will only converge 
to the prescribed steady-state error covariance if all the kinematic assumptions are 
true. If the tracking target makes an unexpected maneuver, the state error will 
increase for a while as the state vectors “overshoot” the measurements temporarily. 
This can be seen in Figure 4.5 where a “sluggish” track is produced from using 
too small a process noise in the a-b-y tracking filter. 

Combining Eqs (10.1.19), (10.1.21) and (10.1.23) we can write an expression 
for the updated state prediction error covariance P assuming steady-state con- 
ditions. 

If we simplify the problem by assuming only the cc and p tracking gains and a 
piecewise constant acceleration model, we have the following matrix equation to 
solve. 

1 - k l  0: I= [[-‘T -k2 1 1  

(10.1.26) 

Equation (10.1.26) is best solved by simply equating terms. After some sim- 
plification, we have 

( 10.1.27) 

(10.1.28) 

and 

(10.1.29) 

Solving for the predicted state covariance elements we have 

(10.1.30) 
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and 

( 10.1.31 ) 

Finally, solving for the p i 2  term we have 

(10.1.32) 

Combining Eqs ( 10.1.27)-( 10.1.32) and after some algebraic cancellations, we arrive 
at the following bi-quadratic equation for the filter gains. 

(10.1.33) 

The filter gains in terms of 2 and 1)are simply k l = r and k 2= /1/ 7‘. Equation ( 10.1.33) 
reduces to 

p’
x 2  - 2/j + x p  + -4 = 0 ( 10.1.34) 

Solving for x in terms of /j using the quadratic formula we have 

( 10.1.35) 

and solving for [j in terms of ix we have 

/ 1 = 4 - 2 2 - 4 J l  -12 ( 10.1.36) 

For the l x - / j - ; ~  filter, it can be shown (with some algebraic complexity) that 
; I=/?h.Another important relation is seen when equating terms for p i2 .  

(10.1.37) 

Equation ( 10.1.37) leads to an expression for the track maneuverability index 

( 10.1.38) 

The results of the derivation above are also presented in Eqs (4.2.7)-(4.2.11). 
The maneuverability index determines the ”responsiveness” of the tracking filter 
to the measurements. For the fixed gain a-1j-y filter one estimates the maximum tar- 
get acceleration to determine the process noise standard deviation 0,. Given the 
measurement noise standard deviation (T,, and track update time T. the 
nianeuverability index is determined as well as x ,  /j, and 7 (see Section 4.2). 
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The cr- /&) l  filter is an excellent algorithm choice for cases where the kinematics are 
known and the measurements are relatively noisy. Given unknown target 
maneuverability and/or  low noise measurements, the adaptive Kalman filter is a 
better tracking algorithm choice, because the process noise can be significantly 
lowered without sacrificing responsiveness to give more noise reduction in the tra- 
cking state outputs. While derivation of the a-/&? filter is quite tedious, knowledge 
of the Kalman filter equations allows a straightforward solution. Tracking filters 
are an extremely important and powerful signal processing tool. Whenever one 
measures a quantity with a known measurement error statistic, and observes the 
quantity changing deterministically over time, one is always interested in predicting 
when that quantity reaches a certain value, and with what statistical confidence. 

10.2 IIR FORMS FOR LMS AND LATTICE FILTERS 

The least-squared error system identification and signal modeling algorithms pre- 
sented in Chapters 8 and 9 were limited to FIR filter structures. However, modeling 
systems and signals using infinite impulse response (IIR) digital filter is quite 
straightforward. Because an IIR filter with adaptive coefficients has the potential 
to become unstable, one must carefully constrain the adaptive IIR filter algorithm. 
If we are performing a system identification where both the input and output signals 
are completely known, stability is less of a concern provided that the unknown sys- 
tem to be identified is stable. When only the output signal is available and we 
are trying to model the signal as the output of an IIR filter driven by white noise, 
the stability issues can be considerably more difficult. Recall from Section 3.1 that 
FIR filters are often referred to as moving average, or MA,  and are represented 
on the complex s-plane as a polynomial where the angles of the zeros determine 
the frequencies where the FIR filter response is attenuated, or has a spectral dip. 
In Section 3.2 the IIR filter is presented as a denominator polynomial in the 
:-domain. The angles of the zeros of the IIR polynomial determine the frequencies 
where the filter’s response is amplified, or has a spectral peak. The IIR zeros are 
called the filter’s poles because they represent the frequencies where the response 
has a peak. IIR filters with only a denominator polynomial feedback the past values 
of the output signal in the calculation of the current output, and as a consequence, 
are often called autoregressive, or AR filters. 

The most general form of an IIR filter has both a numerator polynomial and a 
denominator polynomial, and is usually referred to as a pole-zero, or ARMA filter. 
The zeros of the numerator polynomial are the filter zeros and the zeros of the 
denominator polynomial are the filter poles. For the IIR filter to be stable, the 
magnitude of all the poles must be less than unity. This insures that the output 
feedback of some particular output signal sample eventually reverberates out to zero 
as it is fed back in the autoregressive generation of the current IIR output. Therefore, 
the denominator part of a stable IIR filter must be a minimum phase polynomial with 
all its zeros (the system poles) inside the unit circle. 

Figure 6 depicts system identification of some unknown system represented by 
the ratio of s-domain polynomials B[s]lA[z]where the zeros of B[z]are the system 
zeros and the zeros of A [ z ]are the system poles. The adaptive system identification 
is executed by a pair of adaptive filters which are synchronized by a common error 
signal e[n],and the input .r[n]and output y[n].Recall from Eq. (3.2.10) the difference 
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Figure 6 An ARMA LMS system identification operation given the unknown system input 
s [n]and output y [ n ] .  

equation for an ARMA filter assuming a numerator polynomial order of Q ( Q  zeros) 
and a denominator polynomial order P ( P  poles). 

We can model the actual ARMA filter in Eq. (10.2.1) to make a linear prediction of 
the output ~?’[n] using the available signals except the most recent output sample 
j * [ r z ](to avoid a trivial solution). 

The prediction error is simply 

(10.2.3) 

The gradient of the error with respect to E[=]= hb +hi=-’ + . . . + hbz-0 is 
negative and the gradient with respect to ,4721 = a’,=-’ + uiz-? + . . . + cl+-’ is 
positive. This sign distinction will be important to the LMS coefficient updates. 
However, we note that the model orders P and Q are assumed known and the 
AR model polynomial A’[:] does not have the leading coefficient of unity seen 
in A[: ] .  The squared error for this case is a quadratic function of both sets of 
coefficients, and the second derivative is also positive indicating that the 
least-squared error solution corresponds to the set of ARMA coefficients which gives 
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zero gradient. When the input and output signals are known, the least-squared error 
solution applies only to the chosen model orders P and Q. If P and Q are chosen not 
to both correspond to the actual unknown system’s polynomial orders, one only has 
a least-squared error solution (best fit) for the chosen model orders, not overall. 
Recall that for the FIR system identification case, one could choose a model order 
much higher than the actual system’s, and the unneeded coefficients would nicely 
converge to zero. This unfortunately is not the case for ARMA filter models. Each 
combination of P and Q will give a least-squared error solution, but only for that 
particular case. If all possible combinations of model orders are tried, the actual 
unknown system’s polynomial orders will correspond to the overall least-squares 
solution. Obviously, it would be very valuable to have a straightforward method- 
ology to determine the optimal ARMA model efficiently. 

Since we have both input and output signals with known variances, we can 
directly apply an LMS algorithm to find the coefficients for the chosen model order. 
The FIR, or MA part of the model is updated at time n using 

(10.2.4) 

and the IIR, or  AR part of the ARMA model is updated using 

(10.2.5) 

The sign of the updates in Eqs (10.2.4)-(10.2.5) are due to the need to adjust the 
coefficients in the opposite direction of the gradient as a means to mode to the mini- 
mum squared error. Stability of the algorithm is simplified by knowing the variances 
of the input and output, and by the structure in Figure 6 where j*’[n]is not fed back 
into the adaptive filter. Doing so could cause an instability if one or more of 
the zeros of A’[=]move outside the unit circle during adaptation. So long as the 
input s [ r 2 ]  and output y[n]are stationary allowing an accurate pb and po, we are 
assured stable LMS updates and convergence to something close to the unknown 
system. 

Error signal bootstrapping is used for ARMA signal modeling. When only the 
output signal y[n]is available, we can model the signal as an ARMA process defined 
as an ARMA filter with unity variance white noise input, or innovation. This pro- 
cedure is somewhat tricky, since both an input and output signal are needed for 
an ARMA model. The input is estimated using a heuristic procedure called error 
bootstrapping. Since the ARMA process innovation is a unity-variance white noise 
signal, we can estimate the input by calculating the prediction error in the absence 
of the actual input. 

eh[n]= y[n]- y”[n] 

= y[n]- eh[n- lib', - . . . - eh[n- Q]bb+y[n- 110; + . . . +~ ~ [ n- P I 4  

( I  0.2.6) 

The bootstrapped error signal in Eq. (10.2.6) is very close, but not identical to, the 
linear prediction error in Eq. (10.2.3) except the ARMA input x[n] is replaced 
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by the bootstrapped error rh[n].Note that the bootstrapped output linear prediction 
jq"[ti] assumes a zero input for rh[n],allowing a prediction error prediction based on a 
least-squared error assumption. The bootstrapped A R M A  input signal can be seen 
as an a priori estimate of the prediction error. The adaptive update for the M A  
coefficients, must use an LMS step size based on the output power, since the 
bootstrapped error will initially be of magnitude on the order of the A R M A  output. 

(10.2.7) 

The prediction error for the bootstrapped A R M A  model 4 n ] , is calculated as 

tJ[12] = j*[n]- y"n3 

= j.[tZ] - &z]h;, - c q n  - l]h;- . . . - &z - Q]hQ (10.2.8) 
+ ) ' [ I ?  - 11.; + . . . + y[tz - PI,;, 

which is exactly as in the Wiener filtering case in Eq. (10.2.3) except the actual 
A R M A  input .t-[12] is replaced by the bootstrapped error signal c?[n] .  For an AR 
signal model, the M A  order, Q=O, and the bootstrapping procedure reduces to 
a whitening filter algorithm. 

T o  recover the MA coefficients for the A R M A  bootstrapped model we must 
obtain the proper scaling by multiplying the M A  coefficients by the standard 
deviation of the prediction error. This compensates for the premise that the A R M A  
signal is the output of a pole-zero filter driven by unity-variance zero-mean white 
Gaussian noise. For the LMS and RLS bootstrapped A R M A  algorithms, a whiten- 
ing filter structure is used where the bootstrapped error signal is used to simulate 
the unavailable input to the unknown A R M A  system. Minimizing this error only 
guarantees a match to the real A R M A  system within a linear scale factor. The scale 
factor is due to the variance of the bootstrapped error not being equal to uni ty .  
Multiplying the converged M A  coefficients by the square-root of the bootstrapped 
error variance scales the whitening filter giving an A R M A  signal model assuming 
a unity-variance white noise innovation. When the A R M A  input signal is available 
(the Wiener filtering system identification problem), scaling is not necessary for 
the LMS and RLS algorithms. However, one will see a superior M A  coefficient per- 
formance for the RLS bootstrapped A R M A  algorithm when the bootstrapped error 
is normalized to uni ty  variance. For the embedded A R M A  lattice. a little more com- 
plexity is involved in calculating the MA scale. 

Figures 7 and 8 show the results of an A R M A  LMS system identification and 
error bootstrapping simultation. The actual A R M A  filter has a pair of complex con- 
jugate poles at f200 Hz with magnitude 0.98 Gust inside the unit circle). A pair of 
conjugate zeros is at f400 Hz also of magnitude 0.95. In the simultation, the sample 
rate is 1024 Hz making the pole angles f 1.227 radians and the zero angle f 2 . 4 5 4  
radians on the complex :-plane (see Sections 2.1-2.3 and Chapter 3 for more detail 
on digital filters). A net input-output gain of 5.0 is applied to the actual A R M A  

~filter giving a numerator polynomial in z of B[z]= 5.0 + 7.3436: ' +4.5125: '. 
The actual A R M A  denominator polynomial is A[:]  = 1 .O -0.6603,- ' + 0.9604,-
' and 2000 output samples are generated using a unity variance white noise input 
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Figure 7 Frequency responses of actual ARMA filter and filter models for Wiener filtering 
and error Bootstrapping. 

.\-[n]and Eq. (10.2.9). 

-, I ~ [ H ]= ~ . O S [ U ]+ 7.3436.\-[~1 I ]  + 4.51254n - 21 + 0.6603,17[1~- I ]  
- 0.9604-~[~ 

( 1  0.2.9)
- 21 

The frequency responses shown in Figure 7 are generated two ways. First. the 
FFT of the output signal is divided by the FFT of the input signal and the quotient 
is time averaged (see Section 6.2 for details on transfer functions). Second, the 
response is calculated directly from the ARMA coefficients by computing the ratio 
of the zero-padded FFTs of the coefficients directly. This technique is highly efficient 
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Figure 8 ARMA coefficient responses for the LMS Wiener filter and the LMS error 
bootst rapped A R M A model, 

and is analogous to computing a z-transform where 3 is 4 -'*'I (see Section 3.1 for the 
frequency responses of digital filters). Figure 7 clearly shows the input-output signal 
FFT, the actual ARMA polynomial response, and the LMS Wiener filter response 
overlaying nearly perfectly. The LMS Wiener filter calculated polynomials 
are B'[2] =5.0000 +7.34372 - +4.5 1262 - ' and A'[:] = 1 .0000 - 0.66032 I + 
0.9604: 'which are very close to the actual ARMA coefficients. 

The bootstrapped ARMA signal model is close near the ARMA peak 
created by the pole at 200 Hz, but completely misses the zero at 400 Hz. I t  
will be seen below that proper normalization of the bootstrapped error signal 
to better model the ARMA innovation will result in improved M A  coefficient 
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performance for the RLS algorithm. In theory, the bootstrapped ARMA estimate 
may improve depending on the predictability of the innovation and the effective 
length of the data memory window. Performance limitations due to slow 
LMS algorithm convergence are the main reason for high interest in fast adaptive 
algorithms. The coefficient estimates as a function of algorithm iteration are seen 
in Figure 8. 

A fast algorithm allows one to get the most information for a given 
input-output signal observation period. The LMS bootstrapped ARMA filter 
had to be slowed considerably by reducing the step size to about 1% of its theor- 
etical maximum defined in Eqs (10.2.4)-(10.2.5) and (10.2.7) to get the perform- 
ance seen in Figures 7 and 8. This corresponds to a data memory window 
for the LMS algorithm of about 100 samples. The bootstrapped ARMA per-
formance seen in Figure 8 shows a reasonable AR coefficient response and a 
very poor MA coefficient response. This is also seen in Figure 7 in the reasonable 
peak alignment but completely missed zero. However, close examination of the 
ARMA coefficient response in Figure 8 shows a good convergence on the pole 
magnitude (0.98), but some drift in the pole angle (or frequency). This can 
be seen as caused by interaction of the pole with the zero. Indeed, the LMS 
algorithm for both the AR and MA parts are driven by a single error signal 
where the input data is not orthogonal in order. The interaction between the 
AR and MA part for the bootstrapped ARMA signal model is exasperated 
by the coupling (due to the least-squared error approximations) in the LMS 
ARMA algorithm. The poorly-converged bootstrapped ARMA coefficients after 
2000 iterations are B’[z]=6.7311+3.327 lz  - -2.498 1z -‘ and A’[:] = 1.OOOO 
-0.7046:- +0.9537:-*. As noted earlier, the AR part of the match is 
reasonable. 

The embedding technique allows multiple signal channels to be in the RLS or 
Lattice algorithms by vectorizing the equations. The RLS algorithm of Section 
9.1 (see Table 9.1) is the most straightforward to embed an ARMA model. One 
simply extends the basis vector to include the ARMA filter input and output 
sequences and correspondingly, extends the coefficient vector to include the AR 
coefficients. 

(1 0.2.10) 

Using the basis function and coefficient vector in Eq. (10.2.10), one simply 
executes the RLS algorithm as seen in Table 9.1. For error bootstrapping for ARMA 
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signal models, the bootstrapped error is simply 

hct, =j',,- 4 ; f f  

(10.2.11)  

where t;: is zero on the right side of Eq. (10.2.11 ) .  Given the bootstrapped error to 
model the A R M A  process innovation, the linear prediction error is simply 

c,, = * \ I ) ,  - cp,, H 

( 102.12) 
= j',,- [ i : s i : f i - ,  . . . 

An example of the enhanced performance of the RLS ARMA algorithm is seen 
in Figures 9 and 10 where the RLS A R M A  algorithm is applied to the same data a s  
the LMS A R M A  example seen in Figure 7 and 8. The RLS algorithm converges 
tnuch faster than the LMS algorithm and appears to give generally better ARMA 
inodeling results. This is true even for the bootstrapped error case, which still suffers 
from MA coefficient modeling difficulty. However, we see that there is much less 
coupling between the AR and M A  parts of the model. Recall that the true ARMA 

~polynomials are B[J] = 5.0 +7.34361 ' +4.51251 'and A[:]  = 1 .0 - 0.6603: + 
0.96042 '. The RLS Wiener filter A R M A  model is B[:]=5.0+7.3436~ I + 
4.5 1252 ' and ,4[1]= 1 .0 - 0.66032 I +0.96042 '. The RLS bootstrapped error 
A R M A  signal model is B[z] =8. I38 1 + 1.6342,- +0.4648: ' and A[:] = 1 .0 -
0.7002: ' +0.9786: '. The Wiener filter RLS results are practically 7ero error 
ivhile the bootstrapped A R M A  results still show a weak zero match in  the M A  part 
of the ARMA signal model. 

Normalizing the bootstrapped error signal to unity variance in the RLS dgo-
rithm constrains the bootstrap process to better model the ARMA innoiation. This 
also conditions the prediction error for the algorithm to be better balanced between 
the MA and AR coefficients, thus allowing vastly improved A R M A  signal modcling. 
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Figure 9 A R M A  Frequency response results for the RLS algorithm using Wiener filtering 
and error bootstrapping. 

The normalized bootstrap error performance can also be seen in the embedded 
A R M A  lattice, presented below. The lattice PARCOR coefficients are naturally 
normalized by their respective error signal variances. The lattice A R M A  requires 
simply multiplying the M A  coefficients by the square-root of the linear prediction 
error to produce properly normalized M A  coefficients (for ho # 1) .  Multiplying 
the M A  coefficients by the standard deviation of the prediction error certainly scales 
the model so the spectral peaks match well. However, applying this technique 
directly to the LMS and RLS A R M A  bootstrap algorithm does not result in a very 
good M A  coefficient match. Normalizing the bootstrap error signal to unity variance 
achieves the same scaling effect in the A R M A  model, but also greatly improves the 
M A  coefficient match. I t  can be seen that normalizing the bootstrap error leads 
to improved conditioning in the adaptive algorithm to balance the adaptive effort 
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Figure 10 A R M A  coefficient convergence results using the RLS algorithm for the Wiener 
filtering case and the error bootstrapping case for modeling A R M A  processes. 

between the M A  and AR parts of the model. Equation (10.2.13) shows the basis 
function 4; used in calculating the bootstrap error c: = $kH,  similar to the 
unnormalized bootstrap error in Eq. (10.2.1 I ) ,  except oh is the square root of 
the bootstrap error variance. 

(10.2.13) 

The bootstrap error is then used in a recursive estimate for the bootstrap error 
variance, and subsequently, standard deviation can be calculated. The bootstrap 
error variance recursion is best initialized to unity as well. The RLS algorithm 
is very sensitive to the bootstrap error amplitude. The basis function used in the 
RLS algorithm is seen in Eq. (10.2.14) as is used to generate the linear prediction 
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error in the RLS as seen in Eq. (10.2.12). 

(10.2.14) 

It is both surprising and interesting that simply normalizing the bootstrap error 
improves the RLS ARMA model result as significantly as that demonstrated in Fig- 
ures 11 and 12. Why should it matter whether bo =5 and = 1 or ho = 1 and =5? 
Consider that the RLS basis vector and linear prediction error must be separate for 
the net gain of the M A  coefficients to be properly calculated. Since the RLS linear 
prediction error is not normalized, the M A  coefficients are scaled properly in 
the RLS normalized ARMA bootstrap algorithm without the need to multiply 
the coefficients by some scale factor afterwards. The reason bootstrap error 
normalization does not help the LMS performance significantly is that much of 
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Figure 11 Frequency responses showing a close match between the actual and normalized 
bootstrap error Wiener filter. 
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Figure 12 Coefficient results for the A R M A  model using Wiener filtering and normalired 
t\R M A boots t ra p err or. 

the optimization in the RLS algorithm is lost in the approximations used to create 
the simple and robust LMS algorithm. 

In this example of normalized bootstrap error RLS ARMA modeling. i t  is 
noted that the RLS bootstrap algorithm is very sensitive to initial conditions com- 
pared to the highly reproducible results for Wiener filtering, where both input 
and output are known. Initializing the bootstrap error variance to, s a j  the output 
signal variance, also gave improved MA coefficient matching results, but not ~ 1 , ~ 

;is good a s  that with an initial uni ty  variance. The ARMA normalized bootstrap 
~results are B[1] =5.0114 +7.51781 ' +4.32441 and A[z] = 1 .0000 - 0.6738: ' + 

0.9149: 'which are nearly as good as some of the Wiener filtering ARMA results. 
Embedding an ARMA filter into a lattice structure is very straightfor\+,ard 

once one has established a matrix difference equation. Recall t h a t  the projection 
operator framework in Chapter 8 "as completely general and derikved i n  complex 
matrix form (the superscript H denotes transpose plus complex conjugate). All 
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of the lattice and Levinson recursions in Chapter 9 are also presented in complex 
matrix form. We start by writing the ARMA difference equations in matrix form. 

(10.2.15) 

It is straightforward to show that di =ui/hoand ci =h,/ho where i = 1,2,  ..., M .  
do= 1 / ho ,and uo=co= 1.  The forward prediction error ARMA lattice recursion is 
seen to be 

(10.2.16) 

and the backward error ARMA lattice recursion is 

( 10.2.17) 

Equations (10.2.16) and (10.2.17) lead to the ARMA lattice structure shown in 
detail for the p + 1st stage in Figure 13. The 3-dimensional sketch of the ARMA 
lattice stage shows how the 2-channel matrix equations can be layed out  into an 
electrical circuit. The importance of the symmetry within each lattice stage, and 

Figure 13 ARMA Lattice section showing 2-channel forward and backu.arcl prediction 
error for the embedded A R M A  model. 
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among the various stages of the lattice filter is that a very complicated set of matrix 
updates can be executed systolically, dividing the total operational load between 
multiple processors in a logical manner. 

Figure 14 shows the layout of three lattice stages to form a 3rd-order A R M A  
filter. The error bootstrap is shown for A R M A  signal modeling where the innovation 
must be modeled. The unknown A R M A  filter input and output are available, Wiener 
filtering is used to identify the system where the A R M A  output enters the lattice 
through c;.,~and the A R M A  input -v,, enters through E;, , ]  replacing the error bootstrap 
t ; ;  . 

Figure 15 shows the frequency responses for the original A R M A  system 
polynomials, the lattice results using Wiener filtering, and the A R M A  lattice error 
bootstrap technique. Clearly, the A R M A  modeling results using the lattice are quite 
good. Figure 16 shows the A R M A  coefficient results. 

The A R M A  embedded lattice is essentially a 2-channel whitening filter. For the 
Wiener filtering case, the Levinson recursion supplies the coefficients of A[:]  and B[r] 
assuming the lattice order M is greater than or equal to both P and Q, the A R M A  
polynomial orders, respectfully. The value of any coefficients from order P or Q 
up to M should converge to zero for the Wiener filtering case. However, we are 
missing ho (and do = 1 /ho) .  

Given the forward prediction error variances leaving the Mth stage, the scale 
factor for ho is 

(10.2.18) 

Figure 14 A R M A  lattice for 3rd-order model showing bootstrap error path for innovation 
niode1i ng . 
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Figure 15 Frequency responses for ARMA modeling the embedded lattice structure. 

which is only required for boin the Wiener filtering case. The rest of the coefficients in 
B[z]are actually properly scaled by the lattice and Levinson recursions. For the 
ARMA error bootstrap case, B'[z](b6 is assumed unity) is simply multiplied by 
the standard deviation of the bootstrap error. 

(10.2.19) 

The prediction error is divided by N before the square root because of the recursion 

where CI = 1 - 1/N. This removes a bias of N from the lattice forward prediction 
error variance. As seen in Figure 15, the scaling technique works quite well for 
the ARMA lattice. 
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Figure 16 A R M A  coefficient results for the embedded lattice structure. 

Table 3 compares all of the ARMA filter and signal modeling performance 
results. By inspection of the converged ARMA coefficients, one can see that for 
Wiener filtering where both input and output signals are known, the ARMA 
coefficients can be estimated with great precision using either LMS, RLS, or the 
least-squares lattice. For ARMA bootstrapping, where one models the signal as 
an ARMA process with unity variance white noise innovation, the results using 
LMS and RLS with unnormalized bootstrap error are unacceptable (as indicated 
by thc shaded table cells). By normalizing the bootstrap error to unity variance. 
good RLS results are obtained as indicated in the table by the "RLSN" algorithm. 
The ARMA bootstrapped lattice also gives good ARMA signal modeling perform- 
ance although Figure 16 clearly shows the sensitivity of the lattice to noise. The 
memory window iq for the trials was generally kept at  200 samples fo r  all u s e s  
except the LMS algorithm, which was too slow to converge in the space of 200 data 
samples. Reducing the LMS data memory window to 100 samples NW necessary 
for coinpa ra b1c con vergence. 
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Table 3 ARMA Filter Modeling Comparison 

Algorithm ho hl h2 U1 N 2 N 

Actual 5.0000 7.3436 4.5 125 -0.6603 0.9604 Y 

Wiener Filter 
LMS 5 .OOOO 7.3437 4.5 126 -0.6603 0.9604 100 
R LS 5.0000 7.3436 4.5125 -0.6603 0.9604 200 
Lattice 5.0047 7.5809 4.8011 -0.6565 0.9678 200 

Bootstrapped ARMA Error 
LMS 6.73 I 1 3.3271 -2.498 1 -0.7046 0.9537 100 
R LS 8.1381 1.6342 0.4648 -0.7002 0.9786 200 
RLSN 5.01 14 7.5178 4.3244 -0.6738 0.9 149 200 
Lattice 5.3203 7.2554 4.4180 -0.679 1 0.9881 200 

Generalized embedding of C signal channels in the lattice algorithm can be done 
using the ARMA embedding methodology. This type of multichannel signal pro- 
cessor is useful when ARMA models are estimated simultaneously between many 
signals, multi-dimensional data (such as 2D and 3D imagery) is modeled, or when 
arrays of sensor data are processed. Examination of the signal flow paths naturally 
leads to a processor architecture which facilitates logical division of operations 
among multiple processors. To examine the generalized embedded multichannel 

-lattice algorithm, consider C input signals to be whitened -FII = [IV,!J-~.. . J $ ] ~ .The 
forward error signal vector update is ip+l.ll - K ~ + l ~ l ~ F ~ , , l l + ~ ,= or simply 

I 
rp.11- I 

? 

1 (10.2.2 1) 

$ 1 - 1 

and a similar expression for the backward prediction error vector 

( 10.2.21) 

While embedding the RLS basis vector with additional channel results in sig- 
nificant increase in the dimension (effective RLS model order) of the matrices 
and vectors, embedding additional signal channels into the lattice simply expands 
the size of each stage, leaving the effective lattice model order the same. Therefore, 
we expect significant computational efficiencies using the lattice structure over 
an RLS structure. The signal flow for a %channel lattice stage is seen in Figure 17. 

The multichannel lattice stage in Figure 17 is a completely general adaptive 
processing structure allowing any number of signal channels to be embedded. 

TLFeBOOK



310 Chapter 10 

Figure 17 Signal How block diagram for an 8-channel lattice showing the interconnections 
between the first four stages. 

The solid “dots” represent connections between signal wires, or soldier joints, while 
the open triangles are the elements of the PARCOR coefficient matrix. The forward 
error signals enter at  the top left side and are multiplied by the elements of in 
the upper right corner and summed with the backward error which exits at the 
top right. At the bottom left, the updated forward error signal vector is produced 
from the forward error input (top left side) summed with the product of E;+l,,l 
and the backward error which enters at  the bottom right side. This curiously sym- 
metric processing structure also has the nice property that successive stages can 
be easily “stacked” (allowing straight buss connections between them) by a simple 
90 counter-clockwise rotation as seen in Figure 18. 

Clearly, future developments in adaptive signal processing will be using 
structures like the multichannel lattice in Figure 18 for the most demanding 
processing requirements. The orthogonal decomposition of the signal subspace 
directly leads to the highly parallel processing architecture. It can be seen that 
correlations in both time and space (assuming the input signal vector is from 
an array of sensors) are processed allowing the PARCOR coefficient matrices 
to harvest the available signal information. Besides, the graphic makes a nice book 
cover. 
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Figure 18 Graphical depiction of an 8-channel lattice showing the forward error entering 
from the left and leaving the bottom and backward error entering from the right, passing 
through the delay latch, and leaving at the top. 

10.3 FREQUENCY DOMAIN ADAPTIVE FILTERS 

Adaptive LMS processing in the frequency domain offers some advantages over the 
time domain LMS algorithm in performance, yet it is not as computationally 
complex as the RLS or lattice algorithms. The main advantage for the frequency 
domain LMS (FDLMS) comes from the orthogonality of spectral data, allowing 
the ability to implement a single complex coefficient LMS filter for each FFT 
bin independently. This results in the same fast convergence rate for all the FFT 
bins as compared to the time domain algorithm which only converges fast for 
the dominant eigenvalue of the input data. One can maintain a time domain filter 
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for execution in parallel with the FDLMS, such that the input--output data and 
prediction error are transformed into the frequency domain, the adaptive FDLMS 
algorithm updates the optimal filter's frequency response, and the time domain filter 
coefficients are calculated using an inverse FFT and replace the existing filter 
coefficients. This sounds like, and is, a lot of computation. But, it does not need 
to be executed in real time to provide a filter coefficient update with every new input 
and output signal sample. 

Because the FFT of a signal represents an integral of the signal over a fixed time 
interval, one should only consider "overlapping" the FFT buffers in time by no more 
than 50%. The reason for limited overlapping is that the error spectrum which causes 
the filter frequency response adaptation will not respond immediately to the new 
coefficients due to the time integral. I f  spectral updates to the filter coefficients 
continue before the new error response is seen in the error spectrum, the FDLMS 
algorithm will "over adapt" which generally will lead to oscillations (even 
instability) in the adaptive algorithm. For stationary input data. i t  can be seen that 
the point of diminishing return is about a 50% overlap (50'%,of the data buffer 
is old data). However, the error signal is not very stationary due to the changing 
filter coefficients. Therefore. a 50% data buffer overlap for the FFTs is seen as 
the maximum advisable overlap. For our work, we use an even more conservative 
O"iI overlap so that the residual error from the previous adaptation is completely 
flushed from the error spectrum time buffer for a particular FDLMS filter frequency 
response update operation. While the FFT and update operations do not  happen 
~ e r y  often, the updates are quite spectacular in terms of the filter coefficient con- 
Lw-gence. The FDLMS does not converge as fast as the RLS or lattice algorithms, 
but i t  is much less computationally complex and is seen as a reasonable choice 
f'or simplified LMS processing when the eigenvalue spread (frequencies and power 
levels) of the input data is wide. 

The FDLMS algorithm is also of great interest for applications Uhere the error 
and/  or other signals are best expressed in the frequency domain. A good example of 
;in appropriate FDLMS application for a spectral error is for an application of inten- 
sity error minimization. Sections 6.3 and 6.4 show representations of wave intensity 
;is ;i spectral measurement. Other applications could be in the area of transfer func- 
tion error spectra or even physical (electrical, mechanical, acoustic) impedance error 
spectra. These are largely adaptive control issues and will be discussed further in 
Section 15.4. However, some image processing applications could use frequency 
domain adaptive control on wavenumber data. Also, medical magnetic resonance 
imaging (MRI toniographic scanning) measure wavenumber data directly a s  ;i time 
signal. Finally, important modeling information such as spectral error. SNR, 
coherence, and confidence can be easily extracted from frequency domain data 
iillo\iing the adaptive process to apply spectral weighting and other ~idditioniil con-
trols not readily available in the time domain. 

Consider the standard filtered-x type LMS adaptive filter update on the finite 
impulse response ( F I R )  filter coefficients h k , , , .  k = 0. I ,  2. . . . , 'Z.I. at times t i  

( 10.3.1 ) 

=The parameter is p,llc,,times pfC+where pmc,lu 1 / [of and r~: is the \ ariance 
of' the input data xf1 .As noted in Chapter 9 , L I , ~ . ~is the step size component kvhich 
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creates an effective "data memory window" with an exponential forgetting property 
of approximate length 1/prt,,. It can be seen that the shortest possible memory 
window length for a stable LMS algorithm is the filter length M +  1 and occurs 
if prCJl=1 / ( M + 1).  The frequency domain version of Eq. (10.3.1) will provide 
the complex frequency response of the FIR filter, which we subsequently inverse 
Fourier transform to get the time-domain FIR filter coefficients. To facilitate 
Fourier processing, we expand Eq. (10.3.1) to include a block of N +  1 input 
and error data samples and the entire FIR filter vector of M +  1 coefficients to 
be updated as a block every No samples. No is the sample offset between data blocks 
and was noted earlier to be no smaller than half the FFT buffer size ( N oequal to the 
FFT buffer size is recommended). This prevents the FDLMS from over adapting to 
the error spectrum. 

-1 
( 10.3.2) 

It can be seen that the product of the M + 1 by N + 1 input data matrix and the 
error can be conveniently written as a cross-correlation. 

1 

Equation (10.3.3) is expressed in the frequency domain by applying a Fourier 
transform. Equation (10.3.4) shows the Fourier transformed equivalent of Eq. 
(10.3.3). 

The cross spectrum in Eq. (10.3.4) should raise some concern about the possi- 
bility of circular correlation errors when the input signal has sinusoids not 
bin-aligned with the Fourier transform. See Section 5.4 for details about circular 
correlation effects. The potential problem occurs because the finite length signal 
buffers in the FFT provide a spectrum which assumes periodicity outside the limits 
of the signal buffer. This is not a problem for random noise signals or sinusoidal 
signals where the frequencies lie exactly on one of the FFT frequency bins. Practical 
considerations make it prudent to develop an algorithm which is immune to circular 
correlation errors. As seen in Section 5.4, the precise correction for circular corre- 
lation error is to double the FFT input buffer sizes, while zero padding one buffer 
to shift the circular correlation errors to only half of the resulting inverse tran- 
sformed FIR coefficient vector. Since we what the first M +  1 coefficients of the 
FIR impulse response to be free of circular correlation errors, we double the 

TLFeBOOK



31 4 Chapter 10 

FFT buffer sizes to 2 M +  2 samples, and replace the oldest M +  1 error signal 
samples with zeros. 

Using the double-sized buffers in Eqs (10.3.5)-( 10.3.6) in the FFTs, we can 
update a more robust filter frequency response (in terms of its inverse FFT) and 
also include a frequency dependent step size pmLiX(co),which is the inverse of the 
signal power in the corresponding FFT frequency bin. I t  will be shown below that 
sonic spectral averaging of the power for the bin step size parameter will improve 
robustness. The parameter p,.,,/ can be set to uni ty  since the memory window need 
no t  be longer than the integration already inherent i n  the FFTs. 

(10.3.7) 

To recover the time domain FIR filter coefficients, an inverse FFT is executed 
which, due to the circular correlation correction described in Section 5.4 and 
Eqs (10.3.5)-( 10.3.7), provides robust FIR filter coefficients in the leftmost 
.\I+ 1 elements of the FFT output buffer. The symbol in Eq. (10.3.8) depicts that 
one discards the corresponding coefficient which by design may have significant 
circular correlation error. 

An example is presented below comparing the RLS, LMS and FDLMS 
algorithms in a Weiner filtering application where the input, or reference data, 
has sinusoids plus white noise. With a white noise only input, the three algorithms 
perform the same (there is only one eigenvalue in that case). The Weiner filter 
to be identified is FIR and has 9 coefficients resulting from zeros at (magnitude 
and phase notation) 0.99, f0.27r, 1.40 ‘ 5 0 . 3 5 ~ ~  and 0.95 f 0 . 7 5 ~  0.90 f 0 . 6 ~  
Uhere the sample rate is 1024 Hz. The frequencies of the zeros are 109.4 Hz, 179.2 
Hz, 307.2 Hz. and 384 Hz, respectively. The reference input signal has zero-mean 
Gaussian (ZMG) white noise with standard deviation 0.001. and three sinusoids 
o f  amplitude 10 at 80 Hz, amplitude 30 at  250 Hz, and amplitude 20 at 390 Hz. 
To facilitate the narrowband input, the FIR filter model has 18 coefficients, and 
the effective data memory window length is set at approximately 36 samples. This 
~ v a y ,the RLS, LMS, and FDLMS algorithms all share the same effective memory 
window (the FDLMS doubles the FFT buffers to 36 samples). The FDLMS is 
updated every 36 samples so that no input or error data is shared between successive 
updates (0%buffer overlap). Because the input consists mainly of three sinusoids in a 
L w y  small amount of broadband noise, we expect the model frequency response to be 
accurate only at the three sinusoid frequencies. As seen in Figure 19 for the RLS. 
LMS, and FDLMS algorithms, all three converge but the RLS shows the best results. 
Figures 20-22 show the short-time Fourier spectra of the error signals processed as 
64-point blocks every iteration. In Figure 20 the RLS algorithm’s superior perform- 
ance is clear, but the FDLMS’s performance in Figure 22 is also quite good. 
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Figure 19 Error responses of RLS, LMS and FDLM algorithms for the three sinusoid 
input to the 9 coefficient FIR Weiner filter system identification problem. 

Figure 20 RLS system error spectra from 0-512 Hz for the first 450 iterations of the 
algorithm. 

It was mentioned earlier that while the FDLMS allows each individual bin to 
operate as an independent adaptive filter with its own optimized step size, that this 
is generally not very robust for narrowband inputs. Recall that for a broadband 
ZMG input, the RLS, LMS, and FDLMS all perform the same. For the ZMG case, 
the FDLMS would have identical step sizes for each F F T  bin equal to the inverse 
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Figure 21 LMS sjxtem error spectra from 0 512 H z  for the first 450 itcrations of' the 
;i Igori t hm. 

Figure 22 FDLMS system error spectra from 0 512 Hz for the first 450 iterations ol'the 
it lgori t hm.  

of the power of the input at  that bin frequency. When the input consists of 
narrowband sinusoids, the power for some bins will be near zero. The small bin 
power gives a large gain for the adaptive update to that particular bin. Since 
the power estimate should be averaged over several adaptive updates ( to  minimize 
random fluctuations in the model estimate), occasional spectral leakage from a 
nearby bin with a high-amplitude sinusoid will drive the bin with the large step size 
to instability. This problem is solved by averaging the bin power with the power 
in adjacent bins. The number of adjacent bins to include in the average depends 
on the frequency spacing of the narrowband sinusoids in the input. I f  one cannot 

TLFeBOOK



Recursive Adaptive Filtering 317 

a priori determine the approximate spectral content of the input, a single step size can 
be used for the entire FDLMS based on the total power of the ionput signal. For a 
single step size for the entire spectrum, the FDLMS will perform with convergence 
rates similar to the LMS algorithm, where the strongest peaks converge the fastest 
while the weaker peaks converge much more slowly. Figure 23 shows the input 
spectral power, the bin-average power, and the step sizes used based on the 
bin-averaged power. 

The frequency domain also offers us some very insightful ways to characterize 
the “goodness of fit” for the model given the available error and input signals. 
The FDLMS is not required to make this measurement, but the FDLMS allows 
a convenient way to implement a weighted least-squares algorithni using the fre- 
quency domain error. Consider the equation for the FDLMS error. 

Multiplying both sides of Eq. (10.3.9) by X*(w)and rearranging, we can estimate the 
optimal filter from our current estimate and an error estimate based on the 
prediction error spectra. 

(10.3.10) 

For the modeling error depicted in Eq. (10.3.10) to be meaningful, X(cu)should 
be broadband, rather than narrowband. A broadband input insures that the com- 
plete frequency response of Hop,(co)is excited and observed in the error spectrum 
E(co). For a narrowband input, we only expect the response of the system to be 
excited and observed at the frequencies on the input. For the example seen in  Figures 
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Figure 23 Input power, averaged input power, and step size for the FDLMS algorithm 
with %bin averages. 
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19-23 we expect precise modeling at  80 Hz, 250 Hz, and 390 Hz and a poor match 
between the frequency response of the actual system and the model elsewhere. 
However, increasing the broadband noise from an amplitude (standard deviation) 
of 0.00 1 to 5.0 yields the modeling result in Figure 24, which also includes and error 
measure as given in Eq. (10.3.10). The absolute values of the error are used as a 
“worst case” estimate error, but the error is not strictly a bound in the sense of 
a Cramer-Rao lower bound. The model is seen to be very precise at  80 Hz, 250 
Hz, and 390 Hz and the error model correctly tracks the model errors in other 
frequency regions. However, if the input is not broadband, then the error measure 
will not be meaningful. 

The spectral modeling error in Figure 24 is very useful for determining how 
close the model is to the optimum filter response. Both the input and error signals 
(the error signal in particular) can have interfering noise which will widen the error 
bounds as seen in Figure 24. Applying the probability density distributions presented 
in Sections 6.1 and 6.2, we can estimate a probability for the model to be some 
percentage above the actual, and so on. The statistic representation can be used 
to associate the probability of algorithm divergence, convergence, or confidence 
for the model estimate. While these measures can be applied to any adaptive 
algorithm, the FDLMS very conveniently allows adaptive weighing of the error 
spectrum to optimize performance in specific frequency ranges. 

10.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

There several major algorithm classes in adaptive filtering which can be seen to be 
recursive least squares, (RLS), Kalman filtering, least-squares lattice algorithms, 
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Figure 24 Actual system response, modeled response, and error measure based on the 
prediction error spectrum. 
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and the simple and robust LMS algorithm. Each of the classes can be further broken 
down into algorithms optimized for specific applications including parameter tra- 
cking and prediction, system identification using Weiner filtering, and signal 
modeling and parameterization using ARMA filters. For each particular 
application, the literature has a substantial volume of articles with very detailed 
derivations and results limited to the specific application. The student can be 
overwhelmed by the number of different least-squared error algorithms published 
if attempting to study them individually. The approach of this book (in particular 
Chapters 9 and 10) is to assimilate least-squared error modeling of linear systems 
into three basic forms: recursive algorithms derived for a particular model order 
using the matrix inversion lemma, orthogonal projection based algorithms, and 
least-squared error modeling involving a state transition as part of the prediction 
which we refer to as Kalman filtering. The RLS and LMS algorithms are clearly 
based on application of the matrix inversion lemma to implement a recursive 
least-squared error solution for a specific model order. Using a projection operator 
framework, orthogonal updates in both time and or model order produce the 
least-squares lattice algorithm. The projection operator update equation is surpris- 
ingly similar to the matrix inversion lemma Eq. (as seen in Chapter 8) but allows 
model order expansion in a least-squared sense as well as time updates. The Kalman 
filter is distinguished from recursive least-squares simply by the inclusion of the state 
transition before the prediction error is estimated and the state parameters adjusted 
to maintain a least-squared error state modeling performance. 

Kalman filtering is one of the most important and prevalent adaptive filtering 
algorithms of the 20th century and their are literally hundreds of texts and thousands 
of articles available in the literature. The scope of this text can not possibly address 
the many subtle technical points of Kalman filtering and state variable theory. 
However, i t  is extremely useful to contrast a basic Kalman filter algorithm to 
RLS and other adaptive filtering derivations. The intended result is to present 
all least-squared algorithms in as unified and concise an approach as possible. 
In Section 10.1 we see that the algebraic Riccatti Eq. (combination of Eqs ( 10.1.19) 
and (10.1.23) for the update of the state error covariance), is really just an appli- 
cation of the matrix inversion lemma to the state error covariance including the 
state transition. The steady-state error covariance represents Kalman filter tracking 
performance when the underlying assumptions for the state transition (and number 
and type of states) and measurement noise are correct for the observed data. 

In a steady-state situation, the required Kalman filter gain for the desired state 
process noise is a constant vector. We can calculate this gain vector in the form of, 
say, and a-B-7 filter (for 3 states). When the measurement noise is near zero, the 
x-p-j l  and Kalman filters each give identical performance. However, the Kalman 
filter gain is computed not only from the measurement and process noises, but also 
by adaptive minimization of the state error covariance. Therefore for target 
maneuvers outside the range of the kinematic model used to determine the number 
and type of states, the Kalman filter gives superior performance compared to 
the x-[$)t tracker. This allows the Kalman filter to rapidly track target maneuvers 
with a smaller process noise than the or-p-7 tracker, giving more accurate state esti- 
mates overall. For high measurement noise levels, the Kalman filter will tend to 
over compensate to minimize the state error, making the state vector rather noisy. 
Because of the added power of the Kalman filter, a covariance performance analysis 
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should be executed on simulated target nianeuvers to determine the best designed 
process noise for the adaptive tracking system. 

Section 10.2 introduced the embedding technique for the RLS and lattice 
algorithms allow the underlying FIR,  or  moving average filter (MA) ,  to be 
enhanced to a pole-zero, or ARMA filter. In the RLS algorithm, the embedding 
o f  an Mth-order ARMA filter ( M poles and M zeros) effectively doubles the length 
of the RLS algorithm coefficient vector, whose computations increase with the cube 
o f  thc coefficient vector length. In the lattice algorithm, the PARCOR coefficients 
become 2 by 2 matrices resulting in an increase in complexity of approximately 
4. lvhere the lattice algorithm overall complexity increases linearly with model 
order. The lattice’s huge advantage in complexity reduction is due in part to 
the fact that the Levinson recursions required to extract the linear prediction 
coefficients from the PARCOR coefficients are not required for each filter update. 
I f  the linear prediction coefficients are computed with each lattice filter update. 
the computations required is closer to the required RLS computations. but still 
less. Proper bootstrapping and prediction error normalization allows good per- 
formance for both Wiener filtering for system identification given input and output 
signals, and ARMA signal modeling. An interesting result of the examples given in 
Section 10.2 is that the LMS filter performs extremely well for the Weiner filtering 
problem and extremely poor for the bootstrapped ARMA signal model. I t  is also 
seen that the double-direct lattice form demonstrates superior numerical properties 

hile also reducing computational load through the elimination of some divisions 
i n  the lattice updates. 

The lattice structure allows simple embedding of multichannel data from 
sensor arrays or  even image data. Figure 18 illustrates topology of time and order 
expansion in a lattice structure in three dimensions graphically. This elaborate 
adaptive filter structure can be clearly seen as a parallel process, urhere individual 
processors are assigned to each “layer” or  lattice stage. However, for true parallel 
execution, a process time delay must be added between each stage making all 
the PARCOR coefficient matrices A4 time samples old for an Mth order parallel 
process lattice. A pure spatial adaptive filter could be computed using only a single 
multichannel lattice stage, as depicted in Figure 17. The multichannel lattice archi- 
tecture represents the future for practical large-scale adaptive processing. While 
hardly the epitome of simplicity, the multichannel lattice structure completes 
our unified presentation of basic adaptive filtering structures. 

Section 10.3 introduces the frequency-domain LMS (FDLMS) algorithm 
Lvhich offers several interesting features not available in time-domain. First, we 
see that near RLS convergence performance is available for signals with wide 
cigenvalue spreads which would converge slowly in a time-domain LMS algorithm. 
The LMS step size can be set independently for each FDLMS filter frequency bin. 
However, the number of independent frequency bands where an independent step 
size can be used is best determined by the number of dominant eigenvalues in 
the input signal. This prevents signal bands with very low power from having o ~ e r l y  
sensitive adaptation from too large a step size. The bandwidth of for each power 
estimate and corresponding step size can be simply determined from the spectral 
peak locations of the input signal, where one simply applies a step size for a par-
ticular peak over the entire band up to a band for an adjacent spectral peak. 
For ii single sinusoid input, a fixed step size is used for the entire frequency range. 

TLFeBOOK



321 Recursive Adaptive Filtering 

For multiple sinusoids, individual bands and step sizes are determined for each peak 
band. Because of the integration effects of the Fourier transform, the FDLMS algo- 
rithm need not be updated with each input time sample, but rather with a limited (say 
50%) overlap of the input data buffers to prevent over-adaptation and amplitude 
modulation in the error-adaptation loop. The output of the FDLMS algorithm 
is a frequency response of the FIR optimal filter. To prevent circular correlation 
errors from spectral leakage, doubling the buffer sizes and zero-padding the later 
half of the error buffer shifts any circular correlation errors into the later half 
of the resulting FIR impulse response calculated from the inverse Fourier transform 
of the converged frequency response for the filter. Careful application of the FDLMS 
algorithm with circular correlation corrections, proper step size bandwidth, and 
update rates which do not allow over adaptation of the error spectrum, yields a 
remarkable and unique adaptive filter algorithm. Since the error is in the form 
of a spectrum, a wide range of unique applications can be done directly using physi- 
cal error signals such as impedance, intensity, or even wavenumber spectra. 

PROBLEMS 

1. An airplane moves with constant velocity at a speed of 200 m/sec with a 
heading of I10 degrees (North is 0, East is 90, South 180, and West 
270 degrees). The radar’s measurement error standard deviation is 
10 m in any direction. Calculate the a-/I gains for a tracking filter designed 
with a 1 sec update rate and a process noise standard deviation of 1 m. 

2. Determine the east-west and north-south (i.e. s and j’ components) of 
velocity state error for the airplane tracking data in problem 1 .  

3.  Derive the Joseph form in Eq. (10.1.24). 
4. Show that for pro/=0.01 the effective exponential data memory window is 

about 100 samples and for the lattice this corresponds to a forgetting 
factor x of 0.99. 

5.  For the joint process ARMA system model in Eq. (10.2.15) show that 
dl=u,lbo and ci=b,lbo where i =  1,  2, ..., M ,  do= Ilbo, and ao=cO= 1 .  

6. Prove Eq. (10.2.18) deriving the bo from the ratio of the forward 
prediction errors at the Mth ARMA Wiener lattice stage and from 
the normalized standard deviation of the forward prediction error for 
the bootstrapped error case. 

7. Show that for the converged double/direct lattice, the forward a priori 
and a posteriori error signals are the same and the backward a priori 
and a posteriori error signals are the same. 

8. Derive the likelihood parameter for a multichannel least squares lattice 
algorithm. 

9. The time buffers in the FDLMS algorithm are 2 M  samples long where the 
oldest M error samples are replaced with zeros to correct for circular 
correlation errors due to possible spectral leakage. What other time buffer 
forms produce the same effect in the FDLMS algorithm? 
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10. Show that an FDLMS adaptive filter update every time sample could lead 
to over correction oscillations and that updating the FDLMS adaptive 
filter less often damps the oscillations. 
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Part IV 

Wavenum ber Sensor Systems 

A wavenumber is a spatial representation of a propagating sinusoidal wave. I t  is 
generally referred to in the electromagnetics, vibration, and acoustics community 
with the symbol k =culc, where o is radian frequency and c is the wave propagation 
speed in m/sec, or k=2n/R,  where iis the wavelength in meters. Wavenumber 
sensor systems typically consist of arrays of sensors in a system designed to filter 
and detect waves from a particular direction (bearing estimation) or of a particular 
type (modal filtering). The most familiar device to the general public which employs 
wavenumber filtering is probably the medical ultrasound scanner. Medical 
ultrasound has become one of the most popular and inexpensive medical diagnosis 
tools due to the recent advancements in low-cost signal processing and the medical 
evidence suggesting that low-level ultrasonic acoustic waves are completely safe 
to  the body (as compared to X-rays). The ability to see anatomical structures as 
well as measure blood velocity and cardiac output without insult to the body have 
saved millions of lives. Another example widely seen by the public at  most airports 
is radar, which operates with nearly the same system principles as ultrasound, 
but typically scans the skies mechanically using a rotating parabolic reflector. Early 
medical ultrasound scanners also operated with a mechanical scan, but this proved 
too slow for real-time imaging in the body with its many movements. Electronic 
scanning of the beam requires no mechanical moving parts and thus is much faster 
and more reliable. The most advanced radar systems in use today also employ elec- 
tronic scanning techniques. 

The ultrasonic scanner is quite straightforward in operation. The transmitted 
frequency is quite high (typically in the 1-6 Mhz range) so that small structures 
on the order of a millimeter or larger will scatter the wave. A piezoelectric crystal 
on the order of a centimeter in size ( 1  5-100 wavelengths across the radiating surface) 
tends to transmit and receive ultrasound from a direction normal to its face. In other 
directions, the waves on the crystal surface tend to sum incoherently, greatly 
suppressing the amplitudes transmitted and received. An acoustic lens (typically 
a concave spherical surface) helps shape the sound beam into a hyperbola which 
narrows the beam further in the region from about 1-6 cm from the face. The lens 
has the effect of sharpening the resulting ultrasound image in the region below 
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the skin/fat layer. I f  one mechanically scanned a single ultrasonic transceiver the 
familiar gray-scale image could be constructed from the distance normalized back- 
scattered ultrasound received. However, using a line array of transceivers, the beam 
direction is controlled by delaying the transmitted signal appropriately for each 
array element, as well as delaying the received element signals before summing 
the beanifornied output (see Section 7.1). The beamsteering can be electronically 
done quite fast enabling a clear image to be reconstructed in real-time for the medical 
practitioner. There are a wide range of industrial applications of ultrasound a s  well 
ranging from welding of plastics, cleaning, non-destructive testing and evaluation, 
and inspection. 

Sonar is another ultrasonic technique, but one widely seen by the public mainly 
through movies and literature. The “ping” depicted in movies would never actually 
be heard by anyone except the sonar operator because in order to steer the sound 
beam to a specific direction, the frequency needs to be at a frequency higher than 
would be easily heard by a human (if  at all). A frequency demodulator in the sonar 
operator’s equipment shifts the frequency down into the audible range. Again, 
the ratio of trar,smitting array size (the apertures) to the sound wavelength deter- 
mines the beam width, and therefore, the angular resolution of the scanning 
operation. Small unmanned vehicles such as torpedoes/missiles use much higher 
sonar/ radar transmitting frequencies to maintain a reasonable resolution with 
the smaller aperture transceiver array. 

For very long range scanning, the time between transmitted pulses must be 
quite long to allow for wave propagation to the far off scatterer and back to 
the receiver. The long range to the scatterer also means that the signal received 
is generally going to have a limited or very low SNR. By increasing the length 
of the transmitted sonar pulse, more energy is transmitted increasing the received 
SNR, but the range resolution is decreased. The transmitted amplitude in an active 
sonar is limited by transducer distortion, hydrostatic pressure, and the formation 
of bubbles (cavitation) when large acoustic pressures are generated near the surfdce 
where the hydrostatic pressure is low. Radar transmitting power is only limited 
by the quality of the electrical insulators and available power. Low SNR radar 
and sonar processing generally involves some clever engineering of the transmitted 
signal and cross-correlating the transmitted and received signals to find the time 
delay, and thus range, of the scatterer in a particular direction. Cross correlating 
the transmitted and received signals is called a nlutd~Ldfi’1terwhich is the optimum 
way to maximize the performance of a detection system when the background inter- 
ference is ZMG noise (spectrally white noise in the receiving band). For non-white 
noise in the receiver frequency band, an Eckart filter (Section 5.4) can be used 
to optimize detection. This becomes particularly challenging in propagation 
environments which have multipath. Our presentation here will focus on detection, 
bearing estimation, and field reconstruction and propagation techniques. 

Wavenumber sensor systems detect and estimate a particular signals spatial 
wave shape. Foremost, this means detecting a particular signal in noise and depicting 
the associated probability confidences that you have, in fact, detected the signal of 
interest. Chapter 1 1 describes techniques for constant false alarm rate detection 
for both narrowband and broadband stationary signals using match filter 
processing. For typical radar and sonar applications, wavenumber estimation pro- 
vides an estimate of the direction of arrival of a plane wavefront from a distance 
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source or scatterer. However, as depicted in Chapter 12, wavenumber estimation can 
also be done close to the source for spherical waves, as a means to reconstruct the 
sound field in areas other than where the sensor array is located. Wave field rec- 
onstruction is correctly described as holography, and is extremely useful as a tool 
to measure how a particular source radiates waves. Some of these waves do not 
propagate to the far field as a complex exponential, but decay rapidly with distance 
as a real exponential. These “nearfield”, or evanescent waves, are very important 
to understand because they can effect the efficiency of a source or array of sources, 
they contain a great deal of information about the surface response of the radiator 
or scatterer, and if ignored, the presence of evanescent waves can grossly distort 
any measurements close to the source. Using wavenumber domain Green’s functions 
and a surface array of field measurements, the field can be propagated towards the 
source or away from the source. which provides a very useful analysis tool. 

The presence of multiple wavenumbers for a particular temporal frequency is 
actually quite common and problematic in wavenumber detection systems. I n  
the author’s opinion, a view which may not be as popular among theorists as 
practitioners, there are two “white lies” in most adaptive beamforming mathemat- 
ical presentations. The first white lie is that the background noise at zach sensor 
position is incoherent with the background noise at the other sensor positions in 
the array. In turbulent fluids for acoustic waves, noise independence is not guaran- 
teed and neither is signal coherence (1). The second white lie is that one can have 
multiple sources radiating the same frequency and yet be considered “incoherent” 
from each other. Incoherent background noise and sources makes the adaptive 
beamforming algorithm mathematical presentation clean and straightforward, 
but this is simply not real in a physical sense. One actually must go to great lengths 
to achieve the mathematical appearance of incoherence by spectral averaging of 
time or space array data “snapshots” to enforce noise independence and spatial 
coherence in the signal. The practical assumption is that over multiple data 
snapshots, the sources each drift in phase enough with respect to each other to allow 
eigenvector separation of the wavenumbers (bearing angles of arrival). Chapter 13 
presents modern adaptive beamforming with emphasis on the physical application 
of the algorithms in real environments with real sources and coherent multipath. 
The problems due to coherent noise and source multipath are very significant issues 
in adaptive wavenumber processing and the techniques presented are very effective. 

There are many other types of wavenumbers other than nearfield, spherical, 
and plane waves which require wavenumber filters to measure. These include res- 
onant modes of cavities, waveguides, and enclosures, propagation modes in 
non-uniform flow or inhomogeneous media, and structural vibrztion responses. 
These modes all share the infamous distinction of pure temporal coherence among 
the modes. Although, for a single frequency excitation, the modes with resonant 
frequency closest to the excitation frequency will be excited the most, the other 
modes are also excited. Since the excitation is in many cases controllable, one 
can design a scanning system to detect and monitor the system modes using 
wavenumber sensing, or modal filtering. This new wavenumber filtering technology 
will likely be very important in industrial process controls and system condition 
based maintenance technology. 
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Narrowband Probability of Detection (PD) 
and False Alarm Rates (FAR) 

Probability of detection P,/,and the probability of a false alarm PI,,or false 
detection, define the essential receiver operating characteristics (ROC) for any 
wavenumber or other signal detection system. The ROC for a particular detection 
system is based on practical models for signals and noise using assumptions of under-
lying Gaussian probability density functions. When many random variables are 
included in a model, the central limit theorem leads us to assume an underlying 
Gaussian model because a large number of separate random events with arbitrary 
density functions will tend to be Gaussian when taken together (see Section 6.1). 
Therefore, i t  is reasonable to assume that the background noise is Gaussian at a 
particular sensor (but not necessarily independent from the background noise at 
the other sensors in the array). We will begin by assuming that our signal has a 
constant amplitude and it is combined with the background noise in the receiver 
data buffer. The job of the signal detector is to decide whether or not a signal is 
present in the receiver buffer. The decision algorithm will be based on the assumption 
that the receiver buffer data has been processed to help the signal stand out from the 
noise. A simple threshold above the estimated noise power defines a simple robust 
boundary between strong signals and noise. The underlying Gaussian noise process 
model will allow us to also label the signal-or-noise decision with an associated 
probability. The larger the signal in the receiver buffer is relative to the decision 
threshold, the greater the likelihood that it is in fact, signal and not a false detection. 
However, the closer the decision threshold is to the noise level, the greater the 
likelihood that we may call something that is actually noise a signal, giving a false 
alarm output from the detector. 

The ROC are essentially defined by the decision threshold level relative to the 
noise power, which along with the noise mean and variance, define a probability 
of false alarm, Phi. The probability of signal detection, P,/,depends on the receiver 
data buffer processing and the strength of the signal relative to the decision 
threshold. Processing of the receiver data such as averaging, cross correlations, 
Fourier transforms, etc., are used to improve the P d  without raising the PrCl.Section 

TLFeBOOK



328 Chapter 11 

11.2 describes techniques for constant false alarm rate (CFAR) detection which is 
highly desirable in environments with nonstationary background noise charac- 
teristics. CFAR signal detection is adaptive to the changing environment and 
permits a very robust ROC for system design. 

However, in a multipath environment, the signal power may be either enhanced 
or reduced in level depending on the propagation path length differences. For active 
systems, the time delay and corresponding range estimate can be made ambiguous by 
it multipath environment. When the transceiver andlor scatterer are moving with 
respect to the multipath, or is the multipath is moving as is the case with turbulence. 
the multipath can be described statistically as outlined in Section 1 1.3. With a stat-
istical description of multipath, we can enhance the value of a signal detection 
decision with statistical confidences or probabilities based on the ROC and on 
the underlying noise and multipath statistics. While multipath is a problem to 
be o\.fercome in radar, ultrasonic imaging, and sonar applications, i t  can be a source 
o f  information for other applications such as meteorology. chemical process control. 
com pos i te mate r ia1 ev a 1uat ion, and com bust ion control . 

11.1 THE RlClAN PROBABILITY DENSITY FUNCTION 

The Rician probability density function describes the magnitude envelope (or  rms) 
representation of a signal mixed with noise. Using statistical models to represent 
the signal and noise, one can design a signal detection algorithm with an associated 
P,,, for a given signal level, and a particular P,,,, for the particular background noise 
level and detection threshold. Before we present the Rician density function we will 
examine the details of straightforward pulse detection in a real waveform. Consider 
the decision algorithm for detecting a 1 psec burst of a 3.5 Mhz sinusoid of amplitude 
2 in unity variance zero mean Gaussian noise propagating in a lossless waveguide. 
This is a relatively low SNR situation but the received signal is aided by the fact 
that wave spreading and other wave losses do not occur in our theoretical waveguide. 
Figure I shows the transmitted waveform, the received waveform including the 
background noise, and the normalized cross correlation between the transmitted 
and received waveforms. Figure 2 shows the magnitude of the waveforms in Figure 
I which help distinguish the echo at 10 psec delay. Note that for a water filled 
M.aveguide (assume the speed of sound is I500 m / sec), the 10psec delay corresponds 
to the scatterer being about 7.5 mm away ( 5  psec) from the source. Clearly from 
Figure 2, the cross-correlation of the transmitted and received waveforms signifi- 
cantly improves the likelihood of detecting the echo at 10 p e c .  Why is this true? 
Let the transmitted source waveform be .r(t) and the received waveform be r ( t ) .  
The normalized cross-correlation of the transmitted and receiver wai eforms is 
defined as  

1 
R(- r )  = 7 E ( s ( t ) r ( t  + 7)) ( 1  1 . 1 . 1 )  

"7 

ivhere 0; is the estimated variance of the transmitted waveform ~ ( t )over the 
recording time interval. If the background noise is ZMG, the correlation operation 
in Eq. ( 1 1 . 1 . 1 )  is often called a a z m h d j l t e r ,  since the frequency response of this 
"filter" (the cross-correlation corresponds to a cross-spectrum in the frequency 
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I 1 

0 5 10 15 20 25 
1 I 

2 
0 

-2 
4 

0 5 10 15 20 25 
2 1 I 1 

0 

8 I 1 

-2 
0 5 10 15 20 25 

usec 

Figure 1 Transmitted, received, and cross-correlated signals for a simulated 3.6 M H z  
ultrasound pulse traveling about 7.5 mm in 1500 m/sec water-filled waveguide and reflecting 
back to the receiver. 
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Figure 2 Magnitude envelope for the transmitted and received signals using only a single 
data buffer. 
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domain) matches the frequency response of the transmitted signal. The data in Fig-
ures 1 and 2 are simulated using 256 samples and a sampling rate of 10 Mhz. Each 
correlation lag T is computed with n / 2 ,  or 128, sample averages. This averaging 
effect gives the result of reducing the randomness of the correlation of the back- 
ground noise with the signal while maintaining the coherence of the correlation 
between the received and transmitted signals. 

Time synchronous averaging is extremely effective at improving the SNR in 
periodic signals such as repetitive pulses in the sonar or  radar. The background noise 
in our received waveform is zero-mean Gaussian (ZMG) with unity variance. The 
general expression for probability density function of a Gaussian random variable 
.I-with mean M ,  and variance 0; is 

( 1  1.1.2) 

Suppose we scale our random variable as J* =U.Y. We can easily determine the prob- 
ability density for j?using the following relationship. 

(11.1.3) 

where .yI ,  .Y?, ..., . Y , ~are all solutions ofjy =.f(s),which in our case is only one solution 
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Figure 3 Time synchronous averaged transmit, receive and cross-correlation signals using 
10 alw-ages in the buffers before calculating the cross-correlation greatly enhances SNR.  
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4' =ax. Since y l a  =x, d,uldy = 1/ a  and the probability density p ( y ) is simply 

(1 1.1.4) 

where clearly, a;, = a2at.and M y = a M ,  in Eq. ( 1  1.1.4). Note that we are using a 
slightly different approach here to get the same statistical results given in Section 
6.1 for averaged power spectra. 

Consider the sum of a number of random variables z =xI+ x2+ ... + x N .The 
probability density function for z is the convoluting of the N density functions 
for xl, x2, ..., x N .Noting that multiplications in the frequency domain are equivalent 
to convolutions in the time domain, the probability density function for z may be 
found easily using the density function's characteristic function. A Fourier integral 
kernel defines the relation between probability density p ( x )  and its corresponding 
characteristic function Q Y (  U ) .  

--oo (1  1.1.5)+cc 


-m 

Note that the sign of the exponential is positive for the forward transform of the 
density function. One of the many useful attributes of the characteristic function 
is that the moments of the random process (mean, variance, skewness, kurtosis, etc.) 
are easily obtainable from derivatives of the characteristic function. The rith moment 
for x is simply 

(1 1.1.6) 

Returning to our new random variable z =x1 + x2 + ... + x N , the density function 
p ( z ) has the characteristic transform 

( 1  1.1.7) 

which is simply the product of each of the characteristic functions for each random 
variable x i ;  i =  1,2, ... ,N .  To derive the density function for z ,  we first derive the 
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characteristic for the Gaussian density in Eq. ( 1  I .  1.2). 

( I  1.1.8) 

As can be seen when combining Eqs ( 1  1.1.7) and ( 1  1.1.8), the means and variances 
add for z,  giving another Gaussian density function 

( I  1.1.9) 

We can combine the summing and scaling to derive the density function for a 
random variable which is the average of a set of independent Gaussian variables 
uith identical means and variances, such as is the case in the cross-correlation plot 
in Figure 1 in the regions away from the echo peak at 10 psec. Let 
:= ( l /N)X! ,  .Y,. The mean for the resulting density stays the siinie as one of 
the original variables in the average, but the variance is reduced by a factor of 
N. Therefore, for the 128 samples included in the normalized cross-correlation 
in Figures 1 4, it can be seen that the variance of the background noise is reduced 
by about 1 / 128, or the standard deviation by about 1/ 11.3. 

Time synchronous averaging of periodic data, such as that from a repetitive 
pulsing sonar or radar scanning system, is an important technique for reducing noise 
and improving detection statistics. Synchronous averaging can also be used to isolate 
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Figure 4 Applying ;Imagnitude operation to the times synchronous averaged signal\ allow 
;I straightforward probability model t o  be applied t o  the detection decision. 
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vibration frequencies associated with a particular shaft in a transmission or turbine. 
With the transmit and receiver waveforms recorded at the same time and 
synchronous to the transmit time, simply averaging the buffers coherently in the 
time domain before processing offers a significant improvement in SNR. Figure 
3 shows the same time and correlation traces as in Figure 1, but with 10 synchronous 
averages. Figure 4 shows the result for the magnitudes of the transmit, received, and 
cross-correlated waveforms for 10 averages. With the signal coherently averaging 
and the noise averaging toward its mean, which is zero for ZMG noise, it is clear 
that this technique is extremely important to basic signal detection in the time 
domain. Figure 5 shows a block diagram of a pulse detection system using time 
synchronous averaging and the cross-correlation envelope. 

Envelope Detection of a Signal in Gaussian Noise requires a very straight- 
forward analysis of the underlying signal statistics. We develop the statistical models 
using a general complex waveform and its magnitude. Consider a zero mean signal 
(real part or imaginary part of a complex waveform) with ZMG noise, which after 
time synchronous and rms averaging, has the statistics of an rms signal level of 
So and a noise standard deviation of 6,. For the noise only case we apply the 
Gaussian density in Eqs (6.1.7) and (11.1.2) and Figure 6.1, with zero mean, to 
the magnitude-squared random variable y = x 2  using Eq. (11.1.3) to give the 
Chi-Syucrre I degree of freedom density function 

r=-Ji; 
(1  1.1.10) 

where the mean is E{J*]=E(s 'J  =a: assuming x is a ZMG random variable. This is 
the same density function as in Eq. (6.1.11) where the variance, E ( ) * 2 )was found 
to be 2af using the even central moments of a Gaussian density function in Eqs 
(6.1.12)-( 16. I .  13). This density function is known as a Chi-Square probabilitj7 c h -
sit)' function with one degree of freedom, as seen in Figure 6.2 with several other 
Chi-Square densities with more degrees of freedom. 

Dotaction 
Threshold 

1 
Recehrer r(t) 

Matched Envolop. 

Average (XCor) Dotactor 

N o b  

Figure 5 Block diagram of a typical matched filter enveloped detector showing a 
processing block for time synchronous averaging (transmitter sync), cross correlation of 
the transmitted and received signals in a matched filter, and envelope threshold detection 
based o n  an amplitude threshold criteria. 
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For summing the real part squared and imaginary part squared, y = x i  + x:, to 
get the magnitude squared of a complex random signal, we can either convolve two 
Chi-Square one degree of freedom densities or multiply the two corresponding 
characteristic functions. This results in a Chi-Square density with 2 degrees of 
freedom, better known as an exponential probability density function. 

( 1  1.1.1 1) 

To  find the density function for the complex noise magnitude, we need to substitute a 
square-root for y in Eq. (1 1.1.1 1) as z = y' = ( x i  + x~)". Using Eq. (1  1.1.3) where 
(dy/dz)= 2J j  we have 

(1  1.1.12) 

which is known as a Rayleigh probability density function. This is the density func- 
tion which describes the magnitude waveforms in Figures 2 and 4. Even though 
the Figures display real, rather than complex signals, the Rayleigh density function 
applies because the underlying mathematical time-harmonic signal structure is eiC"*. 
However, for other real signals, the magnitude of a ZMG random variable simply 
results in a Gaussian density which is zero for negative values and twice the normal 
amplitude for positive values with a mean of o.v and a variance of 0:. 

The mean, mean-square, and variance for the Rayleigh density are found by 
simply evaluating the first and second moments of the probability density function. 
Unless you're really smart, a table of definite integrals will provide a relation such 
as the following. 

( 1  1.1.13)0 


1 . 3 . 5 . . . ( 2 m - l )&i
+I+;) = 2m 

The mean of the Rayleigh density works out to be 

(1 1.1.14) 

and the mean square value is 

( 1  1.1.15) 
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so the variance of z is simply 

a2 = 22 - -2 = (2 -:)o:. z 0.42920; ( I  1.1.16) 

which is not quite half the variance of the ZMG random variable x. Figure 6 shows 
the unity-variance zero-mean Gaussian density, and the corresponding one degree 
of freedom Chi-Square, Exponential, and Rayleigh density functions. 

The Rician probability density function is based on the envelope of a complex 
signal with rms amplitude So and real noise .xR and imaginary noise sI,where 
the envelope can be defined as 

(1.1.17) 

where the angle 0 is really of no consequence at  this point. The Rice-Nagakami 
probability density function is often referred to as “Rician”. The expected value 
of xl  is So,while the expected value of x2  is zero in Eq. ( 1  1.1.17). Assuming .yR 

and x I  are ZMG with identical variances o:., the variances of .xl and .xz are both 
02. With s1 and -x2 independent, the joint probability density for sIand x2 can 
be written as 

(11.1.18) 

To get the envelope density function, we convert the joint density in Eq. ( I  I .  1.18) to I’ 

and 8 using the following Jacobian relationship (no sum is required because there is 

1 I 1 I I 1 I I I I 

0.0 - i 

-0.8 

Y 

Figure 6 Gaussian, one degree of freedom Chi-Square, Exponential, and Rayleigh Density 
functions. 
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only one solution for r and 0 in terms of .yl and x7). 

( 1  1.1.19) 

Evaluating the joint density in Eq. ( I  I .  1.19) gives 

( 1 1.120) 

where 0 may be integrated out to give the envelope probability density function. This 
is why we were not concerned with the particular value of 0 when the envelope detec- 
tion model was set up. 

(1.1.21) 

The square-bracketed term in Eq. ( 1  1.1.21) is recognized as a modified Bessel func- 
tion of the first kind. 

The Rician envelope probability density function is therefore 

( I 1.1.23) 

I t  can be seen that for So <<o,.,the Rician density becomes a Rayleigh density (the 
modified Bessel function approaches unity). For high SNR, So>> o,, and the modi- 
fied Bessel function of the first kind may be approximated by 

( 1 1.1.14) 

Inserting the high SNR approximation for the modified Bessel function in the Rician 
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density gives a very interesting result. 

( 1 1.1.25) 

The high SNR approximation to the Rician density shown in Eq. ( 1  I .  1.25) indicates 
that the Rician has the shape of a Gaussian density function with mean at  I' =SOand 
variance of, approximately. Figure 7 shows the Rician density for various SNRs. 
The Rician density function applies t o  complex signals where the envelope 
magnitude is found by summing the real and imaginary components of the signal. 
But what about purely real signals and noise? 

For purely real signals in Z M G  noise, lets assume the signal is a constant (delta 
function probability density) with rms level So and the noise has variance of. The 
received real waveform with both signal and noise present has the Gaussian density 

( 1  1.1.26) 

Squaring the non-zero mean Gaussian random variable .Y in Eq. ( 1  1.1.26) yields 
J'=.Y' and the Chi-Square density 

(11.1.27) 

which reduces to Eq. ( 1  1.1.10) when the signal level is zero. Note that j?'is the sol-

Rician Densities for Various SNRs 
0.7 i 

Noise Only 
+ SNRl  

SNR2 
--SNR 10 

10 15 
Received Waveform Magnitude 

Figure 7 Rician probability density functions for linear rms SNRs  of0, I .  2, and 10 nrhich 
correspond to power SNRs of -ccdB, OdB, 6dB,  and 20dB. 

TLFeBOOK



-- 

338 Chapter 11 

ution of 4, =A-' which corresponds to negative values of .The real waveform envel- ~ 7 " ~ 

ope is found from z =j"' and the application of Eq. ( 1  1.1.3) where c$,=2zdz.  

1 
-

O.v 6 (11.1.28) 

The parameter z' in Eq. ( I 1.1.28) corresponds to negative values of 4.''' and the 
z' term represents a Gaussian density function over negative z with a mean at 
So.This is the same as a Gaussian density function over positive z with mean - So, 
so a simple change of variable of z =  - z ' - So gives us a valid expression for 
the probability density function over positive z only. Figure 8 shows the Gaussian 
density functions for a real signal envelope and several SNRs. Note that for zero 
signal, we have twice a normal Gaussian density but for half the normal range 
(positive z only). The integral of these densities over positive z only are all unity. 
We will refer to this probability density function as the Gtrzrs.sitrrz r~ugnitirdc~ p m h -
crhilitjt densitj* fitnctiorz. 

( 1 1.1.29) 

Suppose the "signal" is not a simple constant, but another random variable? 
The procedure for finding the density of this combination of random signal in ran- 
dom noise follows the procedure for summing two random variables. Specifically, 
the noise density function and the signal density function are convolved, or their 
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Figure 8 Gaussian density functions for various SNRs for received real signals where the 
magnitude is found without summing the squared real and imaginary signal components. 
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corresponding characteristic functions multiplied in the frequency domain to yield 
the resulting density via inverse Fourier transform. Indeed, the probability density 
function of a constant variable is a Dirac delta function. Convolving the delta func- 
tion with a Gaussian function simply shifts the mean of the Gaussian density accord- 
ingly to correspond to the delta function position. 

11.2 CONSTANT FALSE ALARM RATE DETECTION 

In this section, we develop a straightforward decision algorithm to detect signals in 
noise. The decision is based on the obvious hypothesis that the signal is larger 
in amplitude than the noise making it detectable. Signal processing such as Fourier 
transforms, time synchronous averaging, and matched filtering are all designed 
to make signals as detectable as possible. But still, the decision is not entirely simple 
when the signal amplitude is close to the noise amplitude because the received signal 
waveform also has noise present. The “fuzziness” between signal plus noise and 
noise only is modeled physically and statistically using probability density functions. 
We want to associate the detection decision with a probability, and control the detec- 
tion performance by maximizing the probability of detection, P<i,for a tolerable 
probability of false alarm, Pji,. These probabilities are found simply by integrating 
the probability density functions derived for signals and noise in Section 11. l .  

Consider the simple Gaussian density for the magnitude of real data seen in 
Figure 9 (same as the noise only case in Figure 8). The for ZMG real noise with 
variance 02, mean of the real magnitude random variable can be shown to be exactly 
o . ~ .A detection threshold A is chosen at  some level typically above the noise mean so 
that the Pr;is somewhat less than 0.5 (less than 50%). A more reasonable false alarm 

11 I1 1 I 1 
0.9 
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0.7 


Figure 9 Rayleigh probability density function where the integral from T = 2 to infinity 
gives a probability of false alarm of about 4.4% 
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rate criterion might be something like 0.l%, or one wrong guess of calling a noise 
waveform a signal waveform in 1000 decisions. The probability of false alarm is 
evaluated by simply integrating the probability density function for the noise from 
the decision threshold to infinity. This represents the estimated probability that 
the noise waveform will be above the threshold and detected as signal. 

cx: A 

P,,,= I p(.Y)cis = 1 - p(S)dY ( I  1.2.1)I 
A 0 

Some probability density functions integrals can be evaluated in elegant 
algebraic equations. But, numerical integration can always be used to compute 
the probability. 

N I 

Constant false alarm rate (CFAR) detection is a classic example of sentient 
processing (the sensor system having the access to sensor data for environmental 
awareness) to adapt to things like changing background noise levels. Given an esti- 
mate of the background noise probability density function, the mean background 
noise ( / m c ,  for a Rayleigh and 0, for a Gaussian-magnitude noise density), 
serves as a baseline for setting the signal detection threshold. Consider the Rayleigh 
density which describes the square-root of the sum of the real and imaginary parts 
of an FFT bin squared. We conveniently define a “floating” detection threshold, 
A = T J m o ,  where T is set to a constant value, so if the background noise level 
increases or decreases. so does the absolute detection threshold A. As seen in 
Figure 9 for the Rayleigh noise magnitude distribution, the integral from the absol- 
ute threshold A to cx: represents the probability that a background noise sample 
has magnitude above the threshold, and thus would be detected as signal rather 
than remain undetected as noise. The plot in Figure 9 is given in terms of the relative 
detection threshold T s o  that the Figure applies to any absolute noise level standard 
deviation 0).With the relative threshold set to twice the mean noise level of 
dm)a, ,the resulting probability of fdse alarm in Figure 9 is about 4.4% 

When A is set equal to T , / ~ o , ,the integral from A to cc is always the same 
no matter what the mean level of the background noise. The corresponding absolute 

,detection threshold A “floats” above the background noise mean J ~ G by the 
factor T. T ~ Pproh(rhilitj3 of’cr.fii1.w~ l u r n iis rlicwfbrc~cotis tc ir i t ,  c ’ w i  [ f ’ t / i t>u.stitii(ited 
t w c i t r  hcrckgrorrrid rroise l c ~ r . l~ h ~ ~ i g e s .Constant false alarm rate detection is very 
useful because the system performance can be easily controlled by design. For 
example, a CFAR detector with P,,=0.02, or 2‘%, would have on average 2 false 
alarms every 100 detection trials. I f  a sensor system executes a signal detection 
hypothesis once every second, a 2% false alarm rate would produce an erroneous 
signal detection a little more than once every 2 minutes. A false alarm rate of only 
0.1‘%,on a once-per-second detection trial would have a detection crror of about 
once every 15 minutes. 

Figure 10 shows the Gaussian magnitude density function where the relative 
threshold is set to twice the mean noise level of U \ .  In  this scenario the probability 
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Figure 10 Gaussian magnitude probability density function where the integral from rela- 
tive threshold T = 2 to infinity gives a false alarm rate of about 2.3'%,. 

of false alarm is about 2.3%. The Gaussian magnitude probability density function is 
used when applying threshold detection on the magnitude of real signals in real ZMG 
noise while the Rayleigh probability density function applies to magnitude detection 
of complex signals. Figure I 1  compares the Pfi1for the Rayleigh and Gaussian 
magnitude density functions as a function of relative threshold T,which corresponds 
to an absolute threshold of A = T J ~ o ,for the Rayleigh density and A = To, 
for the Gaussian magnitude density. For high detection thresholds relative to 
the mean, the two densities are more comparable in terms of However, one 
must keep in mind that the mean for the Rayleigh probability density is roughly 
half the mean of the Gaussian magnitude density. 

Figure 12 shows some useful approximations for the false alarm rate as a func- 
tion of relative threshold T for the Gaussian magnitude density and a direct 
realization of the Rayleigh false alarm rate. The integral of the Rayleigh density 
function actually gives another Gaussian-shaped function allowing a straight-
forward equation for the false alarm rate as a function of relative threshold. 

x 


( 1  1.2.3) 

For the Rayleigh distribution representing the magnitude of complex random 
numbers, one can also specify the desired false alarm rate and calculate the detection 
threshold relative to the noise mean. 

( 1  1.2.4) 
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Figure 11 Probability of false alarm for both Rayleigh and Gaussian magnitude densities 
as a function of relative detection threshold T. 
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Figure 12 High and Low P,,, approximations to the Gaussian magnitude density P,,, as a 
function of relative threshold and a direct realization of the Rayleigh false alarm rate. 

TLFeBOOK



343 Narrowband Probability of Detection (PD) and False Alarm Rates (FAR) 

For the Gaussian magnitude false alarm rate, a bit more approximating must be 
done as seen in Figure 12. 

( 1  1.2.5) 

The false alarm rate approximations for the Gaussian magnitude density provide a 
very useful way to specify a PJ;and determine the detection threshold relative 
to the noise mean. 

( 1  1.2.5) 

Equations ( 1  1.2.5) and ( 1  1.2.6) are approximated by numerical inspection and are 
seen as very useful for setting a practical detection threshold for a desirable false 
alarm rate when the signals and noise are processed as the magnitude of a real 
quantity. Curve-fitting is very useful to relate the detection threshold to Pf,,. 
However, one must be careful not to use Eqs (1 1.2.5) and ( 1  1.2.6) out of context. 
Equations ( 1  1.2.3) and ( 1  1.2.4) are exact direct expressions for the false alarm rate 
and relative threshold for the Rayleigh density function, which is used when the 
magnitude of a complex quantity is applied to the detection decision. 

We now consider the common problem of detecting a sinusoid in ZMG noise 
using an FFT to enhance SNR, and a Hanning window to control spectral leakage. 
Let the real signal of interest be 

j f r z ]  = A sin Rorz + 129[r z ]  (1  1.2.7) 

where Ro =27rfo/.f, is the digital frequency and 1c1[n]is ZMG noise with variance o-:. 
Executing a k-point FFT with no window (rectangular) and Ro exactly aligned with 
an FFT bin, the expected value of the magnitude in the positive frequency bin is 
exactly Ak/2+a,, ,  where the real and imaginary components of the noise in the 
FFT bin are ZMG each with variance 1/20:,. By carefully defining the noise mean 
and signal to noise ratio for the FFT bin, we can select a detection threshold 
for a desired Proand then determine the probability of detection for a given SNR. 

Applying a Hanning window and normalizing the FFT by k ,  it can be seen from 
Section 5.3 that applying a narrowband correction factor of 2.0 will provide a 
magnitude of A/2  for the signal, but a broadband correction factor of (8/3)12(found 
from the square root of the window convolved with itself) would be needed to have 
the noise magnitude at a, , /k.  Since only one window power correction factor is 
applied, i t  can be seen that the use of the Hanning window lowers the SNR by 
a small factor of (8/3)"/2, or about 0.8165 (SNR is about 82% of what it could 
be with a bin-aligned sinusoid using rectangular window) due to the scalloping loss 
of the Hanning window. The scalloping loss of the Hanning window should not 
be alarming, if the sinusoid happened to be in between two adjacent FFT bins 
the SNR loss could be nearly 50% and a large amount of spectral leakage U-ould 
be present in the rest of the spectrum. 

For a particular FFT spectrum we detect sinusoids by hypothesizing that when 
the spectral magnitude in a particular bin is larger than its two neighbors, i t  may be a 
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peak. The hypothesis testing continues by estimating the background noise level in 
the vicinity of the peak. If the peak is relatively weak, the ratio of the peak magnitude 
to the local background noise will be small. Given the local background noise mean 
estimate, the detection threshold is set as a multiple Tof  the mean background noise 
level. If the peak candidate is larger than the threshold it  is selected as a peak, other- 
wise it is considered noise. The relative threshold level allows for a known constant 
false alarm rate for the detection algorithm. 

But, considering the Rician probability density function for a selected peak, the 
probability of detection for a particular peak can be determined by integrating the 
density from the absolute threshold A = T , / m o , ,  to infinity. 

( 1 1.2.8) 

Unfortunately, there is no simple analytical solution to Eq. ( 1  1.2.8) and the P,/ is 
obviously a complicated function of signal level A ,  noise level o,,.,and detection 
threshold A. Figure 13 shows the calculated P,, as a function of relative detection 
threshold T for several SNRs. Clearly, it can be seen the probability curves all have 
nearly the same shape and pass through the 50'1/;,mark when the relative threshold 
is approximately at the signal level. This is to be expected especially for high 
SNR because the density function is nearly symmetric about the signal level. It would 
be very useful to have a straightforward algorithm to convert a measured signal peak 
level directly into a P,/, but looking at Eq. (1  1.2.8) this does not appear to be easy. 

We can develop a P,/calculation algorithm in a heuristic manner by first 
shifting the P,, curves by their respective SNRs to give the plots in Figure 14, which 
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Figure 13 Pd C u n t s  a s  ii function of threshold T relative to the noise mean sho\\n for 
several typical SNR levels. 
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Figure 14 Shifting by the SNR allows the Pd curves to nearly overlay depending on the 
significance of the background noise level in the Rician probability density function. 

except for the background noise contribution of the Rician density curves, nearly 
overlay one another in a range from 0 dB (SNR = 1 )  to 20 dB (SNR = 10). All 
of the curves are offset to the right slightly because of the Rayleigh noise magnitude 
combined with the signal in the Rician density function. Figure 15 shows how a 
moderately scaled hyperbolic tangent function nearly perfectly fits the P,I curves. 
We therefore apply this model to provide directly the P,/ given the spectral peak 
SNR and the relative detection threshold T, which is actually the ratio of the absol- 
ute detection threshold to the mean Rayleigh noise. Equation (1  1.2.9) can be used 
directly to estimate the P,Igiven the relative threshold Tand S N R . Again, we caution 
that Eq. ( 1  1.2.9) is just a heuristic curve fit which is neither physical nor optimal. 
However, it is much more convenient than generating a numerical table of the actual 
P,X T,SNR)  for interpolation when such calculations are needed on a continuous 
basis in a real-time intelligent sensor system. 

1
T - SNR - (1 1.2.9) ~

2 S N R  

Lastly, we have not discussed spectral averaging as it  relates to signal density 
functions and detection theory. Note that time-synchronous averaging is an entirely 
different process which actually improves the physical SNR by letting incoherent 
noise and frequencies average to zero. Averaging Fourier spectra is quite different. 
The size of the Fourier integral (FFT size and physical integration time/space) deter- 
mines the SNR improvement and spectral averaging does not change the mean 
values for the signal and noise in any given FFT bin. This is because the spectral 
density of the noise in the signal is constant in any given frequency range while 
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Figure 15 A hyperbolic tangent function provides a very useful algorithm for quickly 
recovering the Pd given the difference between T, the detection threshold relative to  the noise 
mean. and SNR. 

the theoretical spectral density of a sinusoid is infinite at its precise frequency and 
zero elsewhere. For the SNR in the FFT output to improve, one must integrate 
over a longer time interval (or spacial extent for bearnforming). Increasing the digital 
sampling rate and FFT size together does not offer an improvement in SNR, just 
more high frequency bins. This is because the bin-width in Hz is constant when 
the FFT size and sample-rate are both increased or decreased proportionally. 

The variance of the signal in the FFT bin would however decrease as the 
number of averages increases. Because the averaging process involves summing 
of random variables, the density function for an averaged FFT bin is derived from 
the convolution of the densities of the random variables used in the average (or 
correspondingly, the product of the characteristic functions inverse Fourier 
transformed). One can imagine that this complete derivation is quite difficult 
and is thus left as a subject beyond the scope of this book. However, by the central 
limit theorem, we can say that the density function of the averaged FFT bin will 
tend to be Gaussian and, that the variance will decrease in proportion to the number 
of averages while the estimated mean will converge to the true mean value. 
Therefore, the spectral averaging process tends to narrow the density functions 
of signal and noise, allowing a lower detection threshold for a given P,,, requirement 
and providing a higher P,, for a given signal level. If the signal and noise are station- 
ary (and hence statistically ergodic), averaging is a really useful tool for improving 
performance. 

The Rician density function is derived for a constant amplitude sinusoid in 
ZMG noise. As described in the Section 11.3, the signal can acquire statistical 
attributes in amplitude and phase due to the propagation channel. Convolving 
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the density function of the signal or propagation channel with the Rician density will 
tend to broaden the probability density function for the signal plus noise. Averaging 
is generally the best remedy to narrow the densities back down to compensated for 
the signal fluctuations. With an infinite amount of averaging the noise and signal 
plus density functions become Dirac delta functions. 

11.3 STATISTICAL MODELING OF MULTIPATH 

For any wavenumber sensor system, whether it be a radar, sonar, ultrasonic images, 
or structural vibration modal filter, underlying assumptions of the wave shape, 
wavelength (or wave speed), and temporal frequency are required to reconstruct 
the wave field. A wave radiated from a distant point source (a source much smaller 
than the wavelength) in a homogeneous infinite-sized medium is essentially and 
plane-shaped wavefront beyond a hundred wavelengths as described in Section 6.3. 
Given a single plane wave propagating across an array of sensors, the angle of arrival 
can be easily determined. For a line array of sensors, the wave frequency and speed 
are needed to determine the angle of arrival relative to the line array axis. For a 
planar array, the angle of arrival can be determined in a half-space, and if the source 
is in the same plane as the sensors, the angle of arrival and wave speed can be deter- 
mined explicitly. For a three-dimensional sensor array in an infinite homogeneous 
medium, the any angle of arrival and wave speed can be measured explicitly for 
a simple plane wave. However, when more than one plane wave (from cor-
respondingly different directions) but of the same frequency arrive at the sensor 
array, the direction finding problem becomes far more complicated. We term this 
situation multipath propagation, which occurs in real-world applications of sensor 
technology whenever the propagation medium is either inhomogeneous or has 
reflecting surfaces. 

There are two general classes of multipath which can exist ant a given instant of 
time. The first we call “coherent multipath” and results from a single source radiator 
and multiple ray paths to the sensors from either an inhomogeneous medium or 
reflectors or scatterers in the propagation medium. The second class of multipath 
is from multiple sources radiating the same frequency (or wavelength - the sources 
could be moving and radiating slightly different frequencies before Doppler) at 
the sensor array. This “multi-source~7 multipath carries an important physical dis- 
tinction from coherent multipath in that over time, the phases of the sources will 
become incoherent, allowing the arrival angles to measured. The same is true 
for coherent multipath when the source is moving relative to the sensor array, 
or if the multipath is changing due to a nonstationary inhomogeneous medium, 
reflecting surface, or scatterers. 

Multi-source multipath results in statistically independent phases across the 
array. Chapter 13 presents adaptive beamforming algorithms to deal specifically 
with multi-source multipath. It is very important to fully understand the physics 
of the wave propagation before designing the sensor and signal processing machine 
to extract the propagation information. Both coherent and multi-source multipath 
have a significant impact on detection because the multiple waves at the sensor site 
interfere with each other to produce signal enhancement at  some sensor site and 
signal cancellation at other sensor sites in the array. The wave interference 
throughout the sensor array allows one to detect the presence of multipath. 
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However, even in a homogeneous medium, one cannot resolve the angles of arrival 
unless one knows the amplitude, phase, and distance of each source (if multi-source), 
or  the amplitude and phase differences between ray paths (if coherent multipath). 
Section 13.4 examines the case of known sources, where one is not so interested 
in localizing sources, but rather measuring the medium. From a signal detection 
point of view, the possibility of multipath interference impacts the detection algo- 
rithm with additional signal fluctuations at the receiver independent of the back- 
ground noise. 

Coherent multipath is characterized by the phases of the arrivals being depen- 
dent solely on the propagation channel, which in many cases is relatively stationary 
over the detection integration timescale. Consider the simple two-ray multipath situ- 
ation depicted in Figure 16 where a point source and receiver are a distance 11 from a 
plane boundary and separated by a distance R in a homogeneous medium with con- 
stant wave speed in all directions (if the field has a non-zero divergence, or  
net flow, the wave speed is directional). The field at the receiver can be exactly 
expressed using the sum of a direct and reflected ray path. For simplicity, we’ll 
assume an acoustic wave in air where the boundary is perfectly reflecting (infinite 
acoustic impedance). This allows the incident and reflected wave to have the same 
amplitude on the boundary and our analysis to be considerably more 
straightforward. Figure 16 shows the reflected ray path using an equivalent “image 
source”, which along with the real source, would produce the same field at the 
receiver with the boundary absent. I f  the impedance of the boundary were finite 
and complex, the image source would have an amplitude and phase shift applied 
to match the boundary conditions on the reflecting surface. The equation for the 
field at the receiver is 

( 1  1.3.1) 

where A is the source amplitude, R is the direct path, R, is the reflected path length, k 
is the wavenumber ( k = (o / c  =2 n / i ) ,and (o is the radian frequency. Figure 17 shows 
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Figure 16 Direct and reflected ray paths depicted using an image source. 
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Figure 17 Direct and multipath responses for a source and receiver separated by 100 m 
and 30 m from an acoustically reflecting plane boundary in air. 

the multipath frequency response at  the receiver compared to the response without 
the reflected path assuming R =  100 m, l 1=30 ,  and an acoustic wave speed of 
345 m/sec. 

Equation ( 1  1.3.1) is exact for a perfectly reflecting planar surface. Before we 
consider a random surface (or random distribution of wave scatterers), we examine 
the case where we have a line array of sensors rather than a single receiver. Figure 18 
shows how two waves with the same temporal frequency, arriving from two angles 
simultaneously, will cause an interference pattern spatially across a sensor array. 
In the time domain, each sensor detects the same frequency. But spatially, the ampli- 
tude and phase varies across the sensor locations due to the sum of the waves. 

For example, if a line array observes a plane wave, the spatial amplitude will be 
constant and the wavelength “trace” will be representative of the frequency, wave 
speed, and angle of arrival. A plane wave passing the line array from a broadside 
direction will have a wavelength trace which looks like an infinite wavelength, while 
the same wave from the axial direction will have a wavelength trace equal to 
the free wave wavelength ( c / f = i ) .  Now if two plane waves of the same temporal 
frequency arrive at  the line array from different directions, the wavelength traces 
sum, giving an interference pattern where the “envelope wavelength” trace is half 
the difference of the respective traces for the two waves, and the “carrier 
wavelength” trace is half the sum (or the average) of the two respective wavelength 
traces. This is exactly the same mathematically as an amplitude modulated signal. 
If a direction-finding algorithm uses the spatial phase to detect the angle-of-arrival, 
it will calculate an angle exactly in between the two actual arrival angles (this would 
be weighted towards the stronger wave for two unequal amplitude plane waves). If a 
particular sensor happens to be near a cancellation node in the trace envelope, i t  will 
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Figure 18 Coherent multipath showing wave interference at the array in the form of wave-
length and enveloped distortion. 

have very poor detection performance. This is often experienced with cordless or 
cellular telephones as well as automobile radios in a multipath environment. If 
the line array length is long enough to observe a significant portion of the envelope 
peaks and dips, the individual arrival angles can generally be determined using 
beamforming as described in Section 7.1. 

Statistical representation of multipath is useful for situations where coherent 
reflections are coming from random surfaces or refraction in a random 
inhomogeneous wave propagation medium. Good examples of this are when the 
scanning system (radar or  sonar) is traveling over or  near a rough surface, or  if 
the medium has turbulence or scatterers. Physically, we need to describe the variance 
of the multipath phase for a given frequency, and the timescale and or spatial scale 
for which ensemble observations will yield the modeled statistics for the multipath. 
When the medium is nonstationary, one also has to consider an outer timescale, 
beyond which one should not integrate to maintain a statistical representation 
of the multipath medium. 

Consider multipath due to a large number of small scatterers with perfect 
reflecting properties. Using Babinet’s principle in optics, our point scatterer will 
re-radiate the energy incident on its surface equally in all directions. I f  the scatterer 
is large or  on the order of the wavelength, or if the scatterer is not perfectly reflecting, 
the subsequent re-radiation is quite complex and beyond the scope of this book. We 
can exploit Babinet’s principle by approximating the reflection of a wave from a 
complicated boundary by replacing the boundary with a large number of point 
scatterers. The magnitude and phase of the waves re-radiated by the point scatterers 
is equal to the magnitude and phase of the incident field at the corresponding pos- 
ition along the boundary. This technique is well-known in acoustics as Huygen’s 
principle which states that any wave can be approximated by an appropriate infinite 
distribution of point sources. Summing the responses of the Huygen’s point sources 
over a surface, albeit a reflecting surface or a radiating surface, is called a Helmholtz 
integral. Therefore, we’ll refer to approximating the reflection from a geometrically 
complicated boundary as a Helmholtz-Huygen technique. 
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Figure 19 compares the exact image source solution to the Helmholtz- 
Huygen’s technique using 2000 point sources on the boundary dl=0.3 m apart, 
where the wave speed is 345 m/sec, the boundary is 30 m from both source and 
receiver which are separated by 100 m as seen in Figure 16. Because 2000 point 
sources is hardly infinite and we are interested in only a frequency range from 0 
Hz to 500 Hz, we also apply an empirical loudness adjustment over frequency 
so that the source energy per wavelength is constant over frequency at any one pos- 
ition on the boundary. This “normalizes” the channel frequency response in Figures 
19 and 20. Using a Cartesian coordinate system with the direct path along the x-axis 
and the normal to the boundary along the )?-axis, the magnitude and phase of each 
point source modeled on the boundary is 

where is the ray from the main source to the nth point source model on the 
boundary. The Helmholtz-Huygen’s pressure approximation at the receiver is 

( 1 1.3.3) 

where R?,,,is the ray from the nth boundary source to the receiver and R is the direct 
path length. The N =  2000 sources where spaced evenly dl= h / R  m apart symmetri- 
cally about the midpoint of the physical source and receiver to give a reasonable 
approximation for h =30 m. 
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Figure 19 Comparison of exact image-source method to Helmholz--Huygens integral 
approximation. 
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Figure 20 Direct and scattered acoustic field response when the boundary has a random 
surface (dB vs. Hz scale). 

Figure 20 shows the utility of the Helmholtz-Huygen’s technique for modeling 
rough boundaries. In the Figure, a ZMG distribution with a standard deviation of 
0.25 m is used to randomly distribute the point sources on the ji-axis centered around 
j*=h,  the boundary. The boundary sources therefore have a j*coordinate of j’+ <. 
Figure 20 clearly shows the transition from deterministic to stochastic wave inter- 
ference somewhere in the 200 Hz to 300 Hz range. This simple example of rough 
boundary scattering exposes a really interesting wave phenomena where the 
”roughness” of the reflecting boundary depends on wavelength along with the vari- 
ance of the roughness. At low frequencies, the wavelength is quite large compared 
to and the scattering is not detectable. But when the boundary roughness is 
approaching a quarter wavelength or  more, the affect of the rough boundary is 
readily seen. When the boundary roughness is not ZMG, one would calculate a 
spatial Fourier transform of the rough boundary and use a power spectrum estimate 
to get the variance at a wavenumber appropriate for the boundary reflection to deter- 
mine the scattering effect. 

We can develop a model which relates the ZMG distribution in the jt-direction 
along the reflecting surface to the reflected path length. 

( 1  1.3.4) 

Equation ( 1  1.3.4) is easily approximated noting that the second term in the square 
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root is quite small. 

di-TGl+; & < < 1  (1  1.3.5) 

The reflected path length including the random variation R; is given in Eq. (1 1.3.6) in 
terms of the vertical distance to the boundary h, the reflected path length with no 
roughness Rf ,  and the roughness random variable c. 

(1 13.6) 

Clearly, the standard deviation of the reflected path length a; can be equated to the 
standard deviation of the boundary along the y-axis using Eq. ( 1  1.3.7). 

(1 1.3.7) 

We can model the statistics of the acoustic pressure at  the receiver by adding our 
random variable to Eq. (11.3.1). 

(1 1.3.8) 

The term p’ in Eq. (11.3.8) represents the random part of the pressure at the 
receiver. We note that for the pressure to change from the midpoint loudness 
at -40 dB to the peak loudness at  -34 dB in Figure 20, a phase change of 
7r/2 is needed in the reflected path. If we consider a noticeable pressure fluctuation 
to be corresponding to a phase fluctuation of 7c/4, and note that 4hlRl is about 
unity for R = 100 and h = 30, we need k on the order of 7c to have significant 
scattering effects. This corresponds to a frequency of about 170 Hz. Figure 20 
clearly shows the stochastic effect of the random reflection boundary in this fre- 
quency range. If the source and receiver are moved closer to the boundary, the 
path randomness decreases. If h is increased, the path length variances increases 
to a limit of 20, when h >> R. However, for large h the reflected path is so much 
larger than the direct path that the pressure fluctuations again decrease. The maxi- 
mum pressure fluctuations are for a ratio of h l R  = 0.5. For low frequencies, k 
(the wavenumber) is small (wavelength large) and the fluctuations are also cor- 
respondingly small. 

Random variations in refractive index (changes in wave speed relative to the 
mean) are also a very important concern in multipath propagation. We are not only 
interested in how refractive multipath affects detection, but also how received signal 
fluctuations can be used to measure the propagation medium. This physical effect 
occurs in electromagnetic propagation due to variations in propagation speed 
due to humidity, fluctuations in the earth’s magnetic field, solar activity, and tur- 
bulence in the ionosphere. At night, when solar interference is low, long range 
AM and short-wave broadcasts have characteristic waxing and fading, and at  times, 
unbelievably clear reception. The complexity of the propagation is due to multipath 
interference and the fluctuations are due to time varying things like winds, 
turbulence, and fluctuations in the earth’s magnetic field (due to magma movement), 
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rotation, and solar electromagnetic waves interacting with the ionosphere. One can 
think of the earth’s atmosphere, with its charged particles in the ionosphere and 
fluctuating ground plane due to rain and weather at  the surface, as a huge waveguide 
defined by two concentric spheres. Changes in the boundary conditions affect which 
modes propagate in the waveguide and at what effective speed (a ray which reflects 
off the ionosphere and ground travels slower than a ray traveling more parallel 
to the boundaries). Therefore, the receiver experiences multipath due to refraction 
of the waves as well as reflection. 

In sonar, the refractive index of a sound wave in seawater is affected by the 
warm temperature near the surface, and changes in temperature, salinity, and 
pressure with depth and with ocean currents. Sound channels, or waveguides 
can form around layers of slow propagation media. The channel happens 
physically by considering that a plane wave leaving the layer will have the part 
of the wave in the faster media (outside the layer) outrun the part of the wave 
inside the layer, thus refracting the wave back into the layer. Whales are often 
observed using these undersea channels for long range communication. Clearly, 
it’s a great place to be for a quiet surveillance submarine but not a good place 
to be if you’re in a noisy submarine and want to avoid being detected acoustically. 
The seasonal changes in undersea propagation conditions are much more slow 
than in the atmosphere, where dramatic changes certainly occur diurnally, and 
can even occur in a matter of minutes due to a shift in wind direction. In general, 
sound propagation from sources on the ground to receivers on the ground is much 
better at night than during the day, and is always better in the downwind propa- 
gation direction. This is because at night the colder heavier air from the upper 
atmosphere which settles near the ground is unheated by the sun. The slower 
air near the ground traps sound waves since any wave propagating upward 
has the upper part of the wave outrunning the lower part, thus refracting the wave 
back down to the ground. This effect is easily heard on a clear night after a warm 
sunny day. Its a cool night in August when I’m writing this section. I can clearly 
hear trucks shifting gears on an interstate highway over 5 km away which would 
be impossible during a hot afternoon. However, the truck tire noise seems to 
fluctuate over periods of 10-15 sec. This is likely due to nocturnal turbulence from 
heavy parcels of air displacing warmer air near the ground. The same effect can be 
seen in the twinkle of lights from a distance at  night. The same refractive effect 
happens when sound propagates downwind, since the wind speed increases with 
height and adds to the sound speed. However, like in the long-range short-wave 
radio broadcasts, the atmospheric turbulence due to wind and buoyancy, will cause 
acoustic propagation fluctuations due to stochastic variations in index of 
refract ion. 

Consider the case of acoustic propagation at  night in the atmosphere. We will 
greatly simplify the propagation problem greatly by eliminating wind and splitting 
the atmosphere into two layers, the lower layer near the ground with a constant 
temperature, and an upper layer with a positive temperature gradient to represent 
the lighter warmer air which supports faster, downward refracting, sound propa- 
gation. Figure 21 shows graphically the direct and refracted sound rays where 
the direct ray is propagating in an air layer with constant sound speed, while 
the refracted ray propagates in an upper air layer where the air temperature (and 
sound speed) is increasing with increasing height. For our simplified model of a con- 
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stant sound speed gradient, we can express the sound velocity profile as 

c(z )= CO + z -
dc(z) (1 1.3.9)

dz 

where co is the sound speed in the constant lower layer near the ground and z is the 
height in the upper layer. It is straightforward to show that for a linear gradient 
shape, the ray travels along the arc of a circle. The radius of this circle, R in 
Figure 21, is found by solving for c(z )=0. 

COR=- (1  1.3.10)
dc(z )  
Id,-


For any length of direct ray x in Figure 21, there is a corresponding refracted 
ray s (it could be more than one ray for more complicated propagation) which inter- 
sects both the source and receiver at a “launch angle” of O/2. 

(1 1.3.11 )  

The refracted ray length is simply 

s = OR (1 1.3.12) 

Refracted Ray s 

\ 0DirectRay x 

Figure 21 Depiction of downward refractive outdoor sound propagation showing a 
straight direct ray in a constant sound speed layer and a refracted ray in positive sound speed 
gradient. 

TLFeBOOK



356 Chapter 11 

and the ray maximum height is found by solving 

/ I = R  I - - - (11.3.13)[I f  m] 
and can be useful in practical applications to see whether noise barriers of buildings 
effective block the sound path. This is one reason why noise barriers are really only 
helpful in blocking noise in the immediate vicinity of the barrier and not at long 
distances. As a practical example, if co = 345 m/sec, cic'/cl,- = + 0.1 m/sec/m,  and 
A-= 1 km, we find R=3450 m, 0/2=8.333 ' ,  /1=36.4 m, and s =  1003.5 m, giving 
a path length difference for the two rays of only 3.5 m. These are very small dif- 
ferences and launch angles. However, when we consider a fluctuation in the sound 
speed gradient due to turbulence, a significant change in path length is possible. 

Using a Taylor series approximation for the arc sine function, we can express a 
function for the refracted ray length as 

(11.3.14) 

which can be reduced to show a path length difference of 

( I  1.3.15) 

where iis introduced as a random variable to account for fluctuations in the sound 
speed gradient. For the above practical example, Eq. ( 1  1.3.15) provides an estimated 
path difference of s - -.y = 3.5 + 70< + 350;' m. Clearly, a very small fluctuation in 
sound speed gradient leads to a very significant refracted ray path length. 

As with the coherent reflection from the boundary, the sound pressure 
fluctuation scales with frequency since the phase difference between the direct 
and refracted path is the wavenumber times the path difference in meters. This means 
that low frequencies are much less impacted than high frequencies for a given overall 
distance. If we express the effect in terms of wavelengths, we can say that the pressure 
fluctuations will become severe when the path lengths exceed about a quarter 
wavelength. For small sound speed gradients this might require over a 1000 
wavelengths propagation distance. But for larger sound speed gradients due to flow 
near a boundary, the effect may be seen over only a few dozen wavelengths. This 
technique of stochastically characterizing multipath could prove useful in medical 
imaging of arteries, chemical process sensors and control, and advanced sensor tasks 
such as pipe corrosion and lagging inspection by sensing the structure of the 
turbulent boundary layer. It may also be valuable as a signal processing tool for 
environmental sensing in the atmosphere and undersea, or for electromagnetic 
propagation channel studies. 

11.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

Chapter 1 1  covers the important technology of a signal detection system, its design, 
and most importantly, the confidence of the detected signal based on signal and 
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noise statistical models and direct measurements, The notion of statistical conjidence 
is critical to an intelligent sensor system because it  puts the detected information into 
proper context. When combined with other pieces of detected information, the con- 
fidence associated with each detection is extremely valuable to the process of data 
fzision, or the blending of pieces of information together to produce a situatioriul 
awareness. Since we can robustly define the probability of signal detection P,,, 
and probability of false alarm (false detection) P f , , for a particular signal in noise, 
i t  is prudent to compute these quantities even if they are not readily required 
for the detection process. 

A sentient adaptive signal processing system is defined by having the power of 
perception by the senses, which includes a capability to combine and place weight 
on particular sensor information as well as assess the validity of a particular sensor’s 
output. Our bodies provide a straightforward analogy. If one is sunburned on the 
face and arms, one resolves the local skin temperature differences from an awareness 
that: ( 1 )  there has been recent exposure to sunlight or heat increasing the likelihood 
of sensor damage; (2) the temperature differences are independent of body position 
or place (sensors are uncalibrated relative to one another); and (3) actual skin tem- 
perature in the exposed areas is elevated and appears to be more red (a symptom 
of damage). One realizes and deals with the situation of being sunburned by reducing 
confidence in temperatures from the burned areas, supporting healing of the burned 
skin, and avoiding any more exposure or damage. Our bodies are temperature regu- 
lated and thus, feeling too hot or too cold can sometimes be a very good indicator of 
pathology. Does one feel hot yet objects are cool to the touch? Does one feel cold yet 
objects do not feel cold? When feeling cold does the body perspire? One resolves these 
sensory contradictions by association with a known state of health. When the sensors 
are in agreement and match a pattern with other sensor types, one associates a 
known environmental state from experience and also that one’s own sensors are 
operating correctly. In this self-perceived “healthy” state, one associates a very high 
confidence in the sensed information. This sentient process can be constructed, albeit 
crudely, in machines through the use of statistical measures of confidence and data 
and information fusion. 

Section 1 1.1 presented the Rician probability distribution for a sinusoid in 
white noise along with the virtues of time synchronous averaging. Time is the 
one commodity which can be assumed to be known with great precision if needed. 
By averaging multiple buffers of the waveform which includes a known signal 
and random zero-mean noise over a period which is an integer multiple of the signal 
period, the noise in the averaged buffer tends toward its mean of zero while the signal 
is unaffected. Tinge-sjwchronous uveruging is one of the wost siniple and ef fc t ive  
r7ietliod.sfor. signal-to-noise iniprovement in signal processing arid should he esploittd 
~tiliel.4~ierpossihle.When the signal is a sinusoid, the matched detection filter is also a 
sinusoid of the same frequency. When the signal has some bandwidth, the matched 
filter for detection also has the same spectrum as the signal when the background 
noise is white (see the example in Section 5.4for non-white noise). Given an estimate 
of the background noise and the matched filter signal detection output, one can set a 
detection threshold above the mean background noise for a desirable low false alarm 
rate. The probability of detection, and thus signal detection confidence, can be esti- 
mated directly from the signal-to-noise ratio, as shown in Section 11.2. When 
the signal is really strong compared to the noise, the signal plus noise probability 
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density function is essentially a Gaussian distribution with mean shifted up to the 
signal rms level. When the signal-to-noise ratio is closer to unity, the density function 
is Rician requiring greater care in estimating the probability of detection. 

Section 11.3 examines the case where the signal propagation path can be 
modeled as a stochastic process. Such is the case with ground clutter in radar 
systems, scattering from tissue in medical ultrasound, and the twinkling of stars 
in astronomical observations due to turbulence multipath. In the situation of stat- 
istical multipath, the signal level is described by a non-zero mean probability density 
function. This impacts directly the calculation of the probability of detection because 
of the broadening of the density function (due to the convolution of the multipath 
density function with the signal-plus-noise density function). Given the physical dis- 
tribution of scatterers we have shown how to calculate the signal probability density 
function. This is of course a very complicated task beyond the framework presented 
here for most real-world propagation situations. 

Even more vexing, is the impact of time scale on the ergodicity of the multipath 
signal. Depending on the physics of the situation, the statistical distribution requires 
a certain amount of observation time (or distance for spatial scales) in order to mani- 
fest itself through calculation of a histogram to measure the probability density 
function. These time (or space) scales are extremely important in the proper assess- 
ment of detection confidence. Since our discussion continues towards the description 
of a sentient processor which depends on measurements of sensor signal confidence, 
it would appear prudent that direct statistical measures, such as histograms, should 
be used to validate the stochastic assumptions about the signal and noise. 

PROBLEMS 

A 1-sec real analog recording of a 1 vrms 50 Hz sinusoid signal in 1 vrms 
Gaussian white noise is available for digital processing using a spectrum 
anal yzer. 
(a) If we low-pass filter at 400 Hz, sample the recording at 1024 

samples/sec, and calculate a single 1024-point FFT, what is the 
spectral signal to noise ratio? 

(b) If we low pass filter at 3.2 kHz, sample the signal at 8192 samples/sec, 
and calculate a single 8192 point FFT, what is the spectral signal to 
noise ratio? 

A seismic array geophones (measure surface velocity) for detecting rock 
slides needs to have no more than one false alarm per month on detection 
trial every 50 msec. Assume a signal magnitude detector in zero-mean 
Gaussian background noise with standard deviation of 1 x 10-7m/s .  
What is the false alarm rate in ‘/U and how would you determine the detec- 
tion threshold? 
Derive the Rician probability density function. Show that for very high 
SNR, the Rician probability density function can be approximated by 
a Gaussian density function with mean equal to the signal level. 
Show that the integral of the Rayleigh probability density function is 
proportional to a Gaussian function. Describe a detection system where 
this relationship would be very convenient. 
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5 .  Show that for M-averages of a Gaussian random variable, the mean stays 
the same while the standard deviation decreases by a factor of M’”.  

6. Suppose one has a large number of complex FFT spectral buffers (of the 
same size and resolution) of a sinusoid in white noise. 
(a) If one simply added all the FFT the buffers together into a single 

buffer, would one expect an increase in SNR? 
(b) If one first multiplied each FFT buffer by a complex number to make 

the phases at the frequency bin of the sinusoid identical and then added 
the buffers together, would the SNR increase? 

(c) If one first multiplied each FFT buffer by a complex number cor- 
esponding to the linear phase shift due to the time the FFT input buffer 
was recorded and then added the buffers together, would the SNR 
increase? 

7. If one has a 1% false alarm rate on a magnitude detector of a signal peak in 
Gaussian noise with no averaging, how much averaging will reduce the 
false alarm rate to below 0.1%) keeping the absolute detection threshold 
the same? 

8. Describe qualitatively how one could model the detection statistics of a 
sinusoid in white Gaussian zero-mean noise where a reflected propagation 
path fluctuates with probability density p ( r )while the direct path fluctuates 
with density function p ( s ) .  Neither density function is Gaussian, but 
histograms are available to numerically describe the path statistics. 
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12 

Wavenumber and Bearing Estimation 

In this chapter we examine the fundamental techniques of measuring the spatial 
aspects of waves which can be propagating in a reflection free space from a distant 
source, reverberating in a confined space, or  represent the complicated radiation 
in the nearfield of one or more sources. The types of wave of interest could be either 
mechanical (seismic, structural vibration, etc.), acoustic (waves in fluids), or 
electromagnetic. When the source of the waves is distant from the receiver array 
we can say that the wavefront is planar and the receiving array of sensors can esti- 
mate the direction of arrival, or bearing. This technique is fundamental to all passive 
and active sonar and radar systems for measuring the direction to a distant target 
either from its radiated waves or its reflections of the actively-transmitted sonar 
or radar wave. However, when more than one target is radiating the same frequency, 
the arriving waves at  the receiver array can come from multiple directions at a given 
frequency. 

T o  resolve multiple directions of arrival at  the same frequency, the receiving 
array can process the data using a technique commonly known as beamforming. 
Beamforming is really an application of spatial wavenumber filtering (see Section 
7.1). The waves from different directions represent different sampled wavelengths 
at the array sensor locations. An array beampattern steered in a particular “look” 
direction corresponds to a wavenumber filter which will pass the corresponding 
wavenumber to the look direction while attenuating all other wavenumbers. The 
“beam” notion follows from the analogy to a search light beam formed by a 
parabolic reflector or lens apparatus. The array beam can be “steered” electro- 
nically, and with parallel array processors, multiple beams can be formed and steered 
simultaneously, all without any mechanical systems to physically turn the array in 
the look direction. Electronic beam steering is obviously very useful, fast, and 
the lack of mechanical complexity is very robust. Also, electronic beamforming 
and steering allows multiple beams each in different look directions to exist simul- 
taneously on the same sensor array. 

The array can also be “focused” to a point in its immediate vicinity rather than 
a distant source. This application is fairly novel and useful, yet the technology simply 
involves the derivation of different wavenumber filters from the classic beamforming 
problem. We could simply refer to array nearfield focusing as “spherical 
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beamforming” since we are filtering spherical, rather than planar wavenumbers. But, 
a more descriptive term would be holographic beamforming because the array sensor 
spatial sampling of the field for a source in the vicinity of the array can allow rec- 
onstruction of the wave field from measurements of both the propagating and 
non-propagat ing (evanescent) wavenum bers. Holographic beam forming implies 
measurement and reconstruction of the full three-dimensional field from scanning 
a surface around the source with the array. Analysis of the observed wavenumbers 
using wavenumber filtering is of great interest in the investigation of how a source 
of interest is radiating wave energy. For example, changes in the observed electro- 
magnetic fields of a motor, generator, or electronic component could be used to 
pinpoint a pending problem from corrosion, circuit breakdown, or component wear 
out. 

Wavenumber processing for fields in confined spaces is generally known in 
structural acoustics as modal filtering. The vibration field of a bounded space 
can be solved analytically in terms of a weighted sum of vibration modes. or struc- 
tural resonances. Each structural resonance has a frequency and associated mode 
shape. When the structure is excited at  a point with vibration (even a single 
frequency) all of the structural modes are excited to some extent. Therefore, in 
theory, a complete analysis of the structural response should allow one to both locate 
the source and filter out all the structural “reverberation”, or standing wave fields. If 
there are changes in the structural integrity (say from corrosion or fatigue), changes 
in structural stiffness should be observable as changes in the mode shapes and 
frequencies. This should also be true for using microwaves to investigate corrosion 
or fatigue in metal structures. In theory, acoustical responses of rooms could be 
used by robotic vehicles to navigate interior spaces excited by known sources 
and waveforms. While these application ideas are futuristic, the reader should con- 
sider that they are all simply applications wavenumber filtering for various 
geometries and wave types. 

Section 12.1 presents the Cramer-Rao lower bound for parameter estimation. 
This general results applies not only to beamforming estimates, but actually any 
parameter estimate where one can describe the observable in terms of a probability 
density function. This important technique spans the probabilistic models of Chapter 
1 1 and the adaptive filtering models in Chapter 8 and can be applied to any parameter 
estimate. For our immediate purposes, we present the Cramer-Rao lower bound for 
bearing estimates. This has been well-developed in the literature and is very useful 
as a performance measure for beamforming algorithms. In Section 12.2 we examine 
precision bearing estimation by array phase directly or as a “split-beam”. In the 
split-beam algorithm, the array produces two beams steered close together. but 
not at exactly the same look direction. By applying a phase difference between 
the two beams, the pair can be “steered” precisely to put the target exactly in between 
the beams, thus allowing a precision bearing estimate. Section 12.3 presents the 
holographic beamforming technique and shows application in the analysis of acous- 
tic fields. although this could be applied to any wave field of interest. 

12.1 THE CRAMER-RA0 LOWER BOUND 

The Cramer-Rao lower bound (CRLB) (1,2) is a statistically-based parameter esti- 
mate measure which provides a basis for stating the best possible accuracy is for 
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a given parameter estimate based on the statistics of the observables and the number 
of observables used in the estimate. As will be seen below, the CRLB is very closely 
related to the least-squared error of a parameter estimate. The main difference 
between the CRLB and the least-squared error of a linear parameter estimate is 
that the CRLB represents the predictability of an estimate of a function's statistical 
value based on N observations. For example, one starts with a probability density 
model for the function of interest, say the bearing angle measured by a linear array 
of sensors. The array processing algorithm produces a time-difference of arrival, 
(or phase difference for a narrowband frequency), between various sensors which 
has a mean and a variance. If there are N +  1 sensors, we has N observations of 
this time or phase difference. Because the signal-to-noise ratio is not infinite, the 
time delay or phase estimates come from a well-defined probability density function 
(see Section 1 1.1). The derivation of an angle-of-arrival, or bearing, requires trans- 
lation of the probability density function from the raw sensor measurements, 
but this is also straightforward, albeit a bit tedious. With N statistical observations 
of the bearing for a given time interval from the array, we seek the mean bearing 
as the array output, and use the CRLB to estimate the minimum expected standard 
deviation of our mean bearing estimate. The CRLB provides an important measure 
of the expected accuracy of a parameter estimate. The derivation of the CRLB 
is quite interesting and also contains some rather innovative thinking on how to 
apply statistics to signal processing. 

Consider a vector of N scalar observations, where each observation is from a 
normal probability distribution with mean m and variance 02. 

(12.1.1) 

We designate the parameter vector of interest to be A=[n?02]and the joint prob- 
ability density function of the N observations to be 

Suppose we have some arbitrary function I;( Y J ) , for example the bearing, for which 
we are interested in estimating the mean. Recall that the first moment is calculated as 

(12.1.3) 

For the statistical models of the observables and our arbitrary function described in 
Eqs (12.1.1)-(12.1.3), we will be interested in the gradient of M F  with respect to 
the parameter vector R as well as the second derivative. This is because we are con- 
structing a linear estimator which should have a linear parameter error. Following 
Chapter 8 we note that the error squared will be quadratic where the least-squared 
error will be the parameter values where the gradient is zero. The gradient of 
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the expected value of F is 

( 12.1.4) 

where 

(12.1.5) 

is the gradient of the log-likelihood function for the arbitrary function F( Y,j , ) .The 
second derivative of Eq. (12.1.5) has an  interesting relationship with the first 
derivative. 

(12.1.6) 

Proof of Eq. ( 12.1.4) follows from a simple application of the chain rule. 

(12.1.7) 

= E -[:]
 + E [ F $ ]  

Eq. ( 12.1.4) and its proof in (12.1.7) shows the intuitive nature of using the gradient 
of the log-likelihood function for our arbitrary function F. Since F is functionally 
a constant with respect t o  A, it can be seen that for F =  1 ,  E [ 4 ] = O .  For F = $  
we obtain another important relation. 

O =  
(12. I .7) 

O =  

O =  
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Therefore, 

-E - = E[$$T] E J[3 (12.1.9) 

where J in Eq. ( 1  2.1.9) is referred to as the Fisher Infomatiori A4atr.i.u. 
We note that if the slope of the probability density function is very high in 

magnitude near the mean, there is not much “randomness” to the distribution. This 
corresponds to the elements of J being large in magnitude, and the norm of the 
Fisher information matrix to be large, hence, the observations contain significant 
information. Conversely, a broad probability density function corresponds to rela- 
tively low information in the observations. The elements of J are defined as 

( 1  2.1.10) 

The reason we took the effort to derive Eq, (1 2.1.4) and ( I  2.1.9) is we need to 
evaluate the statistics of a parameter estimate A( Y )  for the parameter R( Y).Since 
;I(Y) and $( Y) are correlated, we can write a linear parameter estimation error as 

Recall from Section 8.1 that minimization of the squared error is found by setting the 
gradient of the squared error with respect to /? to zero and solving for p. 

E[p]= E[R$7]E[$$‘]-’ (12.1.12) 

making the parameter estimation error 

We note that the error in Eq. (12.1.13) is uncorrelated with $, and since E[$] =0, 
E[e]=E[;I].Since we are interested in the variation between the actual parameter 
value and its expected value, we define the following two variational parameters. 

A)” = R - E [ i ]  ( 1  2.1.14) 

Ae = e - E[e] (12.1.15) 

Note that subtracting a constant (the expected values A) does not affect the cross- 
correlation 

A4 = E [ i @ T ]= E[Ah,hT] (12.1.16) 

where M in Eq. ( 1  2.1.16) is known as the bius of theparmietcv estinicitiorz and equals 
unity for an unbiased estimator. This will be described in more detail below. The 
variational error is therefore 

( 12.1.17) 
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The expected value of the variance of the parameter estimation variational error is 

E[AeAeT]= E[(AR- MJ-'$)(A/ZT - ~ T J - ' M T ) ]  

= EIAI.AAT]- MJ-'E[$AAT] - EIAI.$']J-'MT + MJ-'$$'J- 'MT 

= E[AAAAT]- M J - ' M T  - M J - ' M T  + M J - ' M T  

= E[AiAAT]- M J - ' M T  

( 12.1.18) 

Since qAeAe'] 2 0 we can write a lower bound on the variance of our parameter 
estimate. 

a2(i)= E[AAAAT]2 M J - ' M T  ( 12.1.19) 

Equation (12.1.19) is the result we have been looking for -a measure of the variance 
of our parameter estimate based on the statistics of the observables, with the excep- 
tion of the bias term. 

a
M = E[A't,bT]= - - [A ' ]  -Ea), (12.1.20) 

= 1 for the unbiased case 

The bias in Eq. (12.1.20) is unity for the case where ;I'has no explicit dependence on 
A,making the partial derivative in the rightmost term zero. An unbiased parameter 
estimate will converge to the true parameter given an infinite number of observables. 
A biased estimate will not only converge to a value offset from the true parameter 
value, but the bias will also affect the variance of the parameter estimate depicted 
in Eq. ( I  2.1.19). For the unbiased case 

a2(i)= E[AAAAT]2 J-' (12.1.21) 

and in terms of N observations of the scalar probability density function in Eq. 
(12.1. l), 

-1 -1 (12.1.22) 

Equation (12.1.22) provides a simple way to estimate the CRLB for many parameter 
estimates. When the bias is unity, the estimator is called efjcient because it meets the 
Cramer-Rao lower bound. 

Consider an example of N observations of a Gaussian process described as a 
joint N-dimensional Gaussian probability density. 

( 12.1.23) 
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Our parameter vector is i=[ma]'. To find the CRLB we first take the log ofp(  Y , i )  

( 12.1.24) 
L. 

i= 1 

and then differentiate 

I 
- - 172)a O2 / = I  

-+4CO, 
( 1  2.1.25)I)( Y ,A) = -hp(  Y ,A) = 

'' a), N 1 

202 20 


I n ) '  

Differentiating again yields the elements of the matrix Y 

r a l n p  a21np 1 
a

Y(Y ,E,) = -lnp( Y ,A) = a i  

(1 2.1.26) 

and taking expected values gives the Fisher information matrix. 

J =  E ( Y (Y ,A)} = 1;

0 
N (12.1.27) 

2a4 

The CRLB for an unbiased estimate of the mean and variance is therefore 

N 
E{AniAa') ] [2 ]

a-(i) = 
E ( A ~ H A ~ ~ ]  ( 1  2.1.28)' * [E(AniAa') E { A a 2 A a 2 )  0 -

2a4 

An even more practical description can be seen if we consider a Gaussian dis- 
tribution with say mean 25 and variance 9. How many observations are needed 
for an unbiased estimator to provide estimates within 1% of the actual values 
63% of the time (i.e. 1 standard deviation of the estimate is 1% of its value)? 

Solution: We note that the variance is 9 and that the variance of the mean 
estimate is 9/N.  The standard deviation of the mean estimate is 3 / a .  Therefore. 
to get a mean estimate where the standard deviation is 0.25 or less, N must be greater 
than 144 observations. To get a variance estimate with standard deviation 0.09, N 
must be over I .6 million observations. To get a variance estimate where the variance 
of the variance estimate is 0.09, N must be greater than about 145,800 observations. 
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12.2 BEARING ESTIMATION AND BEAMSTEERING 

In this section, we apply the technique of establishing the CRLB for a statistical 
representation of wavefront bearing, or the observed wavenumber by an array 
of sensors. This is presented both in terms of a direct bearing measurement for single 
arrival angles and later in this section by way of array beamforming and beam 
steering to determine source bearing. Direct bearing estimation using wavefront 
phase differences across an array is a mainstay process of passive narrowband sonar 
engineering, but also finds application in other areas of acoustics, phased array radar 
processing, as well as seismology and radio astronomy. By combining measured 
phase and/or  time delay information from a sensor array with the array geometry 
and wave speed one can determine the direction of arrival of the wave from a single 
distant source. If  more than one target is radiating the same frequency, or if propa-
gation multipath exists, a beamforming and beam steering approach must be used 
to estimate the target bearings. This is the general passive sonar problem of 
determining the bearing of a plane wave passing the array to provide a direction 
to a distant target. 

If the array size is quite large compared to the source distance, the array can 
actually be ”focused” on the origin of a spherical wave radiating from the source 
allowing the source location to also be observed with some precision. When a com-
plete surface enclosing the source(s) of interest is scanned by an array coherently, 
Gauss’s theorem provides that the field can then be reconstructed on any other sur- 
face enclosing the same sources. The spherical and 3-dimensional field measurement 
representations will be left to the next section. This section will deal specifically with 
plane wave fields, which is always the case when the source is so fdr from the receiv- 
ing array that the spherical wavefront observed by the array is essentially planar. 

Lets begin by considering a simple 3-element array and a 2-dimensional bear- 
ing estimation problem for a single source and single sinusoid in white noise. To 
simplify our analysis even further, we place sensor 1 at the origin, sensor 2 is placed 
tI units from the origin on the positive x-axis, and sensor 3 is placed tl units from 
the origin on the positive ]?-axis. Figure 1 depicts the array configuration and 
the bearing of the plane wave of interest. For the plane wave arriving at the 
Cartesian-shaped array from the angle 0, one can write very simple expressions 
for the phase differences across the array of sensors 

= $ 3  - = ktlsin0 ( 12.2.2) 

where 9,. &, and I $ ~are the phases of the particular FFT bin corresponding to the 
radian frequency (o and the wavenumber k = t o / c ,  c’ being the wave propagation 
speed. The convenience of using a Cartesian-shaped array and the expressions 
for sine and cosine of the arrival angle are evident in the solution for 0 in Eq. ( 12.2.3). 

( 12.2.3) 

Note that for the Cartesian equal spaced array, the bearing angle is calculated 
independent of wave speed, frequency, and wavenumber. This can be particularly 
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Sensor 3 

d 

Sensor 1 Sensor 2 
0 

Figure 1 Array configuration for 2-dimensional phase difference estimation of bearing for 
a plane wave. 

useful for dispersive waves, such as shear waves where high frequencies travel faster 
than low frequencies making bearing estimates from time delay estimation 
problematic. Clearly, one can also provide an estimate of bearing uncertainty given 
the probability density of the signal and noise in the FFT bin of interest. We will 
first generalize the bearing estimate to an arbitrary shaped array and then examine 
statistics of the bearing estimate. 

Consider an arbitrary shaped planar array where each sensor position is 
defined by a distance and angle relative to the origin. Recall from problem 7.1 that 

( 1  2.2.4) 

thus 

The inverted matrix in Eq. (12.2.5) contains terms associated with the position of the 
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three sensors. It can be shown that the inverse exists if the three sensors define a 
plane. An arithmetic mean can be calculated for the sine and cosine of the arrival 
angle using a number of sensor pairings. 

( r ,cos 0, - r/ cos O J )  ( r ,sin 8, - r, sin 0,) 

(I- , ,  cos OA - r, cos 0,) (I- , ,  sin 0~ - r/ sin 0,) 

L (O J 
( 12.2.6) 

Equation (12.2.6) uses all possible pairings of sensors assuming all sensor pairs are 
separated by a distance less than one-half wavelength. For large arrays and relatively 
high wavenumbers (frequencies), this is not possible in general. However, averaging 
N-pairings which meet the requirement of less than a half-wavelength spacing will 
greatly reduce the variance of the bearing error. 

To determine the CRLB for bearing error, we first make a systematic model for 
the statistics and then consider combining N observations for a bearing estimate. 
Consider the FFT bin complex number for each of the three sensors in Figure 1 
for a particular frequency bin of interest. Figure 2 graphically shows how the stan- 

Figure 2 Graphical representation of the phase random error in a F‘FT bin due to  back- 
ground noise. The phase error can be seen as the arctangent of the inverse of the SNR.  
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dard deviation of the phase 04, can be expressed as 

1
c4 = tan-' { J = tan-] S N R  ( 1  2.2.7){ -1 

where S is the signal amplitude and oNis the noise standard deviation in the FFT bin. 
While the envelope of the complex FFT bin probability density has been shown to be 
a Rician density function, the full complex density is actually a 2-dimensional 
Gaussian density where the mean is simply the complex number representing the 
true magnitude and phase of the signal. 

The phase difference probability density results from the convolution of the 
two Gaussian densities for the real and imaginary part of the FFT bin. Therefore, 
the FFT phase variances for each sensor add to give the variance of the phase 
difference. Assuming the noise densities for the sensors are identical in a given 
FFT bin, the standard deviation for the phase difference is seen as 

Normalizing the phase differences along the x and y axis by kd for our simple 
3-sensor Cartesian shaped array we can consider the probability density functions 
for our estimates of the sine and cosine of the arrival angle 0 for the plane wave. 
Figure 3 graphically shows the standard deviation for the bearing error. 

Normalization by kd naturally scales the phase difference variance relative to 
the observable phase difference for the sensor separation. For example, suppose 
the standard deviation of the phase difference is 0.01 radians. If d l i  is smaller than 

t 

COS e 
Figure 3 Graphical representation of the bearing random error given phase differences 
normalized by kd to provide representations for the sine and cosine of the bearing angle. 
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but close to 0.5, the random bearing error is quite small. But for a closer spacing, or 
lower frequency, (//Amight be 0.05, making the random bearing error considerably 
larger for the same phase difference variance. The standard deviation for the bearing 
error is therefore 

( 12.2.9) 

If the SNR is large (say greater than I O ) ,  and a,<<kcl, the bearing error standard 
deviation is approximately 

(122.10) 

which is in agreement with the literature. I f  we combined M sensor pairings with the 
same separation d as in Figure 1, the reduction in the CRLB is simply 

(12.2.11) 

One can also average the expressions for sine and cosine in Eqs (12.2.6) using 
different frequencies and sensor spacings, but a corresponding SNR and 
wavelength/aperture weighting must be applied for each unique sensor pair and 
frequency bin. The expression for the CRLB tells us that to improve bearing accu- 
racy one should increase SNR (integrate longer in time and/or space), choose sensor 
spacings near but less than A / 2  for the frequency, and combine as many sensor pairs 
and frequencies as is practical. When a wide range of frequencies are used in a 
non-white background noise, the Eckart filter (Section 5.4) can be applied to equalize 
SNR over a range of interest. This is equivalent to weighting various frequencies 
according to their SNR in the bearing estimate. 

I t  can be shown that the CRLB for time delay estimation where the average of 
M observations is used is 

( 12.2.12) 

where /j is the bandwidth in Hz of the signal used in the time delay estimate. For 
estimation of Doppler frequency shift from a moving source based on the average 
of hi' observations, the CRLB can be shown to be 

1 
cc ( 1  2.2.13) 

~ S N T?R 

where T is the period of one observation in seconds. Time delay and frequency shift 
estimation are generally associated with target range and velocity along the bearing 
direction. However, it can be seen that for a given signal's time-bandwidth product 
and SNR, there are definable parameter estimation errors which cannot be less than 
the CRLB. Note that the SNR enhancement of an FFT defines a time-bandwidth 
product. 

TLFeBOOK



373 Wavenumber and Bearing Estimation 

Suppose we have two or more sources at different bearing angles radiating the 
same frequency? What bearing would a direct phase-based bearing calculation pre- 
dict? Clearly, the array would be exposed to a propagating wave field and an inter- 
ference field from the multiple sources. If one were to decompose the waves 
from the sources into .Y and 1' axis components, summing the field of the sources 
results in the sum of various wavelengths on the -Y and axis. Therefore, one 
can argue that along both the .Y and 1'axis, one has a linear combination of n'ave 
components from each source. For two sources of equal amplitude, phase, and dis- 
tance from the array and bearings 0, and Oh the phase difference between two sensors 
separated by a distance d is 

( 12.2.14) 

Recalling that adding two sinusoids of different wavelengths gives an amplitude 
modulated signal where the "carrier wave" is the average of the two wave fre- 
quencies (or wavelengths) and the envelope is half the difference of the two wave 
frequencies. 

Equation (12.2.15) shows that for two arrival angles close together (Oc l2 ( I , , ) ,  the 
estimated bearing will be the average of the two arrival angles since the cosine 
of a small number is nearly unity. However, as the bearing difference increases. 
a very complicated angle of arrival results. When the two waves are of different 
amplitudes, the average and differences are weighted proportionately. Therefore. 
we can say with confidence that a direct bearing estimate from an array of sensors 
using only spatial phase will give a bearing estimate somewhere in between the 
sources and biased towards the source wave of higher amplitude. It would appear 
that measuring both the spatial phase and amplitude (interference envelope) should 
provide sufficient information to resolve the bearing angles. However, in practice 
the sources are both moving and not phase synchronized making the envelop field 
highly non-stationary and not linked physically to the direction of arrivals for 
the sources. The only practical way to resolve multiple source directions at the same 
frequency is to apply array beamforming and to steer the beam around in a search 
pattern for sources. 

Using an array of sensors together to produce a beam-shaped directivity 
pattern, or beampattern, simply requires that all or a number of sensor output 
signals be linearly filtered with a magnitude and phase at the frequency of interest 
such that the sensor response to a plane wave from a particular bearing angle pro- 
duces a filter output for each sensor channel that has the same phase. This phase 
coherent output from the sensor array has the nice property of very high signal 
output for the wave from the designed look-direction angle, and relatively low inco-
herent output from other directions. Thus, the sensor array behaves somewhat like 
a parabolic dish reflector. However, the array beamforming can "steer" the beam 
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with no moving parts simply by changing the magnitude and phase for each fre- 
quency of interest to produce a summed output which is completely coherent in 
the new look direction. Even more useful is constructing beams which have zero 
output in the direction(s) of unwanted sources. Array “null-forming” is done 
adaptively, and several methods for adaptive beamforming will be discussed in 
Chapter 13. 

Consider the beam pattern response for a simple theoretical line sensor as seen 
in Figure 4. The distant 

(12.2.16) 

I 
 9
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I I Distant 
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Figure 4 Line sensor configuration showing length L,  bearing angle 0, and response at 
differential element dx where the wave arrives early compared to the line center at s= 0. 
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source essentially radiates a plane wave across the line sensor where, relative to the 
origin, we have early arrivals on the right and late arrivals on the left. I f  we 
sum all the differential elements along the line sensor, we can write the spatial 
response of the line sensor, relative to a single point source as seen in Eq. ( 12.2.16). 

For an example using acoustic waves in air, c = 350 m / sec, L =2 m,f'= 300 Hz, 
and k = 5.385 m - '. The beam response is seen in Figure 5 and in Figure 6 in polar 
form. Electronically steering the beam to a look direction 8' requires adjusting 
the phase at  300 Hz for each element so that the line sensor response at 0' is coherent. 

( 1  2.2.17) 
.u= -L j 2  

Figure 7 shows the 30 degree steered beam response in polar form. Note how 
the southern lobe also moves East by 30 degrees. This is because of the symmetry 
of the line sensor which is oriented along a East-West line. The reason the "South" 
beam also moves around to the East is that a line array cannot determine which 
side of the line the sources is on. In 3-dimensions, the beam response of the line 
array is a hollow cone shape which becomes a disk shape when no steering is applied. 

We can explain beam forming in a much more interesting way using spatial 
Fourier transforms such as what was done in Section 7.2 for images to show high 
and low pass filtering. Consider a 256 point by 256 point spatial grid representing 
32 m by 32 m of physical space. Placing our 2 m line sensor in the center of this 
space at row 128, we have 16 "pixels," each numerically unity, extending from 
(x, coordinate (56, 128) to (72, 128) representing the line sensor. Figure 8 shows) I )  

2 


1.5 -
\ 

1 -

0.5 -

0 

-150 -100 -50 0 50 100 150 

Figure 5 Beam response for a 2 m line sensor at 300 Hz in air (linear output vs. bearing 
degrees scale). 
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0 


180 


Figure 6 Polar plot of the 2 m line sensor showing the North- South beams expected to be 
symmetric about the horizontal axis of the line sensor (linear output vs. degrees). 

0 


180 


Figure 7 Beam response at 300 Hz for 2 m line sensor steered to 30 degrees East (linear 
output vs. degrees ) . 
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Figure 8 Input grid for 2-dimensional spatial FFT to represent line sensor response. 

Figure 9 2-dimensional FFT of the 2 m line sensor showing wavenumbers from -871 to +71 

where the spatial sample rate is 256/32 m or 8 samplesimeter. 
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a place of our input Fourier space. Figure 9 shows the magnitude of a 2-dimensional 
FFT of the spatial array data with a dashed circle centered on the wavenumber space 
origin representing k =5.385 m - I .  If we sample the wavenumber response along the 
k =5.385 circle, we get the response shown in Figure 5. For frequencies below 300 
Hz, the wavenumber response circle is smaller and the beam response is wider. 
At high frequencies well above 300 Hz, the the circle defined by k is much larger 
making the beamwidth much narrower. 

Table 1 compares the discrete Fourier transform on temporal and spatial data. 
Determining the wavenumber range from the number of samples and the spatial 
range of the input can sometimes be confusing. Note that for say 1 sec of a real 
time signal sampled 1024 times, the sample rate is 1024 Hz and a 1024 point 
FFT will yield discrete frequencies 1 Hz apart from - 512 Hz to +512 Hz. For 
our spatial FFT on the 2 m line sensor, we have a space 32 m by 32 m sampled 
256 times in each direction. This gives a spatial sample rate k, of 8 samples per 
meter. Since the wavenumber k =2n/A and the FFT output has a digital frequency 
R = k l k ,  span of -n 5 SZ 5 +n,  the physical wavenumber span is - nk, 5 k 5 
+nk,. or - 8 n  to +8n. This is perfectly analogous to the physical frequency span 
for temporal FFTs of real data being -f , / 2  5 f 5 +f, /2.  

Our 2-dimensional wavenumber domain approach to beam forming is 
interesting when one considers the wavenumber response for a steered beam, such 
as the 30 beam steer in Figure 7. Figure 10 shows the effect of steering the line 
sensor’s look direction beam 30 degrees to the East. Note how the wavenumber 
response circle appears shifted to the left relative to the main lobe of the array. 
I t  can be shown that for the “compass” (rather than triginometric) bearing 
representation, the s and y wavenumber components are 

k ,  = h-sin8 - ksin8‘ 
( 12.2.18)

k, . = kcos 8 

where k is the wavenumber and 8’ is the steered direction. This approach to beam 
forming is quite intuitive because we can define a wavenumber response for the array 
shape and then separately evaluate the beampattern for a specific wavenumber 
(temporal frequency and propagation speed) and steering direction. 

We can also use the wavenumber approach to examine the effects of grating 
lobes which arise from the separation between array elements. With our line sensor 

Table 1 Comparison of Spatial and Temporal FFT Parameters 

Spatial FFT Temporal FFT 

Input Buffer Xmax meters 
N samples 

Sample Rate k ,  = N/Xmax 
samples meter 

Digital Frequency --TI 5 R 5 +n, R = k / k ,  
Range k = 27112. = w / c ,  (o = 27rf 

Physical Frequency -xk, 5 k 5 +nk, 
Range 
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Figure 10 2-dimensional wavenumber response for the 2 m line sensor steered to 30 
degrees East of North showing the k = 5.3856 circle corresponding to 300 Hz. 

2 m long and FFT input space 32 m with 256 samples, our line array is actually 16 
adjacent elements in the digital domain. This makes the response closely approxi- 
mate a continuous line sensor. Figure 11 shows the wavenumber response for a 
4-element line array still covering 2 m total aperture. The separation between sensors 
gives rise to “grating lobes” in the wavenumber transform. For low frequencies, the 
wavenumber is small and the circle representing the beam response is not signifi- 
cantly affected by the sensor element spacing. Figure 12 shows the polar response 
for 300 Hz, 30 degree steering, for the 4-element array. This response shows some 
significant leakage around 270 degrees (due West). Note that is the sound speed 
is 350 m/sec, the wavelength at 300 Hz is 1.167 m while the element spacing is 
2 m divided by 4 elements, or 0.5 m. In other words, the sensor spacing is slightly 
less than half a wavelength. 

At 600 Hz, the array response is seen in Figure 13 where the larger circle rep- 
resents the bigger wavenumber of k = 10.771 m -  ’. At 600 Hz, the sensor spacing 
of 0.5 m is greater than a half wavelength (0.2917 m). The circle clearly traverses 
the grating lobes meaning that the array response now has multiple beams. Figure 
14 shows the grating lobes at 600 Hz for the 2 m 4-element line array with the steering 
angle set to 30 degrees. Clearly, a beam pattern with grating lobes will not allow one 
to associate a target bearing with a large beam output when steered in a specific 
look direction. 

Perhaps the most interesting application of our wavenumber approach to 
beamforming is seen when we consider 2-dimensional planar arrays. Consider an 
8 element by 8 element square grid, 2 m on each side. Taking FFTs we have the 
wavenumber response seen in Figure 15 where the circle represents 300 Hz and 
a steering angle of 30 degrees. Figure 16 shows the corresponding polar response 
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Figure 11 Wavenumber response for 4-element 2 m line array for steering angle of 30 

degrees at 300 Hz showing multiple beam lobes (grating lobes) due to the element spacing 
of 0.5 m. 

Figure 12 Polar response of 4-element 2 m line array at 300 Hz with a steering angle of 30 

degrees East of North showing small grating lobe leakage (linear output vs. degrees). 

TLFeBOOK



381 Wavenumber and Bearing Estimation 

Figure 13 4-element 2 m line array response circle for 600 Hz showing full grating lobes. 

Figure 14 Full grating lobes are seen about 315 and 225 degrees for 600 Hz, 4 sensors, and 
a steering angle of 30 degrees (linear output vs. degrees). 

TLFeBOOK



382 Chapter 12 

Figure 15 Wavenumber response for 8 by 8 element, 2 m by 2 m, grid array steered to 30 
degrees at 300 Hz showing beam response circle shifted up and to the left by the beam steering. 

Figure 16 Polar response for the 8 by 8 element, 2 m by 2 m grid array at 300 Hz and a 
steering angle of 30 degrees (linear output vs. degrees). 

TLFeBOOK



383 Wavenumber and Bearing Estimation 

in the circle in Figure 15. Note that the effect of steering is to shift the wavenumber 
circle up and to the left of the main array lobe in Figure 15. This is because the 
FFT data is displayed such that 0 degrees is down, 90 degrees is to the right, 
180 is up, and 270 is to the left. In the polar plot, we display the beam using a 
“compass” bearing arrangement, which corresponds to how the bearing data is used 
in real-world systems. Therefore, we can calculate a generic 2-dimensional spatial 
FFT of the array, and place a circle on the array wavenumber response representing 
a wavenumber and steering direction of interest to observe the beam pattern. The 
wavenumber shifts follow the case for the line array 

k ,  = k sin 0 - k sin 0’ 
(12.2.19)

k,. =kcosO-kcos0’  

where k is the wavenumber, 0 is the bearing, and 0’ is the steered direction. Note that 
if one prefers a trigonometric circular coordinate system rather than compass bear- 
ings, all one needs to do is switch sines and cosines in Eqs ( 12.2.16) and ( 12.2.17). 

Another physical effect which can cause the wavenumber circle to shift is a flow 
field which causes the wave propagation speed to be directional. This physical effect 
of flow is that the wave speed is now a function of direction. I t  also affects incoming 
waves differently than outgoing waves. For example, if winds are out of the East (90 
degrees), the “listening” response of the array will be skewed slightly in the direction 
of the wind. Waves traveling towards the array will arrive faster from the East, just 
as if the beam were steered in that direction. For outgoing waves, an array of sources 
would beam slightly more towards the downwind direction, if effect, blowing the 
transmitted beam downstream somewhat. Outdoors this effect is very slight because 
the speed of sound is very high relative to a typical wind speed. But, in a jet airplane, 
i t  is the reason so much of the engine’s noise radiates behind the plane. 

Now that beam forming physics and processing have been established, we need 
to revisit the CRLB to include the SNR gains available from beam forming. For a 
beam forming based bearing estimate, the beam is swept around while the output 
is monitored for directions with high SNR. The CRLB for bearing is therefore tied 
to the array SNR gain in the look direction and the beamwidth. The SNR gain 
can be numerically computed by calculating a parameter called the directivity index. 

( 12.2.20) 

Equation (12.2.18) must be integrated in 3 dimensions to properly model the 
isotropic noise rejection of the beam pattern. It represents the to td  response of 
the beam normalized by the gain in the look direction 0’. An omnidirectional point 
sensor has a DI of 0 dB. The higher the DI the more directional the beam and 
the greater the background noise rejection is. The DI can be numerically calculated, 
but in general, an analytic expression is foreboding without at least some 
approximations. We can use the following approximation based on a heuristic physi- 
cal argument. 

( 12.2.21 )  
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A DI of 0 dB ( c l [ =  1 )  is nearly the case when the aperture of the line source 
L =U 2  or less. One can argue that a sensor smaller in size than a half wavelength 
is essentially a point sensor with omnidirectional response. Since our line array 
has a maximum gain L in the look direction, we can assume dl=2L/i . .  but it w i l l  
be somewhat less than that for look directions steered off broadside to the array. 
However, the directivity index actually improves for a line array when the beam 
is steered along the axis (90 degrees from broadside). This is because the backward 
beam collapses leaving only one lobe pointing out from one end of the line array. 
The directivity has a similar effect on SNR as does an FFT for a sinusoid in white 
noise. This is because summing the array elements increases the amplitude of 
the spatially coherent N x v e  from the look direction while not amplifying u8a~’esfrom 
other directions and the spatially incoherent background noise. 

Finally, the CRLB is effected by beamwidth. The broader the beam width, the 
higher the CRLB because i t  will be more difficult to pin-point the precise bearing 
angle with a beam pattern which does not vary much with angle. Consider the angle 
off broadside where the directivity power gain is down by 112. We can estimate 
this by noting that (sin .Y) / .Y =0.707 for .Y = 1.4 approximately. Therefore, 

A 

( 12.2.22) 

and we interestingly pick up another factor of 2 L l i  from the beamwidth. Therefore. 
our approximate estimate for the CRLB for bearing error for a line array of length L 
and wavelength iL(near broadside arrival angle) is 

1 
( 12.2.23) 

Comparing the CRLB for phase difference in Eq. ( I  2.2.1 1)  to the CRLB for a 
line array, one might think that for L > i., the bearing estimates for the line array 
beam pattern are better than a direct measurement of phase to get bearing. But ,  
the CRLB for the beamforming estimator is actually not as good as a direct 
measurement. Recall that there are many elements available for phase difference 
pairings and the CRLB in Eq. (12.2.11) is for M observations for only one sensor 
element pair. When one has more than one arrival angle for a particular frequency, 
only beamforming techniques can provide correct bearing answers. 

There are other physical problems which make large arrays with closely spaced 
sensors underperform the theoretical CRLB for bearing error. First, when the 
sensors are closely spaced, the noise is no longer incoherent from sensor to sensor. 
Thus, the beamforming algorithm does not reduce the background noise as much 
as planned. Second, for large arrays in inhomogeneous media (say acoustic arrays 
with flow and turbulence), the signal coherence from one end of the array to the 
other is not guaranteed to be unity. Therefore, i t  is unlikely that the array gain will 
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be as high as theory predicts possible throughout the CRLB. The CRLB is U loic~cv. 
hoirnd by definition, and is used to form a confidence estimate on the bearing error 
to go along with the bearing estimate itself. As many physicists and engineers know 
all too well, data with some confidence measure (such as error bars, variance, prob- 
ability density, etc) is far more useful than raw data alone. For intelligent sensor 
and control systems, confidence measures are even more important to insure cor- 
rectly weighted data fusion to produce artificially measured information and 
knowledge. Information is data with confidence metrics while knouyledge is an ident- 
ifiable pattern of information which can be associated with a particular state of 
interest for the environment. The CRLB is essential to produce bearing information, 
rather than bearing data. 

12.3 FIELD RECONSTRUCTION TECHNIQUES 

Sensor arrays can be used for much more than determining the directions of arrivals 
of plane wave radiated from distance sources. In this section we examine the use of 
array processing to measure very complicated fields in the vicinity of a source. Some 
useful applications are investigation of machine vibrations from radiated acoustic 
noise, condition monitoring electrical power generators or components, or even 
optical scattering from materials as a means of production quality control sensing. 
In all cases, a sensor array scans a surface to observe the field and relate the measure- 
ments on the array surface to what is happening where the sources are. For example. 
an acoustic intensity scan over a closed surface enclosing a sound source of interest 
can provide the net Watts of radiated power (Gauss’s theorem). But the acoustic 
pressure and velocity on the scanning surface could also be used to reconstruct 
the acoustic field much closer to the source surface, allowing surface vibrations 
to be mapped without contact. It can be seen that this technique might be useful 
in the investigation of things like tire noise. For electromagnetic equipment. changes 
in the field could provide valuable precursors to component failure, allow one to 
locate areas of leakage/corrosion/ damage, or measure the dynamic forces governing 
the operation of a motor or generator. 

Field reconstruction is possible because of Green’s integral formula. Green’s 
integral formula can be seen as an extension to 3-dimensional fields of the 
well-known formula for integration by parts. 

(12.3.1) 

When we develop a measurement technique for the radiated waves from a source or 
group of sources, it is useful to write the field equations as a balance between 
the radiated power from the sources and the field flux through a surface enclosing 
the source(s) and the field space of interest. This follows from Gauss’s law, which 
simply stated, says that the net electric flux through a surface enclosing a source(s) 
of charge is equal to the total charge enclosed by that surface. Gauss’s law for electric 
fields is seen in Eq. (12.3.2) 

( 1  2.3.2) 
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where D,sis the electric field flux, dS is the surface area element, y ,  is the charge 
density, and dv is the volume element. For the case of the wave field inside a closed 
surface due to a number of sources also inside the surface we have the following 
3-dimensional equation for acoustic waves called the Helmholtz-Huygens integral. 

(12.3.3) 

where X =  ( s , y ,z )  and X’ = ( X ‘ , J ~ ’ ,z‘)are the surface field and source points, a/& is 
the gradient normal to the surface, p ( X ) is the acoustic pressure on the surface field 
point of interest X ,  and g (X lX’ ) is the free space Green’s function for a source 
at X’ and receiver at X in %dimensions given in Eq. (12.3.4). 

(12.3.4) 

The term “free-space” means that there are no reflections from distant 
boundaries, i.e. a reflection-free or anechoic space. However, if there were a reflec- 
tion boundary of interest, the left-hand side of Eq. (12.3.3) would be used to define 
the pressure and velocity on the boundary surface allowing the field to be 
reconstructed on one side or the other. One could substitute any field quality such 
as velocity, electric potential, etc. for p ( X )  with the appropriate change of units 
in F(X’) .  

Huygen principle states that a wave can be seen to be composed of an infinite 
number of point sources. The Helmholtz-Huygens integral establishes a field math- 
ematical representation by an infinite number of sources (monopole velocity 
sources and dipole force sources) on a closed surface to allow the reconstruction 
of the field on one side of the boundary surface or the other. If we know the point 
source locations, strengths, and relative phases, one would simply use the 
right-hand side of Eq. (12.3.3) and sum all the source contributions from the 
locations X for the field point of interest X .  From an engineering perspective, 
we would like to measure the source locations, strengths, and relative phases from 
a sensor array which defines the field on a surface. However, this surface must 
separate the field point and the sources of interest to be of value mathematically, 
but this is easily achieved mathematically by separating a source or field point 
from the surface with a narrow tube and infinitely small sphere surrounding 
the field point. As will be seen later, the definition of the integration surface in 
Eq. (12.3.3) mainly has an effect on the sign of the derivatives with respect to 
the normal vector to the surface. In the midst of these powerful field equations, 
the reader should keep in mind foremost that the Green’s function can be used 
with the field measured by an array of sensors to reconstruct the field on another 
surface of interest. 

The physical significance of the left side of Eq. (12.2.3) is that the surface has 
both pressurep(X) and velocity ( a p ( X ) / a n )(okay a quantity proportional to velocity) 
which can describe the field inside the surface (between the sources and bounding 
surface) due to the sources depicted by the right side of the equation. For a specific 
source distribution, there are an infinite number of combinations of pressure 
and velocity on the enclosing surface which give the same field inside. However, 
assuming one knows the approximate location of the sources (or a smaller volume 
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within the integration volume where all sources are contained), and the one has 
measurements of the field on the outer surface, then an “image field” can be 
reconstructed on any surface of interest not containing a source. This 3-dimensional 
field reconstruction from a set of surface measurements is known in acoustics as 
acoustical holography (3). The physics are in fact quite similar when one considers 
the wave interference on the measurement surface and the spatially coherent 
processing to reconstruct the field. Field reconstruction using sensor arrays is an 
extremely powerful technique to analyze radiated waves. 

Acoustic fields provide us with a nice example of how holographic rec- 
onstruction can be useful in measuring sound source distributions. For example, 
when an automobile engine has a loose or defective valve, a tapping sound is easily 
heard with every rotation of the cam shaft. I t  is nearly impossible to determine which 
valve using one’s ears as detectors because the sound actually radiates to some extent 
from all surfaces of the engine. Mechanics sometimes use a modified stethoscope to 
probe around the engine to find the problem based on loudness. Given the valve 
tap radiates sound most efficiently in a given frequency range, one could use acoustic 
holography and a large planar array of microphones to find the bad valve. By 
measuring the field at a number of sensor positions in a plane, the field could be 
reconstructed in the plane just above the engine surface, revealing a “hot spot” 
of acoustic energy over the defective valve position. To do a similar mapping using 
intensity one would have to measure directly over the radiating surface in a very 
fine spacing. Using holographic field reconstruction, all field components can be 
calculated, which for acoustics means velocity, intensity, and impedance field 
can all be calculated from the pressure measurements. No professional mechanic 
in this millennium (or next) would consider this activity. The author is just trying 
to present a practical example for field reconstruction using holographic beam- 
forming. 

Unlike the time-average field intensity, one needs the precise magnitude and 
phase spatially for each frequency of interest in the measurement plane to 
reconstruct the field accurately in another plane. In acoustics, it is very useful in 
noise control engineering where one must locate noise “hot-spots” on equipment. 
The technique will likely also find uses in electromagnetics and structural vibrations, 
although full vector field reconstruction is significantly more complicated than the 
scalar-vector fields for acoustic waves in fluids. In machinery failure prognostics, 
field holography can be used as a measurement tool to detect precursor’s to failure 
and damage evolution from subtle changes in the spatial response. Changes in spatial 
response could provide precursors to equipment failure well before detectable 
changes in wave amplitude are seen at  a single sensor. 

We begin our development of the holographic field reconstruction technique by 
simply examining the free-space Green’s function and its Fourier transform on a 
series of x-y planes at  different distances 2 from the point source location. In 
cartesian coordinates, the 3-dimensional free-space Green’s function for a receiver 
a t  X =  (x ,y ,z )  and point source at  X‘ = (x’,y’, z’) is 

( I  2.3.5) 
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Figure 17 shows the spatial responses for the acoustic case of a 700 Hz (c =350 
m/sec, k =  12.65 rad m-’)  point source at X’= (0, 0, 0) where the field sufaces are 
planes located at z=0.001 m, z= 1.OO m, and z = 50.00 m. The measurement planes 
are 10 m by 10 m and sampled on a 64 by 64 element grid. A practical implemen- 
tation of this measurement would be to physically scan the plane with a smaller 
array of sensors, keeping on additional sensor fixed in position to provide a reference 
phase. One would calculate temporal FFTs and process the 700 Hz bin spatially as 
described here. On the right side of Figure 17 one sees the spatial Fourier transform 
of the Green’s function, G(k\-,kJ.,z),on the corresponding z-plane for the left-hand 
column of surface plots. The spatial real pressure responses are plotted showing 
maximum positive pressure as white and maximum negative pressure as black to 
show the wave front structure. The wavenumber plots on the right column are shown 

Figure 17 Real pressure responses of an acoustic free space Green’s function in 
3-dimensions showing corresponding wavenumber transforms for 3 z-axis planes at 700 Hz. 
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for the magnitude where white corresponse to maximum amplitude and black mini- 
mum amplitude. Each of the 6 plots are independently scaled. 

The spatial and corresponding wavenumber plots in Figure 17 are extremely 
interesting and intuitive. In  the spatial plane just in front of the source seen in 
the upper left plot, the singularity of the point source dominates the response at 
. \ - = j * = O .  There is however, a wave structure in this plane where and 
k’ 2 k:. +k;  and k ,  2 0. This is clearly seen in the wavenuniber transform in the 
upper right plot. The bright ring corresponds to the wavenumber k = 12.65. Since 
we are practically in the plane with the point source, there is very little wave energy 
at wavelengths longer than 0.5 ni (the wavelength ofk = 12.65). There is wave energy 
at wavelengths shorter than 0.5 in,mainly due to the “point-like” spatial structure at 
z=0.001 m. This wave energy is called evanescent because i t  will not propagate very 
fa-(the waves self-cancel). For propagation of these waves in the :-direction we have 

( 1  2.3.6) 

causing the waves with wavelengths shorter than the free propagating whvelength to 
exponentially decay in the positive z-direction. The middle row of plots clearly shows 
the rapid decay of the evanescent field and the “leakage” of longer wavelengths 
(smaller wavenumbers) into the center region of the wavenuniber spectrum. One 
can see in the spatial plot at z =  1.00 m that the wavelengths get longer slightly 
as one approaches the center of the measurement plane. This is caused by the angle 
between the normal to the surface of the spherical wave and the measurement plane. 
The diameter of the bright ring in the wavenumber plot also is smaller. As z becomes 
quite large ( z  = 50 m is 100 wavelengths), one sees a near uniform pressure spatially 
and a wavenumber transform which reveals a near Dirac delta function. Recall 
in Section 6.3 we showed a plane wave assumption could be used at ranges about 
100 wavelengths from a point source using both geometry and intensity theory. 

The ring-shaped peak energy “ridge” in the wavenumber plots in Figure 17 
collapses into a delta function as 2 approaches infinity. The amount of the ring diam- 
eter collapse is a function of the measurement plane aperature and the distance from 
the point source. If we call the equivalent wavenumber for this ridge diameter k,,, i t  
can be expressed as k,,= ksin0, where 6 =tan - ‘ ( ‘ / zL / z )and L is the width of the 
aperture. The aperture angle is an important physical quantity to the signal 
processing. For example, if one wants to keep the ridge diameter wavenumber within 
about 10% of the source plane value, the measurement aperture width needs to be 
over 4 times the measurement plane distance z from the source plane. This can 
be clearly seen in the wavenumber plots of Figure 17 where one can better 
reconstruct the source-plane field at  2 =0.001 m from a measurement at z = 1 m 
than from measured data at  z = 5 0  m. At 1 m, the evanescent field is significantly 
attenuated, but still present along with all of the wavenumbers from the source. 
The aperture angle for a 10 m by 10 m measurement plane can be seen as 90 
at z =0.001 m, about 79” at 1.00 m, and about 5.7 at 50 m. 

It should be possible to define a transfer function between the measurement 
plane and the “image” plane so long as the SNR and dynamic range of the meas- 
urement plane wavenumber spectrum is adequate. Suppose our measurement plane 
is parallel to the A-)’ plane at J =z,,?.We wish to reconstruct the field in an image 
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plane also parallel to the measurement plane at  z =z , . Given the measured pressure 
wavenumber spectrum P ( k , ,k , , ,z,, ,),the image plane wavenumber spectrum is found 
to be 

where 

( 12.3.8) 

The Green’s function wavenumber transform at z,,, and z ,  are defined as 

The Fourier transform in Eq. (12.3.9) is efficiently carried out using a 2-dimensional 
FFT where the measurement plane is sampled k ,  samples per meter giving a 
wavenumber spectrum from - k ,n  to +k,,n. The larger L ,  and L ,  are the finer 
the wavenumber resolution will be. However, one should have at least the equivalent 
of two samples per wavelength in the source plane to avoid aliasing. Even though the 
2-dimensional wavenumber FFT has complex data as input from the temporal FFT 
bin corresponding to the frequency of interest, the original time-domain signals from 
the array sensors are generally sampled as real digital numbers. 

Figures 18 through 2 1 show results of holographic imaging of a quadrapole in a 
plane adjacent to the source plane from measurement planes a further distance away. 
As will be seen, the spatial resolution of the holographically-reconstructed image 
depends on wavelength, distance between the measurement and imaging planes, 
and the aperture of the measurement plane. We will use these 4 figures to help 
visualize the issue of holographic resolution. In Figure 18, the field from a symmetric 
700 Hz quadrapole is measured at  1 m distance. Green’s function wavenumber trans- 
forms for a point source at  the origin are calculated numerically as seen in Eq. 
(12.3.9)for the measurement plane at z = 1 m and the image plane taken as z=0.001 
m. The transfer function H ( k , , k ,,z , , z,J is computed as seen in Eq. (12.3.8) and the 
image wavenumber spectrum is computed using Eq. ( 1  2.3.7). The reconstructed field 
is seen in the upper left plot in Figure 18. The measurement field at 1 m distance is 
seen in the lower left plot. The corresponding wavenumber spectra are seen in 
the right-hand column. Note the substantial amount of evanescent field in the image 
plane. The equal spacing (the point sources are at  ( I ,  1 ) ,  ( - 1,  l ) ,  ( - 1 ,  - 1 ) .  and 
(1 ,  - 1 )  meters) and strengths of the quadrapole sources create symmetric inter- 
ference patterns which are barely visible in the pressure field plots, but clearly seen 
in the wavenumber spectra. In Figure 19 we move the sources around just to show 
arrogance to the positions (1.2, 1.O),  ( - 1 .O, 1.3), ( - 1.8, - 1.5), and (1.5, -0.5) 
meters. Actually, what is seen in the wavenumber spectra is an asymmetry to 
the wavenumber peaks and great complexity to the evanescent field. Also seen 
in Figures 18 and 19 are the fact that at  1 m it  is impossible to determine that 
in fact 4 sources are present in the source plane. In Figure 20 the measurement field 
is move back to 5 m distance from the sources. In the reconstruction, the sources 
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Figure 18 Quadrapole reconstruction from a 1 m measurement of 64 by 64 points with an 
aperture of 10 m by 10 m at 700 Hz. 

are still detectable, but there is considerable loss of resolution. The “ridge diameter” 
for the wavenumber spectrum at 5 m is also smaller, indicating that the aperture 
angle may be too small or problematic. Figure 21 also has the measurement plane 
at 5 m distance, but this data is for a frequency of 1050 Hz, which translates into 
30 wavelengths for the 10 m aperture of the measurement array. With the resolution 
nicely restored, one can see that there is an interesting relationship between aperture, 
measurement distance, frequency, and reconstruction resolution. 

A model can be developed to estimate the available resolution for a particular 
array aperture, source wavelength, and measurement plane distance. We start by 
noting that the apparent wavelength in the measurement plane gets long as this plane 
is moved farther from the source plane. The wavelength in the measurement plane is 
A’= il/sin8, where 8 = tan- ‘(%L/z) and L is the width of the array aperture. As z gets 
large, 8 tends to zero and 1’tends to infinity. From a beamforming point of view (see 
Section 12.2), the long wavelength trace in the measurement plane will translate into 
a limited ability to spectrally resolve the wavenumbers in the 2-dimensional 
wavenumber transform. We can estimate this resolution “beamwidth” as approxi- 
mately p =2sin- *[A/(LsinO)]. Given this beamwidth, the spatial resolution in the 
measurement plane is approximately 

A = zsin2P z 22- (1 2.3.10) 
L sin 8 
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Figure 19 Quadrapole reconstruction at 700 Hz when sources are not spaced equally 
showing the changes in wavenumber patterns and some source visibility in the measurement 
plane at 1 m. 

where A is the resolution in meters of the image plane available for the reconstruction 
geometry. Equation (1 2.3.10) clearly shows reconstruction resolution improving for 
higher frequencies, larger apertures, and measurement planes closer to the image 
plane. However, its not that simple because the measurement field is sampled 
spatially with a resolution of L I N ,  N being the number of samples in the N by 
N spatial FFTs, which in our case is 64 samples. One cannot get a higher resolution 
in the image reconstruction then is available in the measurements. However, for 
a given frequency and aperture one can find the distance z where the resolution 
begins to degrade seriously. 

The resolution question then focuses on determining the maximum measure- 
ment plane distance where the resolution significantly starts to decrease. This is anal- 
ogous to the depth of field (the depth where the view stays in focus) of a camera lens 
system, where the f-stop represents the ratio of the lens focal length to the aperture of 
the lens opening. The larger the lens aperture, the smaller the depth of field will be for 
a given focal length. To find the distance zo where resolution in the image plane is 
equal to the measurement plane resolution, we set Eq. (12.3.10) equal to L I N  
and solve for zo. 

(12.3.11) 

TLFeBOOK



393 Wavenumber and Bearing Estimation 

Figure 20 With a 5 m measurement plane distance the resolution limits for the 700 Hz 
quadrapole are close to the limit where the sources can be easily resolved. 

Note that as N gets large zo approaches zero, which is counter intuitive. Usually 
more FFT resolution improves things. Using the camera analogy, increasing the 
lens aperture reduces the depth of field. This is good news for wave field holography, 
because fewer sensors in the array and smaller FFT sizes can actually improve res- 
olution when the measurement plane is relatively far from the image plane. Figure 
22 shows the 700 Hz quadrapole reconstructed from a 5 m measurement plane using 
a 32 by 32 measurement grid as compared to the 64 by 64 grid used in Figure 20. The 
reconstruction resolution actually improves with the smaller FFT as predicted by 
Eqs (12.3.10) and (12.3.11). For 700 Hz and 64 by 64 point FFTs, zo is about 
1.5 m. Using 32 by 32 points, zo is about 2.75 m which means the resolution is 
degraded more for the reconstructed field using the larger spatial FFTs. However, 
using too small an FFT will again limit resolution at  a particular frequency. Notice 
how with 32 by 32 points we have 3.2 samples per meter, reducing the wavenumber 
range to f 3 . 2 ~ ~  f10.05 m - '  from f6.471, or f21 .11  m- ' .  If our frequency or 
were any higher there would be serious spatial aliasing. In fact, there is some aliasing 
going on since our spatial samples are 0.3125 m apart and the wavelength is 0.5 m. 
The aliasing is seen as the ripples near the origin in the reconstruction in the upper 
left of Figure 22 and also in the nearly out of band evanescent energy in the 
right-hand column of plots. 

An analytical expression for the Green's function-based wavenumber transfer 
function can be approximated and is useful when one does not know where the 
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Figure 21 Increasing the frequency to 1050 Hz ( L  = 302) restores much of the resolution 
in the reconstruction plane when the measurement plane is at 5 m. 

source plane is. In this regard, the field in the measurement plane can be translated a 
distance d= Jz, -zil along the z-axis. This is not exactly the same as the transfer 
function method described above, but it is reasonable for many applications. 
The analytical solution is found by applying the Helmholtz-Huygens integral where 
the boundary between the source and field point is an infinite plane. We then assign a 
Green's function (a particular solution to the wave equation) of the form 

( 12.3.1 2) 

The 2-dimensional Fourier transform of Eq. (12.3.12) can be found analytically (4) 
as 

G(k,, ky ,d) = , g J d m  ( 12.3.1 3) 

and we note that for the evanescent part of the wavenumber field Eq. (12.3.13) is 
equivalent to Eq. (12.3.6). The distance d in Eq. (12.3.13) represents the distance 
from the measurement plane in the direction away from the source one is calculating 
the wavenumber field in the image plane. This is considered wave propagation 
modeling and the pressure field in the image field plane which is farther away from 
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Figure 22 Reconstruction of the 700 Hz quadrapole measured at 5 m using a 32 by 32 
sample grid actually improves reconstruction resolution. 

the sources than the measurement plan is 

whereF{ }-' denotes an inverse 2-dimensional FFT to recover the spatial pressure in 
the image field from the wavenumber spectrum. 

For holographic source imaging, we are generally interested in reconstructing 
the field very close to the source plane. Equation (12.3.15) shows the inverse Green's 
function wavenumber spectrum used to reconstruct the field. 

where 

G(k,, k,,, d)-' = j d,/-~ (1 2.3.16) 

Note the sign changes in the square-root exponent in Eq. (12.3.16). This very subtle 
change is the result of using the inverse wavenumber. Therefore, the region inside 
the free wavenumber circle is actually propagated back towards the source in a 
non-physical manner by having an evanescent-like exponential increase. This 
explains the apparent high frequency losses seen in the reconstructions in Figures 
23 and 24 
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Figure 23 700 Hz quadrapole reconstruction for 32 by 32 samples at 5 m using the ana- 
lytic Green’s function wavenumber transfer function showing good results but a loss of high 
frequency. 

The analytic Green’s function technique works pretty well, even though some 
approximations are applied to its derivation. It can be seen as a “wavenumber filter” 
rather than a physical model for wave propagation, although its basis for develop- 
ment lies in the Helmholtz-Huygens integral equation. To calculate the wavenumber 
field a distance towards the source from the measurement plane, the sign of the 
exponent is changed simply by letting d = z i - z , , ,  assuming the source plane is 
further in the negative direction on the z-axis than either the measurement or image 
planes. 

12.4 WAVE PROPAGATION MODELING 

Wave propagation modeling is vastly important for acoustics, electromagnetics, and 
material characterization. While this topic is generally considered a physics topic, 
the Green’s function approach of the previous section brings us to the doorstep 
of presenting this important technique. Of particular interest is wave propagation 
in inhomogeneous media, that is media where the impedance or wave speed is 
not constant. From the sensor system perspective, wave propagation modeling along 
with spatial sensor measurement of the waves offer the interesting opportunity of 
tomographic measurement of the media inhomogeneity. For example, surface layer 
turbulence could be mapped in real-time for airport runway approaches using 
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Figure 24 Even at 15 m (well beyond the resolution range of the transfer function method) 
the analytic Green’s allows one to determine that a quadrapole is present in the source plane. 

an array of acoustic sources and receivers. Another obvious example would be to use 
adaptive radio transmission frequencies to circumvent destructive interference pre- 
dicted by a communications channel propagation model. Perhaps the most 
interesting application of wave propagation modeling may be in the area of materials 
characterization and even chemical process sensors and control. Chemical reactions 
and phase changes of materials results in wave speed and impedance changes 
whether the wave is vibration, acoustic, electromagnetic, or thermal/ optical. Inex- 
pensive and robust sensor systems which can tomographically map the state of 
the wave propagation media can be of enormous economical importance. 

Our discussion begins by considering 2-dimensional propagation in cylindrical 
coordinates where our propagation direction is generally in the r-direction and our 
wavefronts are generally aligned in the z-direction. The homogeneous wave equation 
assuming field symmetry about the origin along the 8 circle is simply 

a$ a$ 
-+ 3+k2(r,z)$ = 0 (12.4.1)a? r-

where k ( r , z )  is the wavenumber o / c ( r , z )which varies with both r and z for our 
inhomogeneous wave propagation media. The wave number can be decomposed 
a wave component in the r-direction which varies with z and a component in 
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the z-direction which varies with r .  

If the wave speed is inhomogeneous, the wavefront from a point source will 
distort with refraction as some portions propagate faster than others. We note that 
if media impedance also changes, one would also have to include wave scattering 
in both forward and backward (towards the source) directions. Our discussion will 
be limited to the refraction case which is certainly important but will also allow 
a brief presentation. We also note that for 3-dimensional wave propagation in which 
the r-z plane represents symmetry for the source radiation, one can divide by the 
square-root of r as $ 2 D  = f i  $ 3 D .  

The wave equation in Eq. (12.4.1) can be written in terms of an operator Q as 

(12.4.3) 

where Q = (#/az2) +k2(z)and we will assume k(r , z )has only z-dependence for the 
moment ( 5 ) .  Given the homogeneous solution to the wave equation, one can find 
the complete particular solution by applying boundary, source, and initial con- 
ditions. However, our interests here assume one has the field measured over the 
z-direction at range r and is interested in the field over the z-direction at a farther 
distance r +Ar away from the source. We will show that the solution to Eq. (12.4. I )  
will be in the same form as the Green's function used for holographic reconstruction 
in Section 12.3. Eq. (12.4.3) is generally known as a parabolic wave equation because 
of the operator product. Clearly, one can see that 

(12.4.4) 

where waves represented temporally as e2tu'traveling away from the source have the 
minus sign. Therefore, to propagate the wave a distance Ar, one must add the phase 

$(r  + Ar, z )  = p J A r f i + ( r ,  z )  (1 2.4.5) 

where the operator Q is constant over the range step Ar. But in the wavenumber 
domain, the spectral representation of the operator Q allows the wavenumber 
spectra in the z-planes at r and r + Ar to be written as 

k:) (12.4.6)"(r  + Ar, k , )  = eJkrArY(r ,  

where 

( I  2.4.7) 

Substituting Eq. (12.4.2) into (12.4.6) we have the same Green's function propa- 
gation expression as seen in Section 12.3 in Eqs (12.3.13)-(12.3.14). 

Y(r + Ar, k: )  = dAr-Y(r, k z )  (12.4.8) 
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Equation (12.4.8) is not all that impressive in terms of inhomogeneous media 
propagation because we assumed that Q is constant over the range step Ar.  The 
wavenumber kz  variation in z is due to an inhomogeneous medium is not explicitly 
seen in Eq. (12.4.8). One could inverse Fourier transform the wavenumber spectrum 
at  r +Ar and then multiply the field at  each z by the appropriate phase to accom- 
modate the wavefront refraction if a simple expression for this could be found. 
T o  accomplish this, we apply what is known as a “split-step approximation” based 
on the assumption that we have propagation mainly in the r-direction and that 
the variations in wavenumber along the z-direction are small. This is like assuming 
that the domain of interest is a narrow wedge with the waves propagating outward. 
We note that a wavenumber variation in the r-direction will speed up or slow down 
the wavefront, but will not refract the wave’s direction. 

Let the variation along the 2-direction of the horizontal wavenumber k,.(z)be 
described as 

kf(2) = kf(0) + Sk2(z) (1  2.4.9) 

where k;(O) is simply a reference wavenumber taken at z = 0 .  Assuming we have 
mainly propagation in the r-direction, and we can make the following 
approximation. 

( 12.4.10) 

Applying the split-step approximation to Eq. (12.4.5) we have 

$(r + Ar,  z )  = d A r f i $ ( r ,  z )  (12.4.1 1 )  

where 

In the wavenumber domain the expression is a bit more straightforward, but requires 
an inverse Fourier transform. 

Equation (12.4.12) defines an algorithm for modeling the propagation of waves 
through an inhomogeneous media. The wavenumber spectrum is computed at range 
r and each wavenumber is multiplied by the appropriate phase in the square brackets 
to propagate the spectrum a distance Ar.  Then the inverse Fourier transform is 
applied to give the field at range r +Ar including any phase variations due to changes 
in horizontal wavenumber k,. Finally, the phase is adjusted according to the 
wavenumber variations in z depicted in the term (Sk2(z ) /2k , (0) ) .To begin another 
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cycle, the left-hand side of Eq. (12.4.12) would be Fourier transformed into the 
wavenumber spectrum, and so on. 

This “spectral marching” solution to the problem of wave propagation has 
three significant numerical advantages over a more direct approach of applying 
a finite element method on the time-space wave equation. The first advantage is 
that the range steps Ar can be made larger than a wavelength and in line with 
the variations in the media, rather than taking many small steps per wavelength 
in a finite element computing method. The second advantage is that with so much 
less computation in a given propagation distance, the solution is much less suscep- 
tible to numerical errors growing within the calculated field solution. Finally, 
the wavenumber space approach also has the advantage of a convenient way to 
include an impedance boundary along the r-axis at z = 0. This is due to the ability 
to represent the field as the sum of a direct wave, plus a reflected wave, where 
the reflection factor can also be written as a LaPlace transform (6). 

Considering the case of outdoor sound propagation, we have a stratified but 
turbulent atmosphere and a complex ground impedance Z,q(r).The recursion for 
calculating the field is 

--w 

f M  

where P ( r ) =k,.(O)lZ,(r) and R(k,) = [k , ( r )Z , (r )-k, . (O)] / [k , ( r )Z , (r )+k,.(O)].The 
ground impedance is normalized to pc = 415 Rayls, the specific acoustic impedance 
for air. As Zcq+1, R(k=)-+0 and no reflection occurs. This condition also drives 
P ( T ) - +k , (O) ,the reference horizontal wavenumber at ground level. This essentially 
places the horizontal wavenumber in the vertical direction and no phase change 
occurs as the result of the range step AT.This high frequency spatial wave is then 
completely canceled in the next range step. Thus, as Z, (T) -+  1 we have the 
no-boundary propagation case of Eq. (12.4.12). 

The first term on the right-side of Eq. ( 12.4.13) represents the direct wave from 
the source, the second term is the reflected wave from the boundary (or the Nave 
from the image source), and the third term is a surface wave which results from 
the ground impedance being complex and a spherical wave is interacting with a 
planar boundary surface representing the ground. The physics behind the third term 
are intriguing. One can see that the term Y ( r , / j )is a single complex number found 
from the LaPlace transform of Y ( r , z )  for the complex wavenumber /j (assuming 
Z ,  is also complex). This complex number is then phase shifted and attenuated 
for the range step (note that with /) complex one has real and imaginary exponent 
elements). The complex result is then multiplied by 2jP and finally the function c’ ””, 

which adds to the field at every elevation z .  Generally, the amplitude of the surface 
wave decreases exponentially as one moves away from the surface. At the next range 
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step iteration, the entire field is again used to derive the surface wave, which is then in 
turn added back into the field. It has been observed both numerically and exper- 
imentally that for some combinations of point source height, frequency, and ground 
impedance, the surface wave can propagate for substantial distances. We also note 
that because of the complex nature of p, the surface wave does not propagate as 
fast as the direct wave. All of this complexity makes measurement of inhomogeneous 
fields and impedance boundaries using arrays of sensors and propagation modeling 
an area for future scientific and economic exploitation. 

Figure 25 shows the result of a Green’s function-based parabolic wave 
equation in a “downward refracting” atmosphere. That is, one where sound travels 
faster in the propagation direction at higher altitudes than near the ground. This 
situation arises typically at night when cold air settles near the ground, (the wave 
speed is slower in colder air) or when sound is propagating in a downwind 
direction. The wind speed adds to the sound speed and winds are generally stronger 
at higher elevations. In the lower right corner, one can see the interaction of the 
downward refracting sound rays with the surface wave, causing a standing wave 
pattern. In the non-virtual world, turbulent fluctuations cause this standing wave 
field to move around randomly. To the listener on the ground, the source is heard 
to fade in and out of detection. The fluctuating multipath effect can also be experi- 
enced with short-wave or AM radio where the ionosphere and ground form a 
spherical annular duct which results in non-stationary multipath from transmitter 
to receiver. 

Figure 26 shows a 100 Hz source in an upward refracting atmosphere. Such is 
the case during a sunny afternoon or when sound is propagating in the upwind 
direction. For upwind propagation, the wind speed is subtracted from the sound 

Figure 25 Numerical propagation model of a 100 Hz point source at 1 m elevation over a 
2, = 12.81 +j11.62 ground impedance in an atmosphere where c(z)= 340 +0.1 zm/sec. 
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Figure 26 Propagation model of the 100 Hz source with an upward refracting atmosphere 
where c(z)= 340 - 0.1 z m/ sec. 

speed and the wind speed generally increases with elevation. During a sunny 
afternoon, the air near the ground is heated significantly. Since the part of the sound 
wave close to the ground is opposing a slower wind and has a faster sound speed due 
to the high temperature, the near-ground part of the wave our runs the upper level 
part of the wave. Thus the wave refracts away from the ground, hence upward 
refracting propagation. Clearly, one can see a rather stark falling off of the wave 
loudness on the ground as compared to the downward refracting case. The dark, 
“quiet” area in the lower right of Figure 26 is known as a shadow zone where 
in theory, little or no sound from the source can penetrate. This is of extreme import- 
ance to submarine operations because shadow zones provide natural sonic hiding 
places. In the atmosphere, common sense tells us that is should be easier to hear 
a source when it is upwind of the listener, and that long range detection of sound 
in the atmosphere should be easier at night if for no other reason the background 
noise is low. 

Figure 27 shows the effect of turbulence on propagation in an upward 
refracting environment. This is typical during a hot afternoon because the hot 
air near the ground becomes buoyantly unstable, and plumes upward drawing in 
cooler air from above to replace it. Thermal pluming generally leads to a build 
up of surface winds as various areas heat at differing rates. These surface winds 
are very turbulent due to the drag caused by the ground and its objects (trees, 
buildings, etc.). The parabolic wave equation propagation modeling technique 
allows the inclusion of turbulence as a simple “phase screen’’ to be added in at each 
range step in the algorithm. This alone illustrates the power of wavenumber filtering 
to achieve what otherwise would likely be an extraordinarily difficult and 
problematic modeling effort. 
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Figure 27 100 Hz source in the upward refracting atmosphere including turbulence effects 
using a Gaussian phase fluctuation with a standard deviation of about 1% of the speed of 
sound. 

Physical considerations for wave propagation modeling can be categorized into 
time scales, environmental models for wave speed profiles, knowledge of wave 
scattering attributes, and knowledge of impedances of the dominant boundaries. 
The model is only a good as the physical assumptions incorporated. For example, 
underwater sound propagation will have time scales that are mostly seasonal while 
atmospheric sound propagation will certainly have diurnal (daily) cycles, but also 
significant changes with local weather conditions. Radio communications channels 
will have a diurnal cycle, but also one synchronized with solar flares and the earth’s 
magnetic field activity. For any given environmental state, one must have detailed 
models which allow an accurate wave speed profile. This requires expertise in 
surface-layer meteorology for atmospheric sound propagation, oceanography for 
underwater sound propagation, and oceanography, meteorology, and astrophysics 
and radio wave propagation modeling. Refraction is defined as an effect which 
changes the direction of a ray in a spatially coherent manner, such as seen in Figures 
25 and 26 and in other devices such as a lens for an optical wave. Scattering is defined 
as an effect where the ray tends to be redirected in multiple directions in a spatially 
incoherent manner. In the non-virtual world, the physics which cause diffraction 
and scattering are often the same and it is very difficult to prove the precise nature 
of wave propagation in inhomogeneous media. However, from a wave processing 
perspective, we can say that modeling these effects with a wavenumber filter which 
“leaks” incoherent wave energy is a reasonable way to including the effects of ran- 
dom diffraction and scattering for inhomogeneous wave propagation modeling. 

Numerical considerations of the Green’s function parabolic equation are 
extremely important because the wave “step marching” approach carries a signifi- 
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cant danger of numerical error accumulation. One of our initial assumptions was 
that the wave propagation is largely in the horizontal r-direction. With the point 
source near the left boundary in Figures 25-27, this means that the results in 
the upper left corner of the figures are likely in error due to the steep angle of 
the waves relative to the horizontal step direction. The assumption that the 
variations in wave speed are small compared to the mean wave speed are generally 
true, but one should certainly check to see if the square-root approximation in 
Eq. ( 12.4.10) is reasonable. 

Another numerical consideration is the wave amplitude along the horizontal 
boundary, if present in the problem. For undersea acoustic propagation modeling 
the boundary condition at  the sea surface is zero pressure (a pressure release bound- 
ary condition). However, for atmospheric sound propagation the acoustic pressure 
along the boundary is not zero and it is advisable to use a trapezoidal or higher 
order integration to prevent propagation of significant numerical error. At the upper 
elevation of the virtual wave propagation space, an artificial attenuation layer is 
needed to suppress wave “reflections” from the top of the space. Again, in 
underwater propagation one usually has a natural attenuation layer at  the bottom 
sea floor which is usually a gradual mixture of water and sediment which does 
not reflect sound waves well. There are likely analogous electromagnetic boundary 
conditions which also require special handling of numerical error. These extremely 
important aspects of wave propagation are best handled by controlled experiments 
for validat ion. 

12.5 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

The four sections of this Chapter bring together the theoretical and practical aspects 
of processing wavenumber signals as measured coherently by spatial arrays of 
sensors. Section 12.1 presented the derivation of the Cramer-Rao lower bound 
for error on statistical parameter estimates. We then used these results to analyze 
the precision of wave bearing angle estimates both as a direct phase measurement 
and as a beamformed result in Section 12.2. A new physics-based approach to 
describing array beam forming is seen using 2-dimensional wavenumber transforms 
of the array shape and then applying a wavenumber contour directly to the 
wavenumber spectrum to determine the array response. The interesting aspect of 
this presentation is that one can directly observe the beam response over a wide 
range of frequencies and steering angles in a single graph. Section 12.3 carries 
beamforming further to the problem of field reconstruction using wave field 
holography, a scanning array of sensors, and a wavenumber domain Green’s 
function. By proper inversion of this Green’s function, one can reconstruct the field 
in a plane in the region between the source(s) and the sensor array. This is useful 
for identifying wave sources and direct observations of the wave radiating 
mechanisms. Section 12.4 applies the wavenumber domain Green’s function to 
model the propagation of waves in the direction away from the sources and sensor 
array surface. Wave propagation modeling has obvious value for many currently 
pra c t ica 1 a p p 1icat ions. 

Fundamentally, measurements of spatial waves are all based on one’s ability to 
observe spatially the time-of-arrival or phase at a given frequency. These types of 
measurements all have some SNR limitation which can be objectively determined. 
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As one then computes a physical quantity such as bearing, or beam output at a given 
look direction, the confidence of the time-of-arrival or phase is scaled according to 
the SNR enhancement of the array, array shape, and look direction. When the array 
beam is focused in a near range, rather than infinity (for plane waves from a distance 
source) one can apply the same principles to determine source localization error, or 
resolution of the holographic process. For the analytical Green’s function, this res- 
olution is mainly a function of array aperture and distance between the measurement 
plane and the reconstruction plane. However, simply increasing the number of 
scanning elements does not improve long distance resolution but rather improves 
resolution in the region close to the measurement array. Increasing sensor array 
aperture generally improves source localization accuracy at long distances for 
the same reason that i t  also narrows beam width for a plane wave beamforming 
array. Clearly, one can see from Chapter 12 a consistent framework for 
wavenumber-based measurements and processing in sensor systems. Since these 
measurements are ultimately used in an “intelligent” decision process, the associated 
statistical confidences are of as much importance as the measurement data itself to 
insure proper weighting of the various pieces of information used. What makes 
a sensor system output “intelligent” can be defined as the capability for high degrees 
of flexibility and adaptivity in the automated decision algorithms. 

PROBLEMS 

1 .  A noisy dc signal is measured to obtain the mean dc value and the rms value 
of the noise. The variance is assumed to be 100 mv2 or 10 mv rms. How 
many samples of the voltage would be needed to be sure that the calculated 
dc voltage mean has a variance less than 1 mv’? 

2. A 5 m line array of 24 sensors is used to estimate the arrival angle of a 500 
Hz sinusoid in air. Assuming the speed of sound is 345 misec and all 
sensors are used to estimate the bearing (assumed to be near broadside), 
what is the rms bearing error in degrees for one data snapshot? 

3. A circular array 2 m in diameter has 16 equally-spaced sensors in water 
( c =  1500 m/c)  
(a) What is the highest frequency one can estimate bearings for? 
(b) Define an orientation and calculate the relative phases at  1 kHz for a 

bearing angle of 9 0 .  
4. Using the array in problem 3b, how many sources can be resolved at the 

same frequency? 
5.  What is the resolution beamwidth (assume - 3 dB responses of the beam 

determine beamwidth) in degrees at  2 kHz, 1 kHz and 200 Hz for the arrays 
in problems 2 and 3? 

6. An air conditioner is scanned by a line array of seven microphones where 
one microphone is held at  a constant position as a reference field sensor 
to obtain an 8 x 8 grid of magnitude and phases at 120 Hz covering a 
2 m by 2 m area. What is the spatial resolution of the holography system‘? 

7. A survivor in a lifeboat has an air horn which is 100 dB a t  1 m and 2 kHz. 
There are foggy (downward refracting conditions) such that there is 
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spherical wave spreading for the first 1000 m, then circular spreading of the 
wave in the duct just above the water. If the background noise ashore is 40 
dB, how far out to sea can the horn be heard by a rescuer? 
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Adaptive Beamforming 

Adaptive beamforming is used to optimize the signal-to-noise ratio (SNR) in the 
look direction by carefully steering nulls in the beampattern towards the direction( s )  
of interference sources. From a physical point-of-view, one should be clear in under- 
standing that at  any given frequency the beamwidth and SNR for spatially inco- 
herent noise (random noise waves from all directions) is dictated by physics, not 
signal processing algorithm. The larger the array the greater the SNR enhancement 
will be in the look direction provided all array elements are spaced less than a 
half-wavelength. The more array elements one has, the wider the temporal frequency 
bandwidth will be where wavenumbers can be uniquely specified without spatial 
aliasing. However, when multiple sources are radiating the same temporal frequency 
from multiple directions, i t  is highly desirable to resolve the sources and directions as 
well as provide a means to recover the individual source wavenumber amplitudes. 
Examples where multiple wavenumbers need to be resolved can be seen in sonar 
when large boundary is causing interfering reflections, in radio communications 
where an antenna array might be adapted to control multipath signal cancellation, 
and in structural acoustics where modes of vibration could be isolated by appro- 
priate processing of accelerometer data. 

Beamforming can be done on broadband as well as narrowband signals. The 
spatial cross correlation between array sensors is the source of directional 
(wavenumber) information, so it makes no physical difference whether the 
time-domain waveform is broadband (having many frequencies) or narrowband 
(such as a dominant sinusoid). However, from a signal processing point-of-view, 
narrowband signals are problematic because the spatial cross correlation functions 
are also sinusoidal. For broadband signals, the spatial cross correlation functions 
will yield a Dirac delta functions representing the time difference of arrivals across 
the sensor array. A narrowband spatial cross correlation is a phase-shifted 
wavenumber, where multiple arrival angles correspond to a sum of wavenumbers, 
or modes. This is why an eigenvalue solution is so straightforward. However, 
the sources radiating the narrowband frequency which arrive at the sensor array 
from multiple directions must be independent in phase for the spatial cross corre- 
lation to be unique. From a physical point-of-view, source independence is plausible 

407 
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for say, acoustics where the two sources are vehicles which coincidentally happen to 
have the same temporal frequency for a period of time. This might also be physically 
true for multipath propagation from a single source where the path lengths are ran- 
domly fluctuating. But, for vibration source multipath in a mechanical structure, 
or radio transmission multipath from reflections off of buildings, the multipath 
is cohertwf, meaning that the phases of the wave arrivals from different directions 
are not statistically independent. Thus, the coherent multipath situation gives sensor 
spatial cross correlations which depend on the phases of the wave arrivals. and thus, 
does not allow adaptive beamforming in the traditional sense. 

We present adaptive beamforming using two distinct techniques which parallel 
the two adaptive filtering techniques (block least squares and projection-based 
least-squared error). The block technique is used in Section 13.I to create a spatial 
whitening filter where an FIR filter is used to predict the signal output of one of 
the array sensors from the weighted sum of the other array sensors. The wavenuniber 
response of the resulting spatial FIR whitening filter for the array will have nulls 
corresponding to the directions of arrival of any spatially coherent source. By relat-
ing the wavenumber of a null to a direction-of-arrival through the geometry of 
the array and the wave speed, a useful multipath measurement tool is made. If 
the sources and background noise are all broadband, such as Gaussian noise, 
the null-forming and direction-of-arrival problem is actually significantly easier 
to calculate numerically. This is because the covariance and cross-correlation 
matrices are better conditioned. When the sources are narrowband, calculation 
of the covariance and cross-correlation matrices can be problematic due to the 
unknown phases and amplitudes of the individual sources. This difficulty is over- 
come by compiling a random set of data “snapshots” in the estimation of the 
covariance and cross-correlation matrices. This reduces the likelihood that the 
phases of the individual sources will present a bias to the covariance and 
cross-correlation matrices, which should be measuring the amplitude phase due 
to the spatial interference, not the relative phases and amplitudes of the sources. 

To be able to construct a beam for a desired look direction while also nulling 
any sources in other directions, we need to process the cigenvectors of the 
covariance matrix as seen in Section 13.2. This parallels the projection operator 
approach in Section 8.2 for calculating the least-squared error linear predictor. 
The covariance matrix has a Toeplitz structure, meaning that all the diagonals have 
the same number in each element. This numerical structure leads to a unique physi- 
cal interpretation of the array signal covariance eigenvectors and eigenvalues. 
Assuming the signals from the sources in question have a reasonably high SNR 
(say 10 or better) the solved eigenvalues can be separated into a ”signal subspace” 
and ii “noise subspace“, where the largest eigenvalues represent the signals. Each 
eigenvector represents an array FIR filter with a wavenuniber response urith nulls 
for all source locations except the one corresponding to itself. The “noise 
eigenvectors” will all have nulls to the signal source wavenumbers and have 
additional spurious nulls in their wavenumber responses if there are fewer than 
it1 - 1 sources for a M-element array. To obtain the whitening filter result one 
can simply add all the noise eigenvectors, each of which has the nulls to the sources. 
To obtain a beam in the desired look direction with nulls to all the other “interfering 
sources” one simply post-multiplies the inverse of the covariance matrix b j  the 
desired steering vector! This very elegant result is known iis a minimum Lrariance 
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beamformer because it  minimizes the background noise for the desired look 
direction. 

We present another technique in Section 13.3 which is highly useful when one 
can control the transmitted signal such as in active radar/sonar and in 
communications. By encoding the phase of the signal with a random periodic 
sequence, one can uniquely define all the wavenumbers at  the receiving array whether 
the effect is multisource multipath or propagation multipath. This is one reason why 
spread-spectrum signals are so useful in communication systems. By modulating the 
narrowband signal phase according to a prescribed unique repeating sequence, we 
are effectively spreading the signal energy over a wider bandwidth. A Fourier trans- 
form actually shows a reduced SNR, but this is recoverable at the receiver if one 
knows the phase modulation sequence. By cross-correlating the known signal’s 
unique spread spectrum sequence with the received signal in a matched detection 
filter, the SNR is recovered and the resulting covariance is well-conditioned to 
extract the multipath information. This technique not only allows us to recover 
low SNR signals but also allows us to make multipath propagation measurements 
with an element of precision not available with passive narrowband techniques. 

13.1 ARRAY “NULL-FORMING” 

Fundamental to the traditional approach to adaptive beamforming is the idea of 
exploiting some of the received signal information to improve the SNR of the array 
output in the desired look direction. Generally, this is done by simply steering 
an array “null”, or direction of zero-output response, to a useful direction other 
than the look direction where another “interfering” source can be suppressed from 
the array output to improve SNR (actually signal-to-interference ratio). The array 
SNR gain and look-direction beamwidth are still defined based on the wavelength 
to aperture ratio, but an additional interference rejection can be obtained by 
adaptively “nulling” the array output in the direction of an interfering source. When 
sweeping the look-direction beam around to detect possible target signals, the appli- 
cation of adaptive null-forming allows one to separate the target signals quite 
effectively. However, the spatial cross correlation of the array signals must have 
source independence and no source dependance on background noise for the process 
to work. 

A straightforward example of the issue of source phase independence is given 
to make the physical details as clear as possible. This generally applies to 
narrowband temporal signals (sinusoids) although it is possible that one could have 
coherent broadband sources and apply the narrowband analysis frequency by 
frequency. Generally speaking, incoherent broadband sources such as multiple 
fluid-jet acoustic sources or electric arc radio-frequency electromagnetic sources will 
have both temporal and spatial correlation function approximating a Dirac delta 
function. For the narrowband case, consider two distant sources widely separated 
which radiate the same frequency to a sensor at the origin from two directions 
O 1  and 6’) (measured counter clockwise from the horizontal positive x-axis) with 
received amplitudes A I  and A2 and phases 41 and 4 2 .  

(1  3.1 . I )  
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If we have a line array of sensors along the positive x-axis each at  location s= ci, we 
can write the received signals from the two sources relative to the X o  in terms of a 
simple phase-shift. 

( 1  3.1.2) 

Clearly, an arrival angle of 90 degrees has the wavefront arriving simultaneously at  
all sensors from the broadside direction. The spatial cross correlation between 
X ,  and an arbitrary sensor out of the line array X ,  is defined as 

Note that the spatial cross correlation is a function of the amplitudes and 
phases of the two sources! This means that the spatial information for the two arrival 
angles and amplitudes is not recoverable unless one already knows the amplitude and 
phases of the two narrowband sources. However, if the sources are statistically 
independent, the phase difference between them will be a random angle between 
fz.Therefore, given a sampling of "snapshots" of spatial data from the array 
to estimate the expected value in Eq. (13.1.3) one obtains 

since the expected value of a uniformly distributed complex number of unity 
magnitude is zero. The wavenumber response of the spatial cross correlation given 
in Eq. (13.1.4) has the Dirac delta function structure (delta functions at dl cos 0, 
and c f ,  cos U ? )  in the time-space domain as expected of two incoherent broadband 
sources. One can see that the linear combination of two or more sources for each 
spatial cross correlation can be resolved by either linear prediction or by an 
eigenvalue approach without much difficulty so long as there is at  least one more 
sensor than sources. 

In  practice, one has to go to some effort to achieve this phase independence 
between sources. The term "spatially incoherent radiating the same frequency" 
is actually a contradiction. Since the time derivative of phase is frequency one would 
do better to describe the desired situation as having "sources of nearly identical 
frequency processed in a wider frequency band with multiple observations to achieve 
spatial phase independence in the average". For example, if one had two sources 
within about 1 Hz of each other to be resolved spatially using signals from a large 
sensor array with a total record length of a second, one would segregate the record 
into, say, 10 records of 100 msec length each, and then average the 10 available 
snapshots to obtain a low-bias spatial cross correlation for a 10 Hz band containing 
both sources. This is better than trying to resolve the sources in a 1 Hz band from 
a single snapshot because the phases of the sources will present a significant bias 
to the spatial cross correlation for the array. Another alternative (if  the array is 
large enough) would be to divide the array snapshot into a number of "sub-arrays" 
and calculate an ensemble average spatially of each sub-array's cross correlation 
to get an overall cross correlation with any dependence of the source phases 
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suppressed. This technique is known as the spatial smoothing method for dealing 
with coherent signals. It is very valuable for the design to understand the physical 
reason the correlation bias arises for coherent sources in the first place and the tech- 
niques required to suppress this coherence. For the rest of this section and Section 
13.2,we will assume spatially incoherent sources. A better way to depict this assump- 
tion is to assume the sensor system has provided the additional algorithms necessary 
to insure incoherent sources in the covariance matrix data. 

Consider the spatial “whitening” filter in Figure 1 which uses a weighted linear 
combination of the signals from sensors 1 through M to “predict” the signal from 
sensor 0. The filter coefficients (or weights in the linear combiner) are determined 
by minimizing the prediction error. Over N time snapshots, the prediction error 
is simply 

X3,l . . .  

x3,t- I . . .  

x3.1-2 . . .  

. . .  

I . .-x2,I -N +1 

(13.1.5) 

where our array signals could be either broadband real time data or complex 
narrowband FFT bin values for a particular frequency of interest. For the 

Array Elements 

Array Weights 

Linear Prediction Error 

Figure 1 A spatial linear prediction filter can be used to determine the wavenumbers cor-
responding to the arrival angles of spatially incoherent source signals. 
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narrowband frequency-domain case, the coefficients are all complex. The relation- 
ship between these coefficients and the wavenumbers and physical arrivals angles 
of interest will be discussed momentarily. Equation (13.1.5) can be written com- 
pactly in matrix form as 

-
C = So - X H  ( 1  3. I .6) 

Recalling from Section 8. I ,  the block least-squared error solution for the coefficients 
is simply 

( 1  3.1.7) 

Applying the well-known least-squared error result in Eq. ( 13.1.7) to the spatial 
whitening problem can be seen by writing the array output as the spatial prediction 
error in one row of Eq. (13.1.6). 

( 1  3.1.8) 

Note that for the narrowband case, the r subscripts in Eq. (13.1.8) can refer to the 
complex value of an FFT bin at time t without any loss of generality. The array 
output can be written as the output of a spatial FIR filter. 

( 13.1.9) 

The spatial whitening FIR filter A ( z )can now be evaluated as a function of a complex 
variable z (,- /kclt,tl (' where dtIlIis the s-coordinate of the riith sensor in the line 
array, k is the wavenumber, and 0 is the direction of interest. This has an analogy 
in the frequency response being evaluated on the unit circle on the :-plane defined 
by z = c / ' ~ ' ~ .However, while it was convenient to write A ( : )  as a polynomial with 
integer powers of z when the time-domain signal samples are evenly spaced. 

But, for our implementation of a spatial FIR filter, the sensors are not necess- 
arily evenly spaced. The wavenumber response of our spatial whitening FIR filter 
is found by a straightforward Fourier sum using the appropriate wavenumber 
for the array geometry. For the line array, the wavenumber simply scales with 
the cosine of the arrival angle, which is limited to the unique range of 0- I80 degrees 
by symmetry. 

( 1  3.1.10) 

I f  the array is an evenly-spaced line array along the x-axis, the most efficient way to 
get the wavenumber response is to compute a zero-padded FFT where the array 
coefficients are treated as a finite impulse response (see Section 3.1). The digital 
domain wavenumber response from - to +n is first divided by k d  (wavenumber 
times element spacing) and then an inverse cosine is computed to relate the k to 
angle 0. If the array sensors are part of a two-dimensional array and each located 
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at ?i = d,,,,and J?= c/,~,,~the directional response of the spatial whitening filter is simply 

(13.1.1 1) 

where k represents the wavenumber in the S-J~ plane. If the plane wave can arrive 
from any angle in three dimensions and we have a two-dimensional planar sensor 
array, the wavenumber in the x-j* plane scales by k’ =k sin ) I ,  where is the angle 
from the positive z-axis to the ray normal to the plane wavefront and k is the free 
propagation wavenumber for the wave ( k  /c=27r/i). I f  the wave source is on 
the -Y-J~ plane (7  =90 degrees), k’ =k .  For a three-dimensional array and plane wave 
with arrival angles 0 (in the s-ji plane) and 7 (angle from the positive z-axis), the 
directional response of the spatial whitening filter is given in Eq. ( 13.I .  12) where 

is the z-coordinate of the mth sensor in the three-dimensional array and is;! 

the arrival angle component from the positive z-axis. 

The coefficients of A(:)  are found by the least-squares whitening filter independent of 
the array geometry or wavenumber analysis. The spatial whitening filter is simply the 
optimum set of coefficients which predict the signal from one sensor given obser- 
vations from the rest of the array. For the linear evenly-spaced array, one can com- 
pute the roots of the polynomial where the zeros closest to the unit circle 
produce the sharpest nulls, indicating that a distinct wavenumber (wave from a par- 
ticular direction) has passed the array allowing cancellation in the whitening filter 
output. The angle of the polynomial zero on the z-plane is related to the physical 
arrival angle for the line array by the exponent in Eq. ( 1  3. I .  10). In two and three 
dimensions where the array sensors are not evenly-spaced, root-finding is not so 
straightforward and a simple scanning approach is recommended to find the cor- 
responding angles of the nulls. For example, the array response is spatially whitened 
at a particular free wavenumber k corresponding to radian frequency to. The FFT 
bins corresponding to (I) are collected for N snapshots and the spatial whitening 
filter coefficients are computed using Eqs (1 3.1.5)-( 13.1.9). To determine the source 
arrival angles, one evaluates Eq. (13.1.12) for 0 < 8 < 360 degrees and 0 < 2‘ < 180 
degrees, keeping track of the dominant “nulls” in the array output. A 
straightforward way to find the nulls is to evaluate the inverse of the FIR filter 
for strong peaks. This has led to the very misleading term “super resolution array 
processing” since the nulls are very sharp and the inverse produces a graph with 
a sharp peak. But this is only graphics! The array beamwidth is still determined 
by wavelength and aperture and angle measurement is still a function of SNR 
and the Cramer-Rao lower bound. 

To illustrate an example of adaptive “null-forming” Figure 2 shows the result 
of three 100 Hz sources at  20, 80, and 140 degrees bearing with a 10 m 8 element 
line array along the x-axis. The SNR in the 100 Hz FFT bin is 10 dB and the whiten- 
ing coefficients are estimated using 10 snapshots. The bearings of the three 100 Hz 
sources are clearly seen and the relative phases for the three sources are assumed 
uniformly distributed between 0 and 27r for each of the 10 snapshots. With the source 
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Figure 2 Spatial whitening filter directional response for three 10 dB SNR 100 Hz sources 
at bearing angles of 20, 80, and 140 degrees on a 8 element 10 m line array (dB vs. degrees). 

phases distributed over a narrower range for each snapshot, the results are not nearly 
as consistent. One might also think that the higher the SNR, the better the result. But 
this too is not entirely true. Since for an M +  1 element line array one can resolve a 
maximum of M sources, some noise is required so that the M x M matrix inverse 
in Eq. (13.1.7) is well-conditioned. But in low SNR (0 dB or  less), the magnitude 
and phase of the signal peak is not strong enough relative to the random background 
noise to cancel. Using more snapshots improves the whitening filter performance, 
since the background noise is incoherent among snapshots. Finally, the depth of 
the null (or height of the peak if an inverse FIR response is evaluated) is not reliable 
because once the source wavenumber is canceled, the residual signal at  that 
wavenumber is random background noise causing the null depth to fluctuate. 

The spatial resolution for the nulls is amazingly accurate. Figure 3 shows the 
detection of two sources only 2 degrees apart. However, when one considers the 
Cramer-Rao lower bound (Section 12.1) for a 10 m array with 8 elements, 10 
dB SNR, and 10 snapshots, the bearing accuracy should be quite good. In practical 
implementations, the bearing accuracy is limited by more complicated physics, such 
as wave scattering from the array structure, coherent phase between sources, 
and even coherent background noise from wave turbulence or environmental noise. 

13.2 EIGENVECTOR METHODS OF MUSIC AND MVDR 

One can consider the wavenumber traces from multiple sources arriving at an array 
of sensors from different angles at the same temporal frequency as a sum of modes, 
or eigenvectors. In this section we explore the general eigenvector approach to 
resolving multiple (independent phase) sources. Two very popular algorithms for 
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Figure 3 Whitening filter response with 10 dB SNR, 10 snapshots, and three 100 Hz 
sources at 20, 138, and 140 degrees bearing for the 10 m 8 element array (dB vs. degrees). 

adaptive beamforming are MUSIC (Multiple SIgnal Classification) and MVDR 
(Minimum Variance Distortionless Response). A simple example of the physical 
problem addressed by adaptive beamforming is a line array of evenly-spaced sensors 
where the arriving plane waves are measured by the magnitude and phase of each 
array sensor output for temporal FFT bin for the frequency of interest. If a plane 
wave from one distant source in a direction normal to the array (broadside) line 
is detected, the magnitude and phase observed from the array sensors should be 
identical. From a practical but very important standpoint, this assumes the sensors 
are calibrated in magnitude and phase and that no additional phase difference 
between sensor channels exists from a shared analog-to-digital convertor. The 
spatially constant magnitude and phase can be seen as a wavenumber at  or near 
zero (wavelength infinite). But, if the array is rotated so that the propagation direc- 
tion is along the line array axis (endfire), the wavenumber trace observed by the 
array matches the free wavenumber for the wave as it propagates from the source. 
Therefore, we can say in general for a line array of sensors that the observed 
wavenumber trace k’=kcosO, where k is the free wavenumber and 8 is the angle 
of arrival for the wave relative to the line array axis. Figure 4 shows the spatial 
phase response for a 150 Hz plane wave arriving from 90 degrees (broadside), 
60 degrees, and 0 degrees (endfire). 

Even though multiple sources may be radiating the same temporal frequency, 
the wavenumber traces observed by the sensor array will be different depending 
on the angle of arrival for each source. From a spatial signal point-of-view, the 
multiple sources are actually producing different wavenumber traces across the 
array, which are observed as different wavelength traces. Therefore, the spatial 
response of the array can be seen as a sum of eigenvectors representing the mode 
“shapes” and corresponding eigenvalues representing the spatial frequency of 
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Figure 4 Complex spatial response of a 150 Hz plane wave in air ( c  = 345 mlsec) for 
broadside (top), 60 degrees bearing (middle), and endfire (bottom) directions. 

the corresponding wavenumber trace observed by the array. Figure 5 shows the 
spatial complex response for the case where all three plane waves in Figure 4 
are active simultaneously. Both the magnitude and phase are distorted by the com- 
bination of waves. This distortion changes over time as a result of the phase dif- 
ferences between the multiple sources as described in Eq. (13.1.3) for the spatial 
cross-correlation. Clearly, the complexity of the mixed waves is a challenge to 
decompose. However, if we assume either time or  spatial averaging (moving the 
array in space while taking snapshots) where the multiple source bearings remain 
nearly constant, the covariance matrix of the received complex array sensor signals 
for a given FFT bin will represent the spatial signal correlations and not the indi- 
vidual source phase interference. Equation ( 1  3.2.1) depicts the covariance of the 
array signals. 
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Figure 5 Complex spatial response of the multipath interference caused by three (equal 
amplitude and phase at sensor I )  150 Hz plane waves arriving at broadside, 60 degrees 
and endfire directions. 

Note that xi,,could be either a broadband time domain signal where the N time 
snapshots happen at  the sampling frequency, or a narrowband FFT bin where the N 
snapshots correspond to N overlapped FFT blocks of time data. As suggested 
earlier, the N snapshots could also be accomplished by either moving the array 
around or by sampling “sub-arrays” from a much larger array. The snapshot 
averaging process is essential for the covariance matrix to represent the spatial array 
response properly. Note also that the covariance matrix in Eq. (1 3.2.1) is M + 1 rows 
by M +  1 columns for our M +  1 sensor array. For the nullforming case using a 
spatial whitening filter in Section 13.1, the inverted covariance matrix in Eq. ( 1  3.1.7) 
was M rows by M columns. In both cases, the covariance matrix has a Toeplitz 
structure, meaning that all elements on a given diagonal (from upper left to lower 
right) are the same. This structure is not necessary for matrix inversion, but does 
indicate that the matrix is well-conditioned for inversion so long as RA on the main 
diagonal is non-zero. If there is any residual noise in the signals the main diagonal 
is always non-zero. Given that the inverse exists (the matrix is full rank), one 
can solve for the eigenvalues (which correspond approximately to the signal “power 
levels” for each mode), and eigenvectors (which approximately correspond to the 
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mode shape for each mode). One can think of each eigenvector as an array 
beamsteering weight vector which, when multiplied by the array outputs and 
summed as a vector dot product, gives an array spatial response (beampattern) with 
the look direction aligned to the corresponding source direction. The corresponding 
eigenvalue represents the approximate signal power times the number of array 
elements and snapshots. 

However, both of these physical claims are in practice affected negatively by a 
low SNR or phase coherence of the sources. “Incoherent sources radiating the same 
narrowband frequency” is physically impossible unless the “narrowband” frequency 
is really drifting around in the band randomly. Narrowband frequency modulation is 
also known as phase modulation (frequency is the time derivative of phase) because 
very small changes in frequency are seen as phase shifts in the time waveform. 
Therefore, if the sources or receiving array are moving, or if the sources are 
physically independent (such as separate vehicles), its not a bad assumption to 
assume source independence after N snapshots so long as the narrowband bandwidth 
is not too narrow. In fact, the broader the frequency bandwidth for the covariance 
matrix, the shorter the required time will be to observe a snapshot, and the faster 
one will be able to compile a number of snapshots to insure source independence. 

Perhaps the single most useful feature of using an eigenvalue approach for 
adaptive beamforming is that the eigenvectors are orthonornd. The dot product 
of an eigenvector with itself gives unity and that the dot product of any two different 
eigenvectors is zero. Physically, this means that the spatial response of each 
eigenvector will have a main lobe in the corresponding source look direction 
and zeros in the directions of other sources (in theory), or in practice, a response 
that sums to near zero for other source directions. This is exactly the desired result 
for adaptive beamforming where one optimizes array performance by getting array 
SNR gain in the look direction while suppressing sources from other directions. 
The classic phased-array beam steering of Section 13.1 also provides SNR gain 
in the look direction of the main lobe, but beam response in the direction of other 
sources may not be zero leading to interference in the beamformer output. 

Assuming the number of sensors is greater than the number of phase- 
independent sources (this intuitively implies a solution since there are more 
equations than unknowns), and each eigenvector and eigenvalue correspond to a 
source, what do  the “extra” eigenvectors and eigenvalues correspond to? The extra 
eigenvector and eigenvalues will correspond to “spurious” sources which appear 
in the background noise. There will be some amount of spatially independent noise 
on each sensor output from electronic noise, turbulence (acoustic arrays), and even 
the least significant bit of the analog-to-digital conversion. This spatially indepen- 
dent noise can be seen as created by an infinite number of sources, so there is 
no way for the eigenvector approach to resolve them. The “noise eigenvectors” each 
have a look direction which is random, but will have a zero beam response in the 
directions of the real signal sources. This is a very nice property because if one sums 
all the noise eigenvectors, one is left with a beamresponse where the only nulls 
are in the real source directions, just like the nullforming spatial whitening filter 
of Section 13.1. This technique is called MUSIC (Multiple SIgnal Classification). 
One can then, as in the spatial whitening filter nullforming case, evaluate the sharp 
nulls in the beam response for the sum of the noise eigenvectors to determine 
the directions of arrival of the sources. Subsequently, the optimal beam to look 
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in a given direction while nulling all other sources is computed from the covariance 
matrix in the MVDR algorithm. To have a beam look in the direction of one physical 
signal source while nulling the other sources, one would use the corresponding 
eigenvector for the source of interest, or one could synthesize a steering vector based 
on knowledge of the source directions. 

The general eigenvalue problem is defined by the solution of the following 
equation. 

-
Rv,= IT;& i = 0, 1, . . . ,M (1 3.2.2) 

where v, is a column eigenvector and Ri is the corresponding scalar eigenvalue. The 
problem is taught universally in all engineering and science undergraduate curricula 
because it provides an elegant numerical technique for inverting a matrix, an essen- 
tial task for matrix linear algebra. From an algorithm point-of-view, Eq. (13.2.2) 
has three parameters and only one known. However, the structure of the 
eigenvectors is constrained to be orthonormal as depicted in Eq. (13.2.3) and each 
of the eigenvalues is constrained to be a scalar. 

(1 3.2.3) 

We can write Eq. (13.2.2) for all the eigenvectors and eigenvalues 

(13.2.4) 

and the diagonal matrix of eigenvalues A is defined as 

(1 3.2.5) 

Note that A H A= I ,  which allows A - ’ =A H .The superscript “H’means Hermitian 
transpose where the elements are conjugated (imaginary part has sign changed) 
during the matrix transpose. We also refer to a Hermitian matrix as one which 
is conjugate symmetric. 

We are left with the task of finding the eigenvectors in the columns of the 
matrix A defined in Eq. (13.2.4). This operation is done by “diagonalizing” the 
covariance matrix. 

A H R A= A H A A= A since A H A= I (13.2.6) 

The matrix A which diagonalizes the covariance matrix can be found using a 
number of popular numerical methods. If the covariance is real and symmetric 
one simple sure-fire technique is the Jacobi Transformation method (1). This is also 
known in some texts as a Givens rotation. The rotation matrix A; ,  is an identity 
matrix where the zero in the kth row and /th column is replaced with sine, /th 
row and kth column with -sinQ, and the ones on the main diagonal in the kth 
and Ith rows are replaced with c o d .  Pre and post multiplication of a (real symmetric) 
covariance matrix by the rotation matrix has the effect of zeroing the off-diagonal 
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elements in the ( k J ) and ( I ,k) positions when 8 is chosen to satisfy 

( 1  3.2.7) 

I f  the covariance matrix is 2-row, 2-column, the angle 0 can be seen as a counter- 
clockwise rotation of the coordinate axis to be aligned with the major and minor 
axis of an ellipse (a circle if R I l  = R 2 2  requires no rotation). The rotation also 
has the effect of increasing the corresponding main diagonal elements such that 
the norm (or trace) of the matrix stays the same. The residual covariance with 
the zeroed off-diagonal elements from the first Jacobi rotation is then pre and 
postmultiplied by another rotator matrix to zero another pair of off-diagonal 
elements, and so on, until all the off-diagonal elements are numerically near zero. 
The eigenvector matrix A is simply the product of all the Jacobi rotation matrices 
and the eigenvalue matrix in Eq. (13.2.5) is the diagonalized covariance matrix. 

How can Jacobi transformations be applied to complex matrices? Suppose our 
covariance matrix is not composed of the broadband spatial cross correlation among 
element signals in the time domain, but rather the narrowband spatial cross corre- 
lation among the elements using a narrowband FFT bin complex signal (averaged 
over N snapshots of course). The covariance matrix is Hermitian (conjugate sym- 
metric) and can be written in the form 

( 1  3.2.8) 

where the real part is symmetric and the imaginary part is skew-symmetric 
(corresponding off-diagonals have same magnitude but opposite sign). The complex 
eigenvalue problem is constructed as a larger dimension real eigenvalue problem. 

( 13.2.9) 

The eigenvalues for the matrix in Eq. (13.2.9) are found in M +  1 pairs of real and 
imaginary components. For large matrices, there are a number of generalized 
eigenvalue algorithms with much greater efficiency and robustness. This is particu- 
larly of interest when the matrix is ill-conditioned. A good measure of effectiveness 
to see if the eigenvector/eigenvalue solution is robust is to simply compute the 
covariance matrix inverse and multiply it  by the original covariance matrix to 
see how close the result comes to the identity matrix. The covariance matrix inverse 
is found trivially from the eigenvalue solution. 

There are also a number of highly efficient numerical algorithms for matrix 
inversion based on other approaches than the generalized eigenvalue problem. 
One of the more sophisticated techniques has already been presented in Section 
9.4 of this book. Recall Eq. (9.4.31) relating the backward prediction coefficients 
and backward error covariance to the inverse of the signal covariance matrix Ri,. 

[RX,,]-' = LH[R',] - L (132.1I )  
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where L is a lower triangular matrix of backward predictors defined by Eq. (9.4.30) 
and Eq. ( 1  3.2.12) below and RLl is a diagonal matrix of the orthogonal backward 
prediction error variances. 

1 0m t 1  

1 0 

r.\1 - I I1: l = I 
Y M , 
""t ,  

( 1  3.2.12) 

Note that L H is upper triangular and L is lower triangular. If the elements of L 
and L Hare appropriately normalized by the square-root of the corresponding back- 
ward prediction error variance, the expression in Eq. ( 1  3.2.1 1 )  can be written as an 
L U  Choksk?~Juctorizution, often used to define the square-root of a matrix. 
However, the L matrix in Eq. (13.2.12) differs significantly from the eigenvector 
matrix. While the backward predictors are orthogonal, they are not 01 thonornial. 
Also, the backward prediction error variance are not the eigenvectors of the signal. 
The eigenvector matrix and eigenvalue diagonal matrix can however be recovered 
from the Cholesky factorization, but the required substitutions are too tedious 
for presentation here. 

Getting back to the physical problem at hand of optimizing the beam response 
for an array of sensors to separate the signals from several sources, we can again 
consider a line array of 8 equally-spaced sensors and plane waves from several dis- 
tant sources. Our example has a single 100 Hz plane wave arriving at 90 degrees 
bearing. For simplicity, we'll consider a high SNR case, acoustic propagation in 
air ( c= 343 m/sec), and an array spacing of 1.25 m (spatial aliasing occurs for fre- 
quencies above 137 Hz). A particular eigenvector is analyzed by a zero-padded 
FFT where the resulting digital spatial (wavenumber) frequency covers the range 
- 7 r ~ n i+ 7r. To relate this digital spatial angle to a physical bearing angle it 
can be seen that + = ~ C / C O S  U ,  where 8 is the physical bearing angle. For unevenly 
spaced arrays, there is not such a direct mapping between the physical bearing angle 
and the digital spatial frequency. For random arrays, one uses the uneven Fourier 
transform (an FFT is not possible for uneven spaced samples) of Section 5.5 to evalu- 
ate the beam response wavenumber spectrum, but then uses an average spacing d' to 
relate the digital and physical angles. This is analogous to relating the digital fre- 
quency in the uneven Fourier transform to a physical frequency in Hz by using 
the average sample rate. 

Figure 6 shows the eigenvector beam response calculated by simply 
zero-padding the eigenvector complex values to 1024 points and executing an FFT. 
The physical angle on the x-axis is recovered by dividing the digital frequency 
by kd and taking its inverse cosine. Obviously, 8=cos - I (7rlkd) is not a linear func- 
tion so relating the digital and physical bearing angles requires careful consideration 
even for evenly-spaced arrays. A total of 500 independent snapshots are used where 
the signal level is 3 and the noise standard deviation is 1 x 10-4. The calculated 
eigenvalue for the signal is divided by the number of snapshots times the number 
of array elements (500 times 8 or 4000) to  give a normalized value of 9.000006, 
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Eigenvalue is 9.000006 
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Figure 6 The signal eigenvector beam response corresponding to a 100 Hz sinusoidal plane 
wave of amplitude 3 at 90 degrees bearing in a low Gaussian background noise of 0.0001 
standard deviation (dB vs. degrees). 

or the signal amplitude-squared. For fewer snapshots and lower SNR there is less 
precision in this calculation. The normalized noise eigenvalues are all on the order 
of 1 x 10- or smaller. Clearly, one can simply examine the eigenvalues and separate 
them into “signul eigenvalues” and “noise eigenvalues”, each with respective 
eigenvectors. There are some algorithms such as the Akaike Information Criterion 
(AIC)and Minimum description Length (MDL) which can help identify the division 
into the subspaces (2) when SNR is low or an eigenvalue threshold is difficult to 
automatically set or adapt in an algorithm. 

[VOVI  * * * 1.’,I.I]= A s  + AN = [vs, vs2 * . * vs,,,Ii”, 1.”> . * V N J  ( 1  3.2.13) 

The eigenvectors \is,, i = 1, 2, ..., N ,  define what is called the signul suhspacc. A s  
while vN,, j =  1,  2,  ..., Nn define the noise subspace A N  spanned by the covariance 
matrix where N n  + N s  =A4 + 1, the number of elements in the array. Since the 
eigenvectors are orthonormal, the eigenvector beam response will have its main lobe 
aligned with the physical angle of arrival of the corresponding signal source (whether 
it be a real physical source or a spurious noise source) and nulls in the directions of all 
other corresponding eigenvector sources. If an eigenvector is part of the noise 
subspace, the associated source is not physical but rather “spurious” as the result 
of the algorithm trying to fit the eigenvector to independent noise across the array. 
Figure 7 shows the 7 noise eigenvector beam responses for out single physical source 
case. The noise eigenvectors all have the same ntdl(s)  ussociuteci Lrqith the signal 
eigenvector(s). Therefore, if one simply averages the noise eigenvectors the spurious 
nulls will be filled in while the signal null(s) will remain. This is the idea behind the 
MUSIC algorithm. Figure 8 shows the beam response of the music vector and 
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Figure 7 Beam responses of the remaining 7 “noise” eigenvectors which correspond to 
eigenvectors which correspond to eigenvalues on the order of 1 x 10-8 showing a common 
null at the source arrival angle of 90 degrees (dB vs. degrees). 
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Figure 8 Beam response of the MUSIC vector found by averaging all the noise 
eigenvectors clearly showing the strong common null associated with a single signal angle 
of arrival of 90 degrees. (dB vs. degrees). 
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Eq. ( 1  3.2.14) shows the MUSIC vector calculation. 

( 13.2.14) 

Consider the case of three physical sources radiating plane waves of amplitudes 
2, 3, and 1 ,  at the array from the angles 45, 90, and 135 degrees, respectively, in the 
same low SNR of 1 x 10-4 standard deviation background noise. Figure 9 shows 
the eigenvector beam responses for the three signals. The normalized eigenvalues 
are 9.2026, 3.8384, and 0.9737 corresponding to the arrival angles 90, 45, and 
135 degrees as seen in Figure 9 Most eigenvalue algorithms sort the eigenvalues 
and corresponding eigenvectors based on amplitude. The reason the eigenvalues 
don't work out to be exactly the square of the corresponding signal amplitudes 
is that there is still some residual spatial correlation, even though 500 independent 
snapshots are in the covariance simulation. It can be seen that the sum of the signal 
eigenvalues (normalized by the number of array elements times the number of 
snapshots, or 8 x 500=4000) is 14.0147 which is quite close to the expected 14. 
One should also note that the signal eigenvector responses do not show sharp nulls 
in the directions of the other sources due to the limited observed independence 
of the sources. It can be seen that for practical implementations, the signal 
eigenvectors are only approximately orthonormal. I t  is very important for the user 
of MUSIC and all eigenvector methods to understand the issue of source 
independence. The whole approach simply fails when the plane waves all have 
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Figure 9 The three signal eigenvector beam responses for 100 Hz plane waves of amplitude 
2, 3. and I ,  and arrival angles of 45, 90, and 135 degrees, respectively (dB vs. degrees). 
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the same phase phase with respect to each other. Such is the case when multiple 
arrivals are from coherent reflections of wave from a single source mixing with 
the direct wave. Figure 10 shows the MUSIC vector beam response which clearly 
shows the presence of three sources at  45, 90, and 135 degrees. 

If one wanted to observe source 1 while suppressing sources 2 and 3 with nulls, 
simply using the source 1 eigenvector, vs l ,  would provide the optimal adaptive beam 
pattern if the source signals were completely independent. To steer an optimal adapt- 
ive beam to some other direction 8’we can use the inverse of the covariance matrix to 
place a normalized (to 0 dB gain) in the direction 0’ while also keeping the sharp nulls 
of the MUSIC response beam. This is called a Minimum variance Distortionless 
Response (MVDR) adaptive beam pattern. The term “minimum variance” describes 
the maintaining of the sharp MUSIC nulls while “distortionless response” describes 
the normalization of the beam to unity gain in the look direction. The normalization 
does not affect SNR, it  just lowers the beam gain in all directions to allow 
look-direction unity gain. If  the delay-sum, or Bartlett beam, steering vector is 
defined as 

( 1 32 .15 )  

where Cii i =  1,2, ... ,M is the coordinate along the line array and “H” denotes 
Hermitian transpose (the exponents are positive in the column vector), the MVDR 
steering vector is defined as 

( 13.2.16) 
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Figure 10 MUSIC beam response for the three 100 Hz plane waves at 45, 90. and 135 
degrees (dB  vs. degrees). 
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Note that the denominator of Eq. (13.2.16) is a scalar which normalizes the beam 
response to unity (0 dB gain) in the look direction. Even more fascinating is a com- 
parison of the MVDR steering vector to the Kalman gain in the recursive least 
squares (RLS) algorithm summarized in Table 9.1. In this comparison, our 
“Bartlett” steering vector S(0’) corresponds to the RLS basis function and the 
MVDR steering vector represents the “optimal adaptive gain update” to the model, 
which is our array output. There is also a comparison the projection operator update 
in Eq. (8.2.7) which is similar in mathematical structure. Figure 11 compares the 
Bartlett and MVDR responses for a steering angle of 112.5 degrees and our three 
sources at  45, 90, and 135 degrees. The MVDR beam effectively “blinds” the array 
to these signals while looking in the direction of 112.5 degrees. Note that the Bartlett 
beam response has a gain of 8 (+18 dBv) in the look direction from the 8 sensor 
elements of the linear array. 

MVDR beamforming is great for suppressing interference from strong sources 
when beam steering to directions other than these sources. If one attempts an 
MVDR beam in the same direction as one of the sharp nulls in the MUSIC beam 
response, the algorithm breaks down due to an indeterminant condition in Eq. 
( 13.2.16). Using the eigenvector corresponding to the signal look direction is theor- 
etically the optimal choice, but in practice some intra-source coherence is observed 
(even if its only from a limited number of snapshots) making the nulls in the direct- 
ions of the other sources weak. However, from the music response, we know the 
angles of the sources of interest. Why not manipulate the MVDR vector directly 
to synthesize the desired beam response? 
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Figure 11 Comparison of the MVDR beam response to ii delay-sum type, or Bartlett, 
beam response for a steering angle of 112.5 degrees showing the MVDR beam maintaining 
nulls in the source directions (dB vs. degrees). 
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Like any FIR filter, the coefficients can be handled as coefficients of a poly- 
nomial in z where z = e  ik‘’cOsi’ . For an evenly spaced linear array, the delay-sum 
or Bartlett steering vector seen in Eq. (13.2.5) can be written as S ( z )=[1 z - ’ z - z -
... -M ] f i  where = /kdcoSl). For a non-evenly-spaced array we can still treat the 
steering vector as an integer-order polynomial, but the interpretation of the physical 
angles from the digital angles is more difficult. This is not a problem because our plan 
is to identify the zeros of the MVDR steering vector associated with the signals, and 
then suppress the zero causing the null in the look direction. The resulting beam 
response will have a good (but not optimal) output of the source of interest and 
very high suppression of the other sources. The procedure will be referred to here 
as the “Pseudo Reduced-Order Technique” and is as follows: 

1 .  Solve for the MVDR steering vector. 
2. Solve for the zeros of the MVDR steering vector as if it were a polynomial 

in 2 .  

3. Detect the zeros on or very close to the unit circle on the z-plane. These are 
the ones producing the sharp nulls for the signal directions. The number of 
these zeros equals the number of signal sources detected. 

4. Noting that the polynomial zero angles will range from - n to +n while 
the physical wavenumber phase will range from - k d  to + k d ,  select 
the signal zero corresponding to the desired look direction and suppress 
it  by moving it  to the origin. Move the other spurious zeros further away 
from the unit circle (towards the origin or to some large magnitude). 

5 .  Using the modified zeros calculate the corresponding steering vector by 
generating the polynomial from the new zeros. Repeat for all signal 
directions of interest. 

The above technique can be thought of as similar to a reduced order method, 
but less mathematical in development. The threshold where one designates a zero 
as corresponding to a signal depends on how sharp a null is desired and the cor- 
responding distance from the unit circle. Figure 12 shows the results of the pseudo 
reduced-order technique for the three beams steered to their respective sources. 
While the beams are rather broad, they maintain sharp nulls in the directions of 
the other sources which allows separation of the source signals. The corresponding 
MUSIC beam response using the steering vector modified by the pseudo 
reduced-order technique presented here is free of the spurious nulls because the those 
zeros have been suppressed. 

We can go even farther towards improving the signal beams by making use of 
the suppressed zeros to sharpen the beam width in the look direction. We will refer 
to  this technique as the “Null Synthesis Technique” since we are constructing 
the steering vector from the MVDR signal zeros and placing the remaining available 
zeros around the unit circle judiciously to improve our beam response. The 
usefulness of this is that the available (non signal related) zeros can be used to 
improve the beam response rather than simply be suppressed in the polynomial. 
The null synthesis technique is summarized as follows: 

1. Solve for the MVDR steering vector. 
2. Solve for the zeros of the MVDR steering vector as if it were a polynomial 

in z.  
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Figure 12 The pseudo reduced-order technique presented here cleanly separates the signals 
by suppressing spurious zeros and the MVDR zero associated with the particular signal direc- 
tion (dashed 45 degrees, dotted 90 degrees, and solid 135 degrees-scale is dB vs. degrees). 

Detect the zeros on or  very close to the unit circle on the :-plane. These are 
the ones producing the sharp nulls for the signal directions. The number of 
these zeros equals the number of signal sources detected. 
Distribute the number of remaining available (non signal related) zeros 
plus one around the unit  circle from - n to + n avoiding a double zero 
at n. The extra zero nearest the main lobe will be eliminated to enhance 
the main lobe response. 
For the desired signal look direction and corresponding unit circle angle, 
find the closest zero you placed on the unit circle and eliminate it. Then 
add the zeros for the other source directions. 
Using the synthesized zeros calculate the corresponding steering vector by 
generating the polynomial from the new zeros. Repeat for all signal 
directions of interest. 

Figure 13 shows the results using null synthesis. Excellent results are obtained 
even though the algorithm is highly heuristic and not optimal. The beam steer 
to 45 and 135 degrees could further benefit from the zeros at around 30 and 150 
degrees being suppressed. The effect of the zeros placed on the unit circle is not 
optimal, but still quite useful. However, the nonlinearity of 0 =cos- ' ( d , / k d )means 
that the physical angles (bearings) of evenly spaced zeros on the unit circle (evenly 
spaced digital angles) do not correspond to evenly-spaced bearing angles. To make 
the placed zeros appear closer to evenly spaced in the physical beam response, 
we can "pre-map" them according to the know relationship O=cos ' (d , i ' k t / )  
between the physical angle 0 and the digital wavenumber angle TC.I f  we let our 
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Figure 13 The null synthesis technique presented here sharpens the beam width in the 
signal direction (solid 90, dotted 135, and dashed 45 degrees source directions) by placing 
suppressed zeros at useful angles on the unit circle away from the look direction beam main 
lobe (scale is dB vs. degrees). 

evenly-spaced zeros around the unit circle have angles $', we can pre-map the :-plane 
zero angles by r = c o s - '  ( @ / k d ) .This is what was done for the null synthesis 
example in Figure 13 and it improved the beam symmetry and main lobe 
significantly. The nulls in Figure 13 also appear fairly evenly spaced except around 
the main lobes of the signal steering vectors. While the signal eigenvectors are 
the theoretical optimum beams for separating the source signals, the affect of source 
phase dependence limits the degree to which the signals can be separated. Heuristic 
techniques such as the pseudo reduced-order and null synthesis techniques illustrate 
what can be done to force the signal separation given the information provided 
by MUSIC. Both these techniques can also be applied to a spatial whitening filter 
for signal null forming as described in Section 13.1. 

For N s  signal source eigenvectors in the matrix As,  and N N=M + 1 -N s  noise 
eigenvectors in the matrix AN,  we note from Eq. (1 3.2.13) that since A" =A - ' 

( 13.2.17) 

represents the sum of the projection matrices (Section 8.2) onto the noise and signal 
subspaces. This can be seen by considering a signal matrix Y which has A4 + 1 rows 
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and N s  columns representing some linear combination of the signal eigenvectors 
Y=AL&, where Qs is any invertible square matrix with N s  rows. Therefore, 
Y H Y= QlAcAsQs = QtQs. The projector matrix onto the signal subspace can 
be seen to be 

( 1  3.2.18) 

which is a fancy way of saying that the signal subspace is expressible as the linear 
combination of the signal eigenvectors. So, if the signal levels of our plane wave 
sources change, the subspace spanned by the rows of Y does not change, but 
the eigenvalues do  change according to the power relationship. If  the bearing(s) 
of the sources change then the subspace also changes. The same is true for the noise 
subspace. If we define our noise as W = A N Q N ,  

(13.2.19) 

and the combination of noise and signal projectors is 

p y + pw = Y ( Y HY ) - ’  Y H+ U’( WHW)-’W H= I ( 1  3.2.20) 

Equation (13.2.20) can be used to show that the noise is orthogonal to the 
signal subspace by P y =  I -Pw. This orthogonal projection operator was used in 
Section 8.2, 9.3 and 9.4 to define a least-squared error update algorithm for the 
adaptive lattice filter, which results from the orthogonal decomposition of the sub- 
space in time and model order. Because of the orthonormality of the eigenvectors, 
we could have divided the space spanned by the rows of the covariance matrix 
by any of the eigenvectors. It makes physical sense to break up the subspace into 
signal and noise to allow detection of the signal wavenumbers and the design of 
beam steering vectors to allow signal separation and SNR enhancement. 

13.3 COHERENT MULTIPATH RESOLUTION TECHNIQUES 

In the previous two sections we have seen that near optimal beam patterns can be 
designed using either adaptive spatial filter or by eigenvector processing. For 
narrowband phase-independent sources one can use the received signals from a 
sensor array of known geometry in a medium of known free wave propagation speed 
to design beams which identify the arrival angles of, and even separate, the source 
signals. However, the notion of “phase independent narrowband sources’’ is 
problematic in most practical applications. Many “snapshots” of the spectral data 
are averaged in the hope that the random phase differences of the “independent” 
sources will average to zero in the covariance matrix elements, as seen in Eq. (1 3.1.3). 
There are coherent multipath situations where the array records several wavenumber 
traces at  a given temporal frequency where the snapshot-averaging technique simply 
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will not work unless the individual phases and amplitudes of the sources are known. 
Furthermore, if it requires 1 lAfseconds of time data to produce the complex FFT 
bin Af Hz wide, and then N FFT snapshots to be averaged to insure the spatial 
covariance matrix for that bin is independent of the source phases, a long net time 
interval is then required to do the problem. If the sources are moving significantly 
during that time the arrival angle information may not be meaningful. However, 
as one widens the FFT bin bandwidth by shorting the time integration, a large 
number of snapshots can be calculated in a very short time span. If  the beam band- 
width approaches the Nyquist band (maximum available bandwidth), the snapshots 
become a single time sample and the “broadband” covariance matrix is calculated in 
the shortest possible time without the use of an FFT. Why not do broadband 
beamforming where the sources are more readily made independent? The answer 
is seen in the fact that a broadband beam may not be optimal for resolving specific 
narrowband frequencies, since it is optimized for the entire broad bandwidth. 
Therefore, a fundamental tradeoff exists between narrowband resolution in both 
frequency and wavenumber (arrival angle) and the amount of integration in time 
and space to achieve the desired resolution. As with all information processing, 
higher fidelity generally comes at an increased cost, unless of course human intel- 
ligence is getting in the way. 

Suppose we know the amplitude and phase of each source and we have an 
extremely high fidelity propagation model which allows us to predict the precise 
amplitude and phase from each source across the array. The solution is now trivial. 
Consider an 8 element ( M = 7) line array and three sources 

where d, i= 1,2, ..., M is the position of the ith element along the line array relative to 
the first element. The wavenumber traces, kii = 1,2,3 are simply the plane wave 
projections on the line array. The right-most matrix in Eq. (13.3.1) is called a 
Vandermode matrix since the columns are all exponential multiples of each other 
(for an evenly-spaced line array). Clearly, the signal eigenvectors are found in 
the rows of the vandermode matrix and the eigenvalues are the magnitude-squared 
of the corresponding signal amplitudes and phases si i = 1,2,3.  This is like saying 
if we know A (the signal amplitudes and phases) and B (the arrival angles or 
wavenumbers), we can get C =AB. But if we are only given C, the received waveform 
signals from the array, there are an infinite combination of signal amplitudes and 
phases ( A B )which give the same signals for the array elements. Clearly, the problem 
of determining the angles of arrival from multiple narrowband sources and 
separating the signals using adaptive beamforming from the array signal data alone 
requires one to eliminate any coherence between the sources as well as the back- 
ground noise, which should be independent at  each array element. 

Suppose one could control the source signal, which has analogy in active sonar 
and radar where one transmits a known signal and detects a reflection from an 
object, whose location, motion, and perhaps identity are of interest. Given 
broadband transducers and good propagation at all frequencies, a broadband (zero 
mean Gaussian, or ZMG) signal would be a good choice because the sources would 
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be completely independent at all frequencies. An even better choice would be a 
broadband periodic waveform which repeats every N samples and has near zero 
cross correlation with the broadband periodic waveforms from the other sources. 
Time synchronous averaging (Chapter 1 1 )  of the received waveforms is done by 
simply summing the received signals in an N-point buffer. The coherent additions 
will cause the background noise signals to average to their mean of zero while 
coherently building up the desired signals with period N significantly improving 
SNR over the broad bandwidth. By computing transfer functions (Section 6.2) 
between the transmitted and received signals, the frequency response of the propa- 
gation channel is obtained along with the propagation delay. For multipath 
propagation, this transfer function will show frequency ranges of cancellation 
and frequency ranges of reinforcement due to the multipath and the corresponding 
impulse response will have several arrival times (seen as a series of impulses). Each 
element in the array will have a different frequency response and corresponding 
impulse response due to the array geometry and the different arrival angles and 
times. Therefore, the "coherent" multipath problem is solvable if a broadband signal 
is used. Solving the multipath problem no only allows us to measure the propagation 
media inhomogeneities, but also allows us to remove multipath interference in com- 
munication channels. 

Maximal Length Sequences (MLS) 

MLS are sequences of random bits generated by an algorithm which repeat every 
2 '- 1 bits, where N is the order of the MLS generator. The interesting signal proper- 
ties of an MLS sequence are that its autocorrelation resembles a digital Dirac delta 
function (the 0th lag has amplitude 2" - 1 while the other 2"'- 2 lags are equal 
to - 1 ) and the cross correlation with other MLS sequences is nearly zero. The algo- 
rithm for generating the MLS sequence is based on primitive polynomials modulo 2 
of order N .  We owe the understanding of primitive polynomials to a young French 
mathematical genius named Evariste Galios (1812-1832) who died as the unfortu- 
nate result of a duel. In the Romantic age, many lives were cut short by death from 
consumption or dueling. Fortunately for us, the night before Galios fate he sent 
a letter to a friend named Chevalier outlining his theories. Now known as Galios 
theory, i t  is considered one of the highly original contributions to algebra in the 
nineteenth century. Their application to MLS sequence generation has played an 
enabling role computer random number generation, digital spread-spectrum 
communications, the satellite global positioning system (GPS), and in data 
encryption standards. Clearly, this is an astonishing contribution to the u w l d  
for a twenty-year-old. 

To illustrate the power of MLS, consider the following digital communications 
example. The MLS generating algorithm are known at a transmitting and receiver 
site, but the transmitter starts and stops transmission at  various times. When 
the receiver detects the transmitter, it does so by detecting a Dirac-like peak in 
a correlation process. The time location of this peaks allows the receiver to 
"synchronize" its MLS correlator to the transmitter. The transmitter can send digi- 
tal data by a simple modulo-2 addition of the data bit-stream to the transmitted 
MLS sequence. This appears as noise in the receiver's correlation detector. But once 
the transmitter and receiver are synchronized, a modulo-2 addition (an exclusive or 
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operation or XOR) of the MLS sequence to the received bitstream gives the 
transmitted data! Since multiple MLS sequences of different generating algorithms 
are uncorrelated, many communication channels can co-exist in the same frequency 
band, each appearing to the other’s as uncorrelated background noise. There are 
limits to how many independent MLS sequences can be generated for a particular 
length. However, a scientist named Gold (3) showed that one could add modulo-2 
two generators of length 2“- 1 and different initial conditions to obtain 2.” - 1 
new sequences (which is not a MLS but close), plus the two original base sequences. 
The cross-correlation of these Gold sequences are shown to be bounded, but not 
zero, allowing many multiplexed MLS communication channels to co-exist with 
the same length in the same frequency channel. The “Gold codes” as they have 
become known, are the cornerstone of most wireless digital communications. 
For GPS systems, a single receiver can synchronize with multiple satellites, each 
of which also send their time and position (ephemeris), enabling the receiver to com- 
pute its position. GPS is another late 20th century technology which is finding its way 
into many commercial and military applications. 

A typical linear MLS generator is seen in Figure 14 The notation describing the 
generator is [N, i , j ,k ,...I where the sequence is 2 N- 1 “chips” long, and i ,j , k , etc., are 
taps from a 1-bit delay line where the bits ar  XOR’d to produce the MLS output. For 
example, the generator depicted as [7,3,2,1] has a 7 stage delay line, or register, where 
the bits in positions 7, 3, 2, and 1 are modulo-2 added (XOR’d) to produce the bit 
which goes into stage 1 at the next clock pulse. The next clock pulse shifts the bits 
in stages 1 through 6 to stages 2 through 7, where the bit in stage 7 is the MLS 
output, copies the previous modulo-2 addition result into stage 1 ,  and calculates 
the next register input for stage 1 by the modulo-2 addition of the bits in elements 
7,3,2,  and I .  Thanks to Galios theory, there are many, many irreducible 
polynomials from which MLS sequences can be generated. The Gold codes allow 
a number of nearly maximal sequences to be generated from multiple base MLS 
sequences of the same length, but different initial conditions and generator stage 
combinations. The Gold codes simplify the electronics needed to synchronize trans- 
mitters and receivers and extract the communication data. A number of useful 
MLS generators are listed in Table 1 which many more generators can be found 
in an excellent book on the subject by Dixon (4). 

Modulo-2 Additions (exclusive OR) 

b4 6 6 7 

Figure 14 Block diagram of a [7,3.2,1] MLS generator shouing a 7 element tapped delay 
line for modulo-2 additions of the elements 7, 3, 2, and 1 to  generate a 2’ - 1, or  127 bit 
random sequence. 
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Table 1 Simple MLS Generators 

Number of Stages Code Length Maximal Tap Formula 

4 1s 
5 31 
6 63 
7 127 
8 255 
9 51 1 

10 1.023 
1 1  2,047 
12 4,095 
13 8,191 
14 16,383 
15 32,767 
16 65,535 
18 262,143 
24 16,777,215 
32 4,294,967,295 

Spread Spectrum Sinusoids 

Our main interest in MLS originates in the desire to resolve coherent multipath for 
narrowband signals. This is also of interest in communication systems and 
radar / sonar where multipath interference can seriously degrade performance. By 
exploiting time synchronous averaging of received data buffers of length 2N- 1 
the MLS sequence SNR is significantly improved and by exploiting the orthogonality 
of the MLS we can separate in time the multipath arrivals. For communications. one 
would simply synchronize with one of the arrivals while for a sonar or radar 
application, one would use the separated arrival times measured across the receiver 
array to determine the arrival angles and propagation times (if synchronized to 
a transmitter). Applying MLS encoding to narrowband signals is typically done 
by simply multiplying a sinusoid by a MLS sequence normalized so that a binary 
1 is + l  and a binary 0 is - 1 .  This type of MLS modulation is called hi-pIime 
rnodulariorz for obvious reasons and is popular because it is very simple to implement 
electronically . 

A bi-phase modulation example is seen in Figure 15 for a 64 Hz sinusoid 
sampled at 1024 Hz. The MLS sequence is generated with a [7,1] generator algorithm 
and the chip rate is set to 33 chips per sec. It can be seen that i t  is not a good idea for 
the chip rate and the carrier frequency to be harmonically related (such as chip rates 
of 16, 32, 64, etc., for a 64 Hz carrier) because the phase transitions will always occur 
at one of a few points on the carrier. Figure 16 shows the power spectrum of the 
transmitted spread spectrum waveform. The “spreading” of the narrowband 64 
Hz signal is seen as about 33 Hz, the chip rate. At the carrier frequency plus 
the chip rate (97 Hz) and minus the chip rate (31 Hz) we see the nulls in the “sin.v/s” 
or  sinc function. This sinc function is defined by the size of the chips. I f  the chip rate 
equals the time sample rate (1024 Hz in this example), the corresponding spectrum 
would be approximately white noise. Figure 16 shows a 200 Hz sinusoid with 
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Figure 15 A 64 Hz sinusoid (top) multiplied by a [7,1] MLS sequence with 33 chips per sec 
(middle) yields the bi-phase modulated sinusoid in the bottom plot. 
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Figure 16 Transmitted spread spectrum signal obtained from a power spectrum average of 
the bi-phase modulated signal in the bottom of Figure 15 (scale is dB vs. Hz). 
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100 chips per sec. However, for any chip rate there is actually some energy of the 
sinusiodal carrier spread to every part of the spectrum from the sharp phase 
transitions in the time-domain spread spectrum signal. Note that because we are 
encrypting the sinusoid’s phase with a known orthogonal pseudo-random M LS, 
we can recover the net propagation time delay as well as the magnitude and phase 
of the transfer function between a transmitter and receiver. This changes signifi- 
cantly what citn be done in the adaptive beamforming problem of multipath 
co herence. 

Resolving Coherent Multipath 

Clearly. one can associate the propagating wave speed and chip time length (the 
inverse of the chip rate) to associate a propagation distance for one chip. For 
example, the acoustic wave speed in air is about 350 m/sec (depends on wind 
and temperature). I f  one transmitted a 500 Hz spread spectrum sinusoid with 35 
chips per sec, the main sinc lobe would go from 465 Hz to 535 Hz in the frequency 
domain and the length of a chip in meters would be c/.j;=350 /35  or 10 m/chip 
where./; is the chip rate and ( 8  is the wave speed. By cross correlating the transmitted 
and received waveforms one can resolve the propagation distance easily to within 
one chip, or 10 m if the propagation speed is known. If the distance is known then 
the cross correlation yields the propagation speed c( 1 f 1 /v;T’]) where f ;  is the 
chip rate and T[,is the net propagation time. Resolution in either propagation dis- 
tance or in wave speed increases with increasing chip rate, or in other words, propa- 
gation time resolution increases with increasing spread spectrum bandwidth. 
This is in strong agreement with the Cramer-Rao lower bound estimate in Eq. 
( 12.2.12) for time resolution in terms of signal bandwidth. 

An efficient method for calculating the cross correlation between two signals is 
to compute the cross-spectrum (Section 6.2) and then computing an inverse FFT. 
Since the spectral leakage contains information, one is better off not using a data 
window (Section 5.3)  or applying zero-padding to one buffer to correct for circular 
correlation (Section 5.4). Consider a coherent multipath example where the direct 
path is 33 m and the reflected path is 38 m. With a carrier sinusoid of 205 Hz 
and the 100 Hz chip rate (generated using a [ I  1,1] MLS algorithm), the transmitted 
spectrum is seen similar to the one in Figure 17. The cross correlation of the received 
multipath is seen in Figure 18 where the time lag is presented in m based on the 
known sound speed of 350 misec. For this case, the length of a chip in m is 
( a / . / ;  =350/100 or 3.5 ni. The 5 m separating the direct and reflected paths are 
resolved. Using a faster chip rate will allow even finer resolution in the cross 
correlation. However, using a slightly different processing approach will yield an 
improved resolution by using the entire bandwidth regardless of chip rate. This 
approach exploits the coherence of the multipath signals rather than try to integrate 
i t  out. 

The Channel Impulse Response 

The channel impulse response is found from the inverse FFT of the channel transfer 
function (Section 6.2) which is defined as the expected value of the cross spectrum 
divided by the expected value of the autospectrum of the signal transmitted into 

TLFeBOOK



437 Adaptive Beam forming 

Figure 17 Spread spectrum signal generated from a 200 Hz sinusoid with 100 chipsisec 
from a [ I  1 ,  I ]  MLS sequence generator where.fs = 1024Hz and 16 sec of data are in the power 
spectrum (scale is dB vs. Hz). 
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Figure 18 Cross correlation computed via cross spectrum of the 305 Hz carrier u i t h  
100 Hz chip rate generated by [ 1 1.11 showing the resolution of the 33  m and 38 ni propagation 
paths (linear scale vs. m).  
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the channel. This simple modification gives the plot in Figure 19 which shows the 
broadband spectral effects of coherent multipath. Figure 20 shows the inverse 
FFT of the transfer function which easily resolves the 33 m and 38 m paths. 
The theoretical resolution for the channel impulse response is c/f,=3501 1024 or 
about 0.342 m, whereJ; is the sample rate rather than the chip rate. The transfer 
function measures the phase across the entire spectrum and its inverse FFT provides 
a much cleaner impulse response to characterize the multipath. To test this theory, 
let the reflected path be 34 m rather than 38 m giving a path difference of I m where 
our resolution is about 1 /3  of a meter. The result of the resolution measurement 
for the 205 Hz sinusoid with the 100 Hz chip rate (generated by a [11,1 J MLS) 
is seen in Figure 21 This performance is possible for very low chip rates as well. 
Figure 22 shows the 205 Hz sinusoid with a chip rate of 16 Hz while Figure 23 shows 
the corresponding 33 m and 34 m paths resolved. 

In the previous examples, 512 point FFTs were used which have a correspond- 
ing buffer length of 175 m due to the 1024 Hz sample rate and the speed of sound 
being 350 m/sec the 100 Hz chip rate had a chip length of 3.5 m and the 16 Hz 
chip rate had a chip length of 21.875 m. What if the chip length were increased 
to about half the FFT buffer length? This way each F F T  buffer would have no more 
than one phase transition from a chip change. As such, there would be no false 
correlations between phase changes in the transfer function. Consider a chip rate 
of 4 Hz where each chip is 87.5 m long or exactly half the FFT buffer length of 
175 m. Some FFT buffers may not have a phase change if several chips in a 
row have the same sign. But, if there is a phase change, there is only one phase 
change in the FFT buffer. For the multipath in the received FFT buffer, each coher- 
ent path produces a phase change at slightly different times, each of which is highly 
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Figure 19 Channel transfer function clearly shows the broadband effects of coherent 
multipath (horizontal scale is Hz). 
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Figure 20 The channel impulse response found from the inverse FFT of the transfer func- 
tion resolves the 33  m and 38 m paths much better than the cross correlation technique (linear 
scale vs. m). 
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Figure 21 Resolution of a 33 m and 34 m propagation path is possible for a spread 
spectrum signal sampled at 1024 Hz (linear scale vs. m). 
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Figure 22 205 Hz sinusoid with a 16 Hz chip rate for the resolution test of the 33  m and 
34 m paths (scale is dB vs. Hz).  
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Figure 23 Resolution of the 33 m and 34 m paths using a 16 H z  chip rate (linear scale vs. 
m) .  
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coherent with the transmitted signal. Figure 24 shows the multipath resolution using 
a chip rate of 4 Hz. 

The multipath resolution demonstration can be carried to an extreme by 
lowering the carrier sinusoid to a mere 11 Hz (wavelength is 31.82 m) keeping 
the chip rate 4 Hz. Figure 25 shows the spread spectrum of the transmitted wave. 
Figure 26 shows the uncertainty of trying to resolve the multipath using only cross 
correlation. The chips have an equivalent length of 87.5 m with a 350 m/sec propa- 
gation speed. Its no wonder the multipath cannot be resolved using correlation 
alone. Figure 27 shows the transfer function for the channel with the transmitted 
1 1  Hz carrier and 4 Hz chip rate. The inverse FFT of the transfer function yields 
the channel impulse response of Figure 28, which still nicely resolves the multipath, 
even though the wavelength is over 31 times this resolution and the chip length 
is over 87 times the demonstrated resolution! As amazing as this is, we should 
be quick to point out that low SNR will seriously degrade resolution performance. 
However, this can be at  least partially remedied through the use of time-synchronous 
averaging in the FFT buffers before the FFTs and inverse FFTs are calculated. For 
synchronous averaging in the time domain to work, the transmitted signal must 
be exactly periodic in a precisely-known buffer length. Summing the time domain 
signals in this buffer repeatedly will cause the background noise to average to 
its mean of zero while the transmitted spread spectrum signal will coherently add. 

One final note about MLS and spread spectrum signals. For very long MLS 
sequences, one can divide the sequences into multiple “sub-sequence” blocks of con- 
secutive bits. While not maximal, these sub-MLS blocks are nearly uncorrelated with 
each other and also have an auto correlation approximating a digital Dirac delta 
function. The GPS system actually does this with all 24 satellite transmitters broad- 
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Figure 24 Multipath resolution for the 33 m and 34 m signals using a chip rate of 4 which 
places no more than one phase change per FFT buffer to enhance coherence (linear scale vs. 
m). 
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casting the same MLS code which has a period of 266 days. However, each satellite 
transmits the code offset by about one-week relative to the others. At the receiver, 
multiple correlators run in parallel on the composite MLS sequence received which 
allows rapid synchronization and simplified receiver circuitry. Once one of the 

I I I I 16010 100 200 300 400 500 

Figure 25 An 1 1 Hz carrier sinusoid with a 4 Hz chip rate generated by a [ 1 1.13 MLS (scale 
is dB vs. Hz). 
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Figure 26 Cross correlation of the 1 1  Hz carrier sinusoid with 4 Hz chip rate showing an 
uncertain correlation peak around 33 m (linear scale vs. m). 
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Figure 27 The transfer function for the 1 1  Hz carrier and 4 Hz chip rate show valuable 
information across the entire available bandwidth (horizontal scale is Hz). 
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Figure 28 The 33  m and 34 m path are still resolvable using the channel impulse response 
technique even though the 1 1  Hz carrier has a wavelength of 31.8 m and the chip length 
is 87.5 m (linear scale vs. m). 
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receiver correlators is synchronized with a GPS satellite, it can start receiving the 
data sent via modulo-2 addition to the MLS sequence. This data identifies the 
satellite, its position (ephemeris), and its precise clock. When three or more satellites 
are in received by the GPS receiver a position on the ground and precise time is 
available. Combinations of M LS sequences (modulo-2 added together) are not 
maximal, but still can be used to rapidly synchronize communication while allowing 
long enough sequences for measuring large distances. Such is the case with the JPL 
(NASA’s Jet Propulsion Laboratory) ranging codes. Other applications of spread 
spectrum technology include a slightly different technique called frequency hopping 
where the transmitter and receiver follow a sequence of frequencies like a musical 
arpeggio. The recently recognized inventors of the frequency hopping technique 
is Ms  Hedy Lamarr, an Austrian-born singeriactrcss who with her second husband, 
musician George Ant heil, developed a pseudo-random frequency hopping technique 
for secure radio using paper rolls like that of a player piano. See 
“http: / / www.niicrotimes.com/ 166/coverstory 166.html” for a detailed historical 
account. Frequency hopping also uses pseudo-random numbers but is somewhat 
different from the direct sequence spread spectrum technique presented here a s  a 
means to resolve coherent multipath. 

13.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

Chapter 13 presents a baseline set of approaches to adaptive beamforming. There are 
many additional algorithms in the literature, but they can be seen to fall within one of 
the three categories presented in Sections 13.1 through 13.3. Adaptive null-forming 
(Section 13.1) is simply a spatial correlation cancellor where the resulting spatial 
FIR response for a specific narrowband frequency represents a beam pattern which 
places nulls in the dominant source direction(s). The technique can also work 
for broadband sources, but the nulls will not be as sharp and precise in angle as 
in the narrowband case. I t  is also shown that for the spatial null forming to be 
precise, the phases of the sources must be independent so that the covariance matrix 
for the array has magnitudes and phases only associated with the spatial response 
and not the phases of the individual sources. The assumption of Phase independent 
sources is problematic for narrowband signals. To overcome this mathematical 
limitat ion, one averages many signal “snapshots” or time-domain signal buffers 
converted to the specific narrowband FFT bin for the covariance matrix signal input. 
Some presentations in the literature evaluate the inverse of the spatial FIR filter 
response, as if i t  were an IIR filter. The inverse response shows sharp peaks, rather 
than nulls in the beam response. This approach, sometimes called “super-resolution 
beamforming” or more simply “spectrum estimation” is specifically avoided here 
because i t  is physically misleading. An array’s main beam lobe width and SNR gain 
is defined by the array aperture, number of elements, and the wavelength, which 
have nothing to do with the choice of mathematical display of the physical beam 
response with its nulls displayed as peaks. 

Section 13.2 analyzes the array covariance data as an eigenvalue problem. This 
follows quite logically from the vandermode matrix seen in Eq. ( 1  3.3.1) where each 
source has an associated eigenvector representing the spatial phase due to the direc- 
tion of arrival and array geometry, and a source eigenvalue associated with the 
magnitude-squared of the source signal at  the array. The phase associated with 
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a particular narrowband source is lost in this formulation, hence, the sources must be 
phase-independent and the background noise spatially independent for the 
eigenvalue approach to work. However, given phase independent sources and 
spatially incoherent background noise, solving for an eigenvalue representation 
of the spatial covariance matrix for the array provides a set of orthonormal beam 
steering vectors (the eigenvectors) and associated signal powers (the eigenvalues). 
If one assumes the source signals of interest are stronger than the spatially incoherent 
background noise, the eigenvalues can be separated into a signal subspace and a 
noise subspace. The eigenvectors associated with the signal subspace can be used 
as optimal beam steering vectors to detect the signal from the corresponding source 
while nulling the other sources since the eigenvectors are by definition orthonormal. 
However, in practice this theory is encumbered by the partial coherence between 
narrowband sources at the same frequency, even with snapshot averaging attempts 
to make the sources appear incoherent with each other. 

One can safely assert that the noise eigenvectors each have nulls in their beam 
responses in the direction(s) of the signal source(s), plus “spurious” nulls i n  the 
directions of the estimated incoherent noise sources. Therefore, by summing the 
noise eigenvectors we are left with a beam steering vector which has nulls i n  the 
direction(s) of all the source(s) only. This beam response is called the minimum 
variance, or minimum norm beam response. Section 13.2 presents a technique 
for steering the array to a look direction other than a source direction and niain- 
taining the sharp nulls to the dominant source directions and uni ty  gain i n  the look 
direction. The beam is called the minimum variance distortionless response, or 
MVDR beam. I t  is very useful for suppressing interference noise in specific directions 
while also suppressing incoherent background noise in directions other than the look 
direction. But, the MVDR beam becomes indeterminant when the look direction is 
in the direction of one of the signal sources. As mentioned earlier. the associated 
eigenvector makes a pretty good beam steering vector for a source’s look direction. 
We also show in Section 13.2 several techniques for synthesizing beams with forced 
sharp nulls in the other dominant source directions while maintaining uni ty  gain 
in the desired look direction. 

Section 13.3 presents a technique for resolving multipath which exploits 
multipath coherence to resolve signal arrival times at  the array using broadband 
techniques where the transmitted signal is known. This actually covers a wide range 
of active sensor applications such as sonar, radar, and lidar. The transmitted 
spectrum is broadened by modulating a sinusoid with a maximum length sequence 
(MLS) which is generated via a specific psuedo-random bit generator algorithm 
based on primitive polynomials. The MLS bit sequence has some very interesting 
properties in that the autocorrelation of the sequence gives a perfect delta function 
and the cross correlation between different sequences is zero. These properties allow 
signals modulated with different MLS codes to be easily separated when they occupy 
the same frequency space in a signal propagation channel. Technically, this has 
allowed large number of communication channels to co-exist in the same bandwidth. 
Some of the best examples are seen in wireless Internet, digital cellular phones, and in 
the Global Positioning System (GPS). For our purposes in wavenumber processing, 
the spread spectrum technique allows coherent multipath to be resolved at each 
sensor in an array. Using straightforward cross correlations of transmitted and 
received signals, the propagation time for each path can be resolved to within 
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on bit, or chip, of the MLS sequence. This is useful but requires a very high band- 
width defined by a high chip rate for precise resolution. Section 13.3 also shows 
a technique where one measures the transfer function from transmit to receive which 
produces a channel impulse response with resolution equal to the sample rate. This, 
like the high chip rate, uses the full available bandwidth of the signals. By slowing 
the chip rate to the point where no more than one phase transition occurs within 
a transfer function FFT buffer, we can maximize the coherence between the 
transmitted signal and the received multipath. This results in a very “clean” channel 
impulse response. The spatial covariance matrix of these measured impulse 
responses can be either analyzed in a broadband or narrowband sense to construct 
beams which allow separation of the signal paths. 

PROBLEMS 

1 .  For a linear array of 3 sensors spaced I m apart in a medium where the 
free plane wave speed is 10,000m/sec, derive the spatial filter polynomial 
analytically for a plane wave of arbituary frequency arriving from 60 
degrees bearing where 90 degrees in broadside and 0 degrees is endfire. 

2. Derive the steering vector to steer a circular (16 elements with diameter 
2 m) array to 30 degrees if the wave speed is 1500 m/sec. Evaluate 
the beam response and determine the wavenumber range for propagating 
plane wave response (i.e. no evanescant wave responses) for a particular 
frequency . 

3. Implement an adaptive null forming spatial FIR filter for the linear array 
in problem 1 but using an LMS adaptive filter. How is the step size set to 
guarantee convergence? 

4. Using the Vandermode matrix to construct an “ideal” covariance matrix, 
show that the signal eigen vectors do not necessarily have nulls in the 
directions of the other sources. 

5 .  Show that under ideal conditions (spatially independent background 
noise and phase independent sources) the MVDR optimal beam steering 
vector for looking at one of the signal sources while nulling the other 
sources is the eigenvector for the source in the look direction. 

6. Given a linear but unequally-spaced array of sensor with position stan- 
dard deviation c‘f determine the bearing accuracy at 500 Hz if the plane 
wave speed is 1500 m/sec, the wave arrives from a direction near 
broadside with SNR 10, and if there are 16 sensors covering an aperature 
of 2 m. 

7. Show that the autocorrelation of the MLS sequence generated by [3, I ]  is 
exactly 7 for the zeroth lag and - 1 for all other lags. 

8. Show analytically why a chip rate of say 20 chips per sec for bi-phase 
modulation of a sinusoid gives a sinc-function like spectral shape where 
the main lobe extends f 2 0  Hz from the sinusoid center frequency. 

9. Show that for bi-phase modulation of a carrier sinusoid a chip rate equal 
to the sample rate will produce a nearly white signal regardless of the 
carrier frequency. 
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10. What is the relationship between chip rate and resolution, and MLS 
sequence length and maximum range estimation? 
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14 
Intelligent Sensor Systems 

There will always be a debate about what is “smart,” “intelligent,” or even 
“sentient” (which technically means having the five senses) in the context of artificial 
intelligence in computing systems. However, it is plausible to compare smart sensors 
to the pre-programmed and sensor-reactive behavior of insects. It’s a safe argument 
that insects lack the mental processing to be compared to human intelligence but, 
insects have an amazing array of sensor capability, dwarfed only by their energy 
efficiency. A fly’s life probably doesn’t flash before its eyes when it detects a hand 
moving to swat it, it simply moves out of the way and continues its current 
“program.” It probably doesn’t even get depressed or worried when another fly gets 
spattered. It just follows its life function reacting to a changing environment. This 
“insect intelligence” example brings us to define an intelligent sensor system as 
having the following basic characteristics: 

1. Intelligent sensor systems are adaptive to the environment, optimizing 
their sensor detection performance, power consumption, and communi- 
cation activity 

2. Intelligent sensor systems record raw data and extract information, which 
is defined as a measure of how well the data fit into information patterns, 
either pre-programmed or self-learned 

3. Intelligent sensor systems have some degree of self-awareness through 
built-in calibration, internal process control checking and re-booting, 
and measures of “normal” or “abnormal” operation of its own processes 

4. Intelligent sensor systems are re-programmable through their communi- 
cations port and allow external access to raw data, program variables, 
and all levels of processed data 

5.  An intelligent sensor system can not only recognize patterns, but can also 
predict the future time evolution of patterns and provide meaningful con- 
fidence metrics of such predictions 

The above five characteristics are a starting point for defining the smart sensor 
node on the wide-area network or intra-network (local network not accessible by the 
global Internet) for integrating large numbers of sensors into a control system for 
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production, maintenance, monitoring, or planning systems. Smart sensors provide 
irzjbrrmtiorz rather than simply raw data. Consider Webster’s dictionary definition 
of information: 

information: a quantitative measure of the content of information, specifically, 
a numerical quantity that measures the uncertainty in the outcome of an exper- 
iment to be performed 

Clearly, when a sensor provides only raw waveforms, it is difficult to assess 
whether the sensor is operating properly unless the waveforms are as expected. This 
is a pretty weak position to be in if an important control decision is to be based 
on unusual sensor data. But, if the sensor provides a measure of how well the 
raw data fits a particular pattern, and if that pattern appears to be changhg over 
time, one not only can extract confidence in the sensor information, but also the 
ability to predict how the sensor pattern will change in the future. Smart sensors 
provide information with enough detail to allow accurate diugr1o.si.s of’ t l ic c’iirro)it 

st irtr  of the sensor’s medium and signals, but also progriosis of’ tlir c’.\.PL’c’ti~i/.firti~rr 
s t i r t e .  In some cases, the transition of the pattern state over time will, in itself, 
become a pattern to be detected. 

There are some excellent texts on pattern recognition (1,2) which clearly 
describe statistical, syntactic, and template type of pattern recognition algorithms. 
These are all part of an intelligent sensor systems ability to turn raw data into in- 
formation and confidences. While beyond the already broad scope of this book, 
i t  is well worth a brief discussion of how pattern recognition, pattern tracking 
(prognosis), and adaptive algorithms are functional blocks of a smart sensor system. 
One of the most appealing aspects of Schalkoffs book is i t  balanced treatment of 
syntactical, statistical, and neural (adaptive template) pattern recognition 
algorithms. A syntactical pattern recognition scheme is based on human knowledge 
of the relevant syntax, or rules, of the information making up the pattern of interest. 
A statistical pattern recognition scheme is based on knowledge of the statistics 
(means, covariances, etc) of the patterns of interest. The neural network (or adaptive 
template) pattern recognition scheme requires no knowledge of pattern syntax or 
statistics. 

Suppose one could construct a neural network to add any two integers and be 
right 95% of the time. That would be quite an achievement although it would require 
extensive training and memory by the network. The training of a neural network is 
analogous to a future non-science major memorizing addition tables in primary 
school. Indeed, the neural network began as a tool to model the brain and the 
reinforcement of electro-chemical connections between neurons as they are fre- 
quently used. Perhaps one of the more interesting aspects of our brains is how 
we forget data, yet somehow know we used to know it .  Further, we can weight mul- 
tiple pieces of information with confidence, such as the likelihood that our memory 
may not be accurate, in assembling the logic to reach a decision. Clearly, these would 
be extraordinary tasks for a software algorithm to achieve, and it is already being 
done in one form or another in many areas of computer science and signal 
processing. 

A scientific approach to the addition problem is to memorize the algorithm, or 
syntax rules, for adding any two numbers, and then apply the rules to be correct all of 
the time. Using 2’s compliment arithmetic as described in Section 1 . 1 ,  electronic 
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logic can add any two integer numbers within the range of the number of bits and 
never make a mistake. That’s the power of syntax and the reason we have the scien- 
tific method to build upon and ultimately unify the laws of physics and mathematics. 
The only problem with syntactical pattern recognition is that one has to know the 
syntax. If an error is found in the syntax, ultimately one organizes experiments 
to quantify new, more detailed rules. But, to simply apply raw data to rules is risky, 
unless we change the data to information by also including measures of confidence. 

Statistical pattern recognition is based on each data feature being represented 
by statistical moments such as means, variances, etc., and an underlying probability 
density function for the data. For Gaussian data, the mean and variance are 
adequate representations of the information if the underlying data is stationary. 
If  it is moving, such as a rising temperature reading, a Kalman filter representation 
of the temperature state is the appropriate form to represent the information. In 
this case both the temperature reading and its velocity and acceleration have mean 
states and corresponding variances. The pattern now contains a current estimate 
and confidence, and a capability to predict the temperature in the future along with 
its confidence. Combining this representation of information with scientifically 
proven syntax, we have the basis for “fuzzy logic”, except the fuzzyness is not defined 
arbitrarily, but rather by the observed physics and statistical models. 

Neural networks are clearly powerful algorithms for letting the computer sort 
the data by brute force training and are a reasonable choice for many applications 
where human learning is not of interest. In other words, we cannot learn much about 
how or why the neural network separates the trained patterns or if the network will 
respond appropriately to patterns outside of its training set. However, the structure 
of the neural network is biologically inspired and the interconnections, weightings, 
and sigmoidal nonlinear functions support a very powerful capability to separate 
data using a training algorithm which optimizes the interconnection weights. Note 
that the interconnections can represent logical AND, OR, NOR, XOR, NAND, 
etc., and the weight amplitudes can represent data confidences. The sigmoidal func- 
tion is not unlike the inverse hyperbolic tangent function used in Section 11.2 to 
model the probability of a random variable being above a given detection threshold. 
The biologically inspired neural network can carry not only brute-force machine 
learned pattern separation, but, can also carry embedded human intelligence in 
the form of constrained interconnections, and weights and sigmoidal functions based 
of adaptive measured statistics processed by the sensor system. 

The anatomy of intelligent sensor systems can be seen in the sensor having the 
ability to produce information, not just raw data, and having the ability to detect 
and predict patterns in the data. Some of these data patterns include self-calibration 
and environmental information. These parameters are directly a part of the syntax 
for assessing the confidence in the data and subsequent derived information. As such, 
the smart sensor operates as a computing node in a network where the sensor extracts 
as much information as possible from its data and presents this information to the 
rest of the network. At higher levels in the network, information from multiple smart 
sensors can be combined in a hierarchical layer of “neural network with statistically 
fuzzy syntax” which combines information from multiple intelligent sensor nodes to 
extract yet more information and patterns. The structure of the hierarchical layers is 
defined by the need for information at  various levels. All of what has just been stated 
is possible with 20th century technology and human knowledge of straightforward 
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physics, signal processing, and statistical modeling. Given what we will learn about 
our world and our own thoughts from these intelligent sensor networks, i t  would 
appear that we are about to embark on an incredibly fascinating era for mankind. 

Section 14.1 presents the three main techniques for associating information 
with known pat terns. There are clearly many approaches besides statistical, neural, 
and syntactic pattern recognition and we hope that no reader gets offended at  
the lack of depth or conglomeration of these different techniques. Our view is to 
adopt the strong aspects of these well-accepted techniques and create a hybrid 
approach to the pattern recognition problem. Section 14.2 discusses features from 
a signal characteristic viewpoint. It will be left to the reader to assemble meaningful 
feature sets to address a given pattern recognition problem. Section 14.3 discusses 
the issue of pattern transition over time, and prognostic pattern recognition, that 
is, prediction what the pattern may be in the future. Prediction is the ultimate out- 
come of information processing. If the underlying physics are understood and 
algorithms correctly implemented, if the data is collected with high SNR and 
the feature information extracted with high confidence, our intelligent sensor system 
ought to be able to provide us with reasonable future situation predictions. This is 
the “holy grail” sought after in the development of intelligent sensor systems 
and networks. 

14.1 AUTOMATIC TARGET RECOGNITION ALGORITHMS 

Automatic target recognition (ATR) is a term most often applied to military weapon 
systems designed to “fly the ordnance automatically to the target”. However, ATR 
should also be used to describe the process of detecting, locating, and identifying 
some information object automatically based on objective metrics executed by a 
computer algorithm. The ATR algorithm is actually many algorithms working 
together to support the decision process. But, before one can use a computer algo- 
rithm to recognize a target pattern, one must first define the pattern in terms of 
a collection of features. Features represent compressed information from the 
signal(s) of interest. In general, features should have some physical meaning or 
observable attribute, but this is not an explicit requirement. A collection of features 
which define a pattern can be defined statistically by measuring the mean and 
covariance, or higher order moments, of these features for a particular pattern 
observed many times. The idea is to characterize a “pattern template” in terms 
of the feature means and to experimentally define the randomness of the features 
in terms of their covariance. The feature data used to define the feature statistics 
is called the truining dutu set. The training data can also be used to adapt a filter 
network to separate the pattern classes. The most popular type of ATR algorithm 
for adaptive pattern template separation is the aduprive neural netiiwrk (A”). 
The ANN is often a very effective algorithm at separating pattern classes. But, 
the ANN does not provide a physical meaning or statistical measure to its internal 
coefficients. This leaves ANN design very much an art. The last type of ATR 
we will consider is the syntacticfuzz)? logic classifier. The difficulty with the syntactic 
classifier is that one must know the syntax (feature physics and decision rules) in 
advance. Fuzzy logic is used to tie the syntax together in the decision process such 
that lower confidence features can be “blended out” of the class decision in favor 
of higher confidence data. Our syntactic ATR exploits dutu Jitsion by enabling 
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the fuzzy combination of many types of information including metrics of the 
informat ion confidence. 

Statistical Pattern Recognition is perhaps the most straightforward ATR con- 
cept. Patterns are recognized by comparing the test pattern with previously desig- 
nated pattern classes defined by the statistics of the features, such as the mean 
and covariance. For example, one might characterize a “hot day” pattern class 
by temperatures averaging around 90°F with a standard deviation of say 10‘. A 
“cold day” might be seen as a mean temperature of 40°F and a standard deviation 
of 15”. These classes could be defined using human survey data, where the individual 
circles either “hot day” or “cold day” at lunch time, records the actual temperature, 
and surveys are collected from, say one hundred people over a 12 month period. The 
36,500 survey forms are collected and tabulated to give the mean and standard 
deviation for the temperature in the two classes. Given the temperature on any 
day thereafter, a statistical pattern recognition algorithm can make an objective 
guess of what kind of day people would say it  is. The core to this algorithm is 
the characterization of the classes “hot day” and “cold day” as a simple Gaussian 
distribution with mean V?k and standard deviation ok for the kth class t j ’k .  

(14.1.1) 

Equation (14.1.1) describes the probability density for our observed feature x 
(say the temperature for our example) given that class w k  is present. The term 
in parenthesis in Eq. (14.1.1) is called the Mahalanohis distance from .U to q. 
Clearly, when this distance is small the feature data point matches the class pattern 
mean well. This density function is modeled after the observed temperatures associ- 
ated by people to either “hot day” or “cold day” classes for our example. Why have 
we chosen Gaussian as the density function? Well for one reason, if we have a large 
number of random variables at work, the central limit theorem proves that the 
composite representative density function is Gaussian. However, we are assuming 
the our random data can be adequately described by a simple mean and variance 
rather than higher-order statistics as well. It is generally a very good practice to 
test the Gaussian assumption and use whatever density function is appropriate 
for the observed feature data. The answer we are seeking from the statistical classifier 
is given an observed feature x,what is the probability that we have class wk.This is a 
subtle, but important difference from Eq. (14.1.1) which can be solved using Baye’s 
theorem. 

(14.1.2) 

Integrating the density functions over the available classes we can write Baye’s 
theorem in terms of probabilities. 

(14.1.3) 

The probability density for the feature x can be seen as the sum of all the 
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class-conditional probability densities times their corresponding class probabilities. 

(14.1.4) 

Equations (14.1.3) and (14.1.4) allow the user to upriori apply the likelihood of each 
individual class and incorporate this information in the u posteriori probability esti- 
mate of a particular class being present when the observed feature s is seen. 

Figure 1 shows three Gaussian probability density functions with respective 
means of - 2.0, 0.0, and + 3.0, and respective standard deviations of 1.25, 1.OO, 
and 1.50. The Figure also shows a density function for all three classes of data 
to be used to determine if the feature is an outlier of the observed training data. 
This context is important because Eq. (14.1.3) will give a very high likelihood to 
the nearest class, even if the feature data is well outside the range of the associated 
feature data used during training. To illustrate this and other points, three feature 
values of -2.00, 1.OO, and 15.0are considered for classification into one of the three 
given classes. Table 1 summarizes the classification results. The data point at - 2.00 
is clearly closest to class 1 both in terms of probability and Mahalanobis distance. 
Furthermore, the feature data point -2.00 (the * in Figure 1 )  fits quite well within 
the training data 

I t  is tempting to simply use a small Mahalanobis distance as the metric for 
selecting the most likely class given the particular feature. However, the real question 
being asked of the ATR is which class is present given a priori feature likelihoods and 
the feature data. Case 2 where the data point in Figure 1 is 1.OO, one can see in Table 
I that the highest probability class is class 2, while the smallest Mahalanobis distance 
is class 3. Each of the three classes is given a 33.33% likelihood for P(wk) .  

The third case shows the utility of maintaining a “training data” class to pro- 
vide a measure of whether the feature data fits into the accepted data for class 
training. In other words, is this feature data something entirely new or does it 

0.4 I I I P 1 II 

I 1  

Feature Value 

Figure 1 Three probability density functions describe three individual classes in which data 
points A, B, and C are to be classified. The solid curve shows the pdf for all the training data. 
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Table 1 Classification Results 

A = -2 1 0.8066 0.0000 0.0000 Class 1 
2 0.1365 4.0000 2.0000 
3 0.0569 4.9383 2.2222 

Training Data 0.8234 0.3886 0.6234 

B = l  1 0.1071 3.6864 1.9200 Class 2 
2 0.5130 1 .oooo 1 .oooo 
3 0.3799 0.7901 0.8888 

Training Data 1.oooo 0.0000 0.0000 

C = 1 5  1 0.0000 118.37 10.879 Outlier 
2 0.0000 225.00 15.000 
3 I .oooo 28.444 5.3333 

Training Data 0.0145 8.4628 2.909 1 

fit within the range of the data we so cleverly used to train our classifier (determine 
the means and standard deviations for each of the classes). For the third feature 
data point of 15.0, Table 1 shows that class 3 is the best choice of the three classes, 
but the data is not part of the training data set, as indicated by the low 0.0145 prob- 
ability for the “Training data” class. This low probability coupled with the large 
Mahalanobis distances to all classes clearly indicates that the feature data is an 
outlier corresponding to an “unknown” classification. 

Multidimensional probability density functions are used to describe a number 
of feature elements together as they apply to a pattern class. Use of multiple signal 
features to associate a pattern to a particular class is very effective at providing 
robust pattern classification. To demonstrate multi-feature statistical pattern rec- 
ognition we begin by define a M-element feature vector. 

(14.1.5) 

The means of the features for the class tt’k are found as before 

(14.1.6) 

but, the variance is now expressed as a covariance matrix for the class it’,, 

(14.1.7) 
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where o ; , , ~is the covariance between feature i and j for class ~ ‘ k .  

(14.1.8) 

The multi-dimensional probability density function for the feature vector when class 
\i*k is present is 

(14.1.9) 

where it can be seen that the determinant of the covariance must be non-zero for the 
inverse of the covariance to exist and for the density to be finite. This means that all 
the features must be linearly independent, and if not, the linearly depended feature 
elements must be dropped from the feature vector. In other words, a given piece 
of feature information may only be included once. 

Insuring that the covariance matrix is invertible (and has non-zero 
determinant) is a major concern for multi-dimensional statistical pattern 
recognition. There are several ways one can test for invertability. The most 
straightforward way is to diagonalized Ck (it already is symmetric) as done in 
an eigenvalue problem. The “principle eigenvalues” can be separated from the 
residual eigenvalues (which can be to difficulty in matrix inversion) as part of a 
singular value decomposition (SVD) to reduce the matrix rank if necessary. 
However, an easier way to test for linear dependence is to simply normalize the 
rows and columns of C k  by their corresponding main diagonal square root value. 

For completely statistically independent features both S k  and CL are diagonal and 
full rank. The normalized matrix SL makes it  easy to spot which feature elements 
are statistically dependent because the off-diagonal element corresponding to feature 
i and featurej will tend towards unity when the features are linearly dependent. The 
matrix in Eq. (14.1.10) really has no other use than to identify linearly dependent 
features which should be dropped from the classification problem. However, a more 
robust approach is to solve for the eigenvalues of CL and apply a SVD to identify and 
drop the linearly dependent features. 

Consider a simple 2-class 2-feature statistical identification problem. A train-
ing set of hundreds of feature samples is used to determine the feature means 
and covariances for each class. The 2-dimensional problem is nice because its easy 
to graphically display the major concepts. However, a more typical statistical pat- 
tern problem will involve anywhere from one to dozens of features. The 1-0  bounds 
o n  a ’-feature probability density function can be seen as an ellipse centered over 
the feature means and rotated to some angle which accounts for the cross correlation 
between the features. For our example, class 1 has mean m 1= [7.5 81 and covariance 
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matrix 

& = [ cos 01 - sin 01 ][3.00 0.001[ cos 01 sin 01 
sin01 cos01 0.00 1.00 -sin01 cos01 1 

1 
(14.1.11 )

1.2412 -1.3681 
-1.3681 8.7588 

where O l  = - 80" and a positive angle is counter-clockwise from the slaxis. Class 2 
has mean nzz=[7 71 and 

cos 0 2  - sin 021 [2.00 0.001 [ cos 0 2  sin 02 1c2 = 
sin02 cos02 0.00 1.00 -sin& cos02 (14.1.12)
3.6491 -0.9642 

-0.9642 1.3509 

where 02= -20". The columns of the rotation matrices on the left in Eqs 
(14.1.1 I)-( 14.1.12) can be easily seen as eigenvectors. The columns of the covariance 
matrix on the right are not linearly dependent, but are simply correlated through the 
coordinate rotation. Clearly, given the symmetric covariance matrix on the right, 
one can determine the principal variances and rotation orientation. In the 3-feature 
problem, the 1-0 bound on the Gaussian density function is an ellipsoid with three 
principal variances and two rotation angles. The reader is left to his or her own 
mental capacity to visualize the density graphics for 4 or more features, but one 
can clearly see the connection between eigenvalue analysis and feature independence. 
For the case of linearly dependent features, one would compute a near zero 
eigenvalue on the main diagonal of the principal variance matrix. 

Figure 2 depicts 50 samples from each of our two classes and the 1-0 ellipses for 
the Gaussian density functions. The case shown has the two classes overlapping 
somewhat, which is not desirable but often the case for real statistical pattern rec- 
ognition problems. The two classes are defined statistically based on the measured 
means and covariances associated with each class through analysis of a training 
data set. One can then do an eigenvalue analysis to determine if any of the features 
are linearly dependent and need to be eliminated. The ideal situation would be 
for the density functions for each class to completely separate in the feature space. 
In other words, we desire to have large distances between classes and small variances 
around each class. Given a situation where we do not have wide class separation, the 
issue of class discrimination because important. Following Eqs (14.1.3)-( 14.1.4) we 
can estimate the probability of class w k  being present given feature set X. 

However, we also want to reject outliers which are well outside the range of the 
entire training samples for all classes. To do so, we derive a new function based on 
the probability density functions of the classes and total training data. 

(14.. 1.13) 

The function in Eq. (14.1.13) is not a probability density, just a function to help us 
define the decision boundaries for our classes. Because we're dealing with only 2 
dimensions, this approach is highly illustrative but not likely practical for larger 
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Figure 2 Samples of a 2-feature 2-class pattern set showing the 1-0 ellipses for the 
Gaussian density functions for each class and some of the samples in plotted in feature space. 

numbers of features. At the boundaries between the two class density functions and 
at the ellipsoidal perimeter where the training density falls below 0.01 (about a 
3-0 Mahalanobis distance) there will be abrupt changes in slope for pma‘(S). 
Therefore, we can apply some straightforward image processing edge detection 
to highlight the decision boundaries. Now lets create an “edge” function as follows 

where the 8th root is used to “flatten” the function towards unity -- again to enhance 
our ability to see the decision lines, which are analytically very difficult to solve. 
Figure 3 shows the results of Eqs (14.1.13) and (14.1.14). The dark ellipsoidal rings 
are simply the areas where the class density functions have a near zero second deriva- 
tive spatially. The bright lines clearly show the boundaries between classes, which in 
this case overlap, and the boundary for defining outliers. Figure 4 combines thcsz 
edges with some logarithmically spaced contours for the function in Eq. (14.1.13). 
Depending on where the feature combination [slx2Jfalls on this map, the statistical 
classifier will assign the sample to class 1, class 2, or outlier. In addition to making 
this decision, the algorithm can also provide probabilistic metrics for the confidence 
in the decision which is very valuable to the data fusion occurring in an intelligent 
sensor sys tem. 

Adaptive Neural Networks are a very popular approach to separating classes 
of data automatically. The concept is based on a biological model for neuron cells 
and the way electrochemical connections are made between these fascinating cells 
during learning. In the brain as connections are made between neurons at junctions 
called sJ*ncrp.sr.sto create neural pathways as part of learning, chemicals are 
deposited which either inhibit or enhance the connection. Each neuron can have 
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Figure 3 The thin bright lines of this 8th root LaPlacian of the composite maximum den- 
sity shows the boundaries between the two classes as well as the boundary for a 3-0 total 
training data set. 

Figure 4 The outliers as well as class overlap is easily seen from simple edge-detection of 
the composite maximum density excluding any samples more than 3-a from the total training 
set mean. 
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from 1,000 to 10,000 synapses. The human brain is composed of approximately 20 
billion neurons. Beware, individual neural capacity will vary from one individual 
to the next. The effort-achievement response curve follows a natural logarithm, 
which means that all humans possess the ability to be infinitely stupid when zero 
effort is applied. The number of possible interconnections and feedback loops is 
obviously extraordinary. Even more fascinating, is the fact that many of these con- 
nections are preprogrammed genetically and can be “forgotten” and re-learned. 
While philosophically and biologically interesting, we will explore these issues 
no further here and concentrate specifically on the “artificial neuron” as part of 
the most basic adaptive neural network based on the generalized delta rule for adapt- 
ive learning. The reader should be advised that there is far more to adaptive neural 
networks for pattern recognition than presented here and many issues of network 
design and training which are beyond the scope of this book. 

The basic artificial neuron is seen in Figure 5 where each of N inputs are indi- 
vidually weighted by a factor q,k and summed with a bias term to produce the inter- 
mediate signal netj. During the learning phase of the neural net, adaptive 
algorithms will be used to optimize the weights and bias at each node for every 
pattern of interest. 

N 

(14.1.15) 

The bias term in netj is like a weight for an input which is always unity. This allows 

Figure 5 The ‘7th neuron” showing N inputs each with weight q,  a bias term h, and the 
activation function J’(net,) to nonlinearly limit the output O j .  
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the neuron to have an output even if there are no inputs. The most typical of designs 
for an artificial neuron “squash” the signal netj with a nonlinear activation function. 
This limits the final output of the neuron to a defined range (usually 0 to 1)  and allows 
for a transition rather than a “hard clip” of the output between a zero or one state. 
By avoiding the “hard clip” or step response, and by limiting the range of the neural 
output, more information can be preserved and balanced across the outputs from 
other neurons such that no one pathway dominates. The most common activation 
function is the sigmoid. 

( 14.1 .16) 

The output of thejth neuron o, given in Eq. (14.1.16) and seen in Figure 5 is a 
nonlinear response of the inputs to the neuron iJk,  the weights r i j h ,  and the bias 
b,. The parameter c in Eq. (14.1.16) is a gain factor for the nonlinearity of the acti- 
vation function. As E becomes large evan a small positive net, will drive the output 
to unity or a small negative net, will drive the output to zero. The choice of E ,  

the activation function, as well as the number and size of the hidden layers is 
up to the designer to choose. This coupled with the difficulty of a complete signal 
analysis in a neural network fuel the skeptics criticism of the approach. However, 
when applied appropriately, the adaptive neural network is a valuable and practical 
tool. 

The optimization of the weights and bias terms for each neuron are calculated 
using error back propagation and the generalized delta rule (GDR). The G D R  
is very similar to the least-mean square (LMS) adaptive filter algorithm seen in Sec- 
tion 9.2. In fact, the man acknowledged with developing the LMS algorithm, Prof. 
Bernard Widrow of Stanford University, is also a pioneer in the development of 
adaptive neural networks. The back propagation algorithm is a little more subtle 
to understand. Consider the very simple network for classifying two features, s1 
and x2, into two pattern classes, w1and w 2 ,  seen in Figure 6 Each of the numbered 
circles represents a node seen in Figure 5. The two network outputs o4 and os, 
are ideally [ I ,  01 when the features are from class 1, and [0, 11 when the features 
are from class 2. To make this happen, the weights and bias for each node must 
be adjusted to reduce, if not minimize the error at  the network outputs. It is therefore 
straightforward to apply an LMS-like update to the weights and bias of each output 
node. But what about the hidden layer(s)? Back propagation of the error is used by 
taking the output layer node error, multiplying it by the weight between the output 
layer and the particular hidden layer node, and then summing all of the back propa- 
gated errors for that particular hidden layer node. The process continues using the 
output error for all the nodes in the hidden layer closest to the output layer. If 
additional hidden layer exist, the back propagation continues using the back propa- 
gated error rather than the actual output error. The weights and bias for each node 
are adjusted using the G D R  until the output and back propagated errors becomes 
small, thus converging the neural network to a solution which separates the pattern 
classes of interest. 

For the pth pattern class, we follow the nomenclature of the literature, we 
designate the node inputs ;:and output o,!’ and the “training output” for class p 
as t p .  There are several phiiosophies about how the train the network, and contro- 
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~ n p u t ~ a y e rX Outpu t  Layer  
Hidden  Layer  

Figure 6 A simple 2-feature 2-output class neural network showing the 3-node hidden 
layer and the inputs and outputs of each node as part of a back propagation algorithm using 
the generalized delta rule. 

versies with regard to over-training and extendability of the network result to data 
outside the training set. For example, one can train the net to identify only pattern 
p ,  and when testing for pattern p use those specific weights and biases. Therefore 
each class is tested using its optimum weights. Another more efficient approach 
is to train one set of network weights and biases to discriminate all the patterns 
of interest This is seen as more robust because the classes are directly compared. 
For an output node, the training error squared is seen to be 

( 14. I .  17) 

For a linear FIR filter, this error is a linear function of the filter coefficients. 
Therefore, the squared error can be seen as positive definite surface which has 
one minimum reachable by a series of weight adjustments in the direction opposite 
of the gradient of the squared error with respect to the weights. However, herein 
lies perhaps the biggest inconsistency of the neural network derivation: the error 
surface is rarely known and generally has multiple minima due to the nonlinear 
response of the sigmoids. Ignoring this point of lack of rigor, the neural network 
enthusiast is generally given to point out the success of the algorithm at separating 
classes. Wc.hive no N U J ~  of‘knoii’iiigidwtIier the netirwrk is the optiiiirrrii r1 twork ,  
~> / i c> t l i e rU c i i l f c w n t  nirnihtv-oj’notles cincl hiclilen lei?*er,s\\-ill pecforrn hut tor ,  or  \thc-lther. 
tlw training U / ’  the nc)t\r*orkis cwmplutr. One just has to accept this lack of math-
ematical rigor and optimization to move on and make use of this curious and useful 
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algorithm. The gradient of the error is 

( 14.1.18) 

We can apply the chain rule again to break the error gradient down even further as 

(14.1.19) 

The gradient in Eq. ( 1  4.1.19) is broken down into its components. The gradient of the 
squared error with respect to output (Eq. (14.1.17)) is 

( 14.1.20) 

The gradient of the output with respect to the weighted sum of inputs (Eq. ( 14.1.16)) 
is 

(14.I .21) 

and the gradient of the summed inputs and bias (Eq. (14.1.15)) is simply 

atl(.t; -
- ‘IX (14.1.22) 

a’ljh 

The sensitivity of the pattern error on the net activation is defined as 

( 14.1.23) 

and will be used for back propagation to the hidden layer(s . The weight adjustments 
using the GDR are simply 

i l l x I ,  = i l l x ,  + 2116;i!; ( 14.1.24) 

where the parameter p is analogous to the LMS step size, but here is referred to as the 
“learning rate.” If  the feature inputs to the neural network are scaled to be bounded 
with a f I range, it’s a fairly safe bet that choosing a learning rate less than, say 0.10, 
will yield a weight adjustment free of oscillation and allow the network to coinwge 
reasonably fast. The learning rate does effect the “memory” of the network during 
training such that a slow learner remembers nearly everything and a fast learner 
may forget the oldest training data. There’s an interesting human analogy as \+.ell 
where many forms of mental retardation are characterized by slow highly repetitikre 
learning and excellent long-term memory, while high mental capacity is often accom- 
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panied by very fast learning and surprising mid to long term memory 
“forgetfulness”. Decreasing the learning rate (increasing the memory span) is advis- 
able if the feature inputs are noisy. 

The node bias term is updated as if its corresponding input is always unity.  

(14.1.25) 

Each neuron receives a set of inputs, weights each one appropriately and sums 
the result in neti, then passes the linear result through the activation function (the 
sigmoid in our example) to produce the neuron node output. At the output layer 
of the net, this is the neural network output used for class decision. For a node 
in a hidden layer, the neuron output is passed to the inputs of many other nodes 
in the next layer towards the output layer, if not the output layer. The pattern 
sensitivity for a hidden layer node is calculated by summing all the pattern 
sensitivities times their corresponding input weights for all the nodes in the next 
layer towards the output layer that its output is passed as input. 

( 14.1 2 6 )  

In other words, if the output of node 15 is passed to nodes N I=37 through N 2=42 in 
the next layer towards the output layer, the pattern sensitivity for node 15‘s weights 
and bias updates is found from the impact its sensitivity has on all the nodes it affects 
in the next layer. This is intuitively satisfying because the weight and bias adjust- 
ments near the feature input side of the network are specific to the feature inputs 
but affect most of the network outputs, while the weights and biases near the output 
layer are specific to the trained network output and encompass most of the feature 
inputs. 

To summarize, given a trained neural network with k pattern classes and M 
features, one presents the A4 features for an unknown pattern observation to the 
input layer, computes the node outputs layer by layer until the network outputs 
are complete, and then chooses the largest output node as the class for the unknown 
pattern. Usually, the input features and trained outputs are bounded by unity to 
simplify the output comparison and net training. To train the neural network, 
the following procedure is acceptable: 

1. The number of input layer nodes equals the number of features. There is at 
least one hidden layer with at least one more node than the input layer. 
The number of output nodes is equal to the number of patterns to be 
identified. 

2. The weights and biases for each node are randomized to small values. 
Neglecting to randomize will lead to symmetry of the network weights 
and no real convergence. Small values are chosen to avoid “swamping” 
the sigmoidal functions or having one path dominate the network error. 
The inputs and outputs are bounded by unity to simply setting the 
learning rate and class selection from the maximum output node. 

3.  During training, the input features for the given class are presented to the 
input layer and the network outputs are computed layer by layer (Eqs 
( 14.1.15)-( 14.1.16)). 
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4. The “training error” is calculated for the output layer from the difference 
between the desired training output and the actual network outputs. The 
pattern sensitivity (Eq. (14.1.23)) is calculated for each output layer node. 

5. The weights and biases for the inputs to the output layer nodes are 
adjusted (Eqs (14.1.24)-( 14.1.25)). 

6. The pattern sensitivity for the hidden layer nodes are calculated (Eq. 
(14.1.26)) and the corresponding weights and biases are adjusted (Eqs 
(14.1.24)-( 14.1.25)). 

7 .  Steps 3-6 may be repeated several times for the same input features until 
the error gets small, and/or steps 3-6 are repeated for a large number 
of known sample patterns constituting the pattern training set. 

Figure 7 gives an example with the network output for class 1 shown as a 
surface plot where the input features form the x and y coordinates of the surface. 
There are two Gaussian data sets, class 1 with mean (4.5, 6.0) and class 2 with mean 
(8.0, 10.0). The neural network depicted in Figure 6 is trained with samples from 
class 1 normalized to the interval (0.0, 1.0) and the output for class 1 (node 4) 
set to unity and class 2 (node 5) set to zero. The training process is repeated with 
feature data from class 2 and the network output for class 1 zero and class 2 unity. 
The weights and biases for the network are then fixed and the output for class 1 
is evaluated for every combination of features to produce the surface plot in Figure 7 
For illustration, the Gaussian training data sets are superimposed over the surface. 
Clearly, the network does a good job separating the two classes. A more complex 

Figure 7 Neural network output “surface” for class 1 ( x )  showing the scatter and 
Gaussian ellipse superimposed for both class where class 2 (0)is deselected in the class 
1 output. 
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network with more hidden layers and more nodes in the hidden layers could separate 
the classes with even greater deftness. This is more of an issue when the classes are 
closer together with larger standard deviations such that many of the training sample 
overlap. Surprisingly, the neural network still does a good job separating overlap- 
ping classes as can be seen in Figure 8 where the class 1 mean is (8.0, 9.0) and class 
2 mean is (7.0, 6.0). The decision is clearly less confident due to the overlap, but 
it still appears reasonable by most metrics. 

A much more sophisticated neural network (more layers, nodes, and more 
extensive training) might very well completely separate the training set classes 
with a decision boundary which winds its way between the samples in the overlap 
area. Therefore, if the training data is not random but rather simply complex, the 
sophisticated neural network with many layers and nodes should do an amazing 
job at memorizing which feature combinations go with which class. The converged 
network provides a fast nonlinear filter where the feature are inputs and the class 
decisions are outputs. This is of particular value when high quality training data 
is available, the class boundaries are far more complicated than Gaussian 
boundaries, and one is fairly confident that the actual feature data during usage 
is well represented by the available training data. Many scientists and engineers 
who have used neural networks can be described as enthusiasts because they 
are witnesses to the power of this adaptive nonlinear process to effectively sep- 
arate complex classes. However, the extendability of the network performance 
to data covering a range outside of the training data is, like with statistical 

Figure 8 Neural network output “surface” for class 1 (x )  when the two classes overlap 
significantly in the training set showing a still operable, but less confident classification 
capability. 
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classification, questionable. To address the problem of extendability, one can use 
fuzzy logic and inferencing networks to build in human knowledge into parts 
of the network. 

Syntactic Pattern Recognition is used when one can establish a s j w t ~ i . ~ ,or 
natural language to describe the way various pieces of information fit together 
in a pattern. Detection of the various information pieces can be done using statistical 
or neural network-based algorithms, but now we add a layer of logic where pattern 
data and confidences are fused together. Rather than insist that all class patterns 
be completely separate, we allow conflicting pattern estimates to co-exist for the 
benefit of subsequent data fusion to make a more balanced, informed decision. 
I f  all the information is binary (true or false), straightforward hard logic (and, 
or, if, then, else, etc., operations in software) can be used to construct a network 
for processing information. Given the human knowledge in the logic network, good 
performance can be expected outside the training data. I f  not, the flawed logic 
can be identified and corrected. You may remember this from grade school as 
thc  scieti1ific nzcthod and it has worked so well for humans over the last few centuries 
that one should certainly consider employing i t  in computer artificial intelligence. 
The niciiri diffim/tj7 i s  tlicit oiic riiust kiiow the s j v i t ~ ~ .  Given the syntax rules, 
one can also employ the ability to discount information with low confidence in favor 
of higher confidence information and balance combinations of required and alter- 
nate information through weights and blending functions. Ultimately, the syntactic 
logic must have physical meaning to humans. This last point is quite important. 
For syntactic pattern recognition to reach its full potential in automatic target 
recognition, we humans need to be able to learn from flawed logic and correct 
the syntax to account for what has been learned. A flow diagram for the syntactic 
classifier can look very much like a neural network, but the weights, biases, acti- 
vation functions, layers, and interconnections all have physical meaning and 
purpose. In a well understood syntactic classifier, no training is required to adjust 
weights or biases. However, it may be prudent to automatically adjust weights 
in accordance with the feature information confidence so that unreliable (low 
SNR for example) data can be automatically removed from the ATR decision. Syn- 
tactical classification algorithms can be found in commercial software for speech 
and handwriting recognition, decision aids for business logistics, autopilots, and 
even for product marketing. 

The first algorithm needed to implement fuzzy logic is a @zjy s e t  nimiber.sliip 
firnctiori which allows one to control the transition between “true” or “false” 
for set membership. This transition can be anywhere from a step function for “hard 
logic” to the sigmoid given in Eq. (14.1.16) where epsilon is small. We call this 
a blend function p(s) .  The blend function allows one to control fuzzy set 
membership. Why would one need to do this? Consider that we are combining, 
or fusing, multiple pieces of information together to achieve a more robust decision 
on the current pattern, or situation of patterns. This can be seen as a sort of 
s it 14a t ioI z (i 1 nwa reness a r t ificia11y estimated by the c omput e r a 1g or it h m . Va r ious 
pieces of information with individual confidences are combined where we want 
no one piece of information to dominate. We want a flexible outcome depending 
on the quality and availability of information. By blending or smoothing the decision 
thresholds, we can design the amount of “fuzziness” or flexibility desired in the data 
fusion and situational awareness algorithms. The following blend function (3 )allows 
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a great deal of design flexibility. 

= h,.y 5 U 

P ( a , h, c‘, d,  -U) = [d+ b + (d - h)sin 

= d, .v  2 c‘ 
(14.1.27) 

A plot of the blend function in Eq. (14.1.27) is seen in Figure 9 for values cz =0.9, 
h = 1.5, c =4.5 and d= 0.1. This simple function allows one to easily set the maxi- 
mum “Confidence” for the blend function, the minimum “confidence”, and the 
transition points for a sinusoid between the maximum and minimum. Furthermore, 
the blend function in Eq. (14.1.27) offers a great deal more flexibility than the 
sigmoid of Eq. (14.1.16) in controlling the transition between one state and the next. 
Figure 10 shows an example class pattern membership function derived from two 
blend functions to describe the average overweight person in terms of body fat. Note 
that the minimum and maximum confidence, as well as the transition zones are at  the 
users discretion. 

The next operator needed is afuzzy A N D function which will allow fusion of 
multiple pieces of information, each weighted by a corresponding “supportive” 
coefficient. We will use the same weight symbol as for the neural net q,?/x (kth weight 
at thejth AND node) to keep terminology simple. The fuzzy AND function is used 
when one has the condition where any one information measure false (zero) will 

Property Value 

Figure 9 A blending function or “sigmoid” is used to map a property value to a confidence 
measure. which only in some well defined cases can be a statistical confidence. 
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Figure 10 A "double blend" function is used to describe an example class membership 
confidence for typical overweight people in the developed world. 

cause the resulting decision to be false (zero). If the supporting weight qlk is close to 
unity, the corresponding information can be seen as required while if the supporting 
weight is small, the information is merely not important to the decision. To insure 
that lesser important information does not cause the A N D  to always produce a near 
false output, the fuzzy AND function is defined as 

(14.1.28) 

Note how if the supporting weight is small, the corresponding term in the product 
does not become zero causing the result of the fuzzy AND to be false. Also note 
that if the sum of the supporting weights is large, the exponent ZI will tend towards 
0.1. This has the effect of making the result of the fuzzy AND compressed towards 
unity if true, and zero if false. 

Finally, we need a fuzzy OK function for cases where we are fusing information 
together where if any one of the pieces of information is true, the result is true. The 
intuitive mathematical operator to represent this is a Euclidian norm of each of 
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the nputs to the fuzzy OR node times its corresponding supporting weight. 

( 14.1.29) 

The inputs and supporting weights are typically bounded between zero and 
unity.  But, for any range of inputs and weights, the maximum value of any 
input-weight product is guaranteed to be less than or equal to the Euclidean norm. 
This is a reasonable place for the transition point of the blend function between 
true and false. I f  only one input is used, a step-like blend function is reasonable 
because no ORing is actually happening. As more inputs are used, we want the blend 
to span a wider range since more inputs increases the likelihood of a true result. Note 
that is all the inputs and supporting weights are unity, the Euclidean norm is simply 
fl.Therefore, our fuzzy OR function is described using a Euclidean norm in a 
blend function as given in Eq. (14.1.30). 

( 14.1.30) 

The blend transition is symmetric about only for N 5 4. If more than 4 inputs are 
used, we start the transition at zero and bring it  to unity at n,but i t  is less than 
0.5 at U / .  This is largely the users choice. The blend implementation of the fuzzy 
OR keeps the output bounded between zero and unity. 

When all the fuzzy logic inputs and outputs are bounded gracefully to a range 
between zero and unity,  negating, or the NOT operator is a simple matter of 
subtracting the confidence (input or output) from unity.  Now we have the capa- 
bility to build all the usual logic operators AND, OR, NOT, NAND, NOR, XOR,  
etc, but in "fuzzified" format. Applying the blend function when the transition is 
rather sharp can be seen iis adding back in the "crisp" to the logic. Humans build 
the logic to represent the known syntax and information. The fact that blend 
points, weights, and minjmax values are set by the user should not imply a guess 
(a t  least not in all cases), but rather a placeholder to embed the physics the scientific 
niethod has taught us by derivation and experiment. Humans correct the logic 
based on observation and new physics built into the problem. In some cases i t  
may be desirable 11s well to do  some machine training and parameter optimization 
a s  seen for the neural network, which is always tempting. However. the real power 
of syntactic pattern recognition is possessing the correct knoc\ledge that leads to 
the right syntax. 

Finally, we can even employ a uray to resolve a case where two or more inputs, 
representing the same general information, are conflicting thus giving rise to a state 
of confusion. Identifying a confusion pattern internal to the syntactic fuzzy network 
is extremely interesting and useful. For example, if A is true, AND B is false, AND C 
OR D is false. AND E is true, AND B AND C are not confused, THEN pattern Z is 
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present. Measuring and using a confusion metric as part of the pattern recognition 
problem brings in a level of “self-objectivity” to the artificial intelligence. This 
can be an extremely important step in rejecting false alarms. Figure 11 shows a con- 
fusion blend function based on /?(- 1,2 1, 0, ds,,), where d ~ ~ ,represents the difference 
in confidence (difference in input or output values) for two pieces of data 
representing the same information. When this difference is significant, the infor- 
mation is conflicting giving the syntactic algorithm confusion to deal with. The 
nonlinear blend function is useful in completely controlling the emphasis on con- 
fusion based on the information conflict. 

To illustrate the power of syntactic pattern recognition, we present several 
spectrograms of bird calls seen in Figures 12-14 Several useful features can be 
extracted and sequenced from the spectrograms as seen in Figure 15 However, 
in order to correctly identify the bird calls, we must establish something called a 
finite state granmar. The strings of features must follow a specific order to match 
the bird call. This natural language is established from human application of the 
scientific method. Making the computer follow the same syntax is a matter of 
technique. Figure 16 shows one possible syntactic fuzzy logic to identify the 
Screaming Phiha bird song from the Blue Jay and Musician Wren. The weights 
are seen as the numbers next to the signal flow arrows and the boxed letter “B” 
depicts a blend function. The OR operator is assumed to also have its blend function 
built in. When the sequence is observed, the confidence output for the Screaming 
Phiha will be high. Dropping the “not quiet” confidences for simplicity, the 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Property Confidence Difference 

Figure 11 A confusion metric is derived by mapping the difference in confidences between 
two properties such one can control the amount of estimated confusion using a modified blend 
function. 
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Figure 12 Spectrogram of Blue Jay showing quick pair of downward chirps (1 kHz 
fundamental weak, strong 2nd, 3rd, and 4th) followed by a wider spaced pair of constant 
harmonic bursts. 

Figure 13 Spectrogram of Screaming Phiha showing a quick 1 kHz burst, followed by a 
chirp up to 5 kHz, then another quick chirp from 1.5 kHz to 5 kHz, followed by a down 
chirp to 1.5 kHz and a short hold. 
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Figure 14 The remarkable signature of the Musician Wren showing a series of melodic 
steady “notes” from 1 kHz to 3 kHz which almost repeat as a pattern. 

Figure 15 Block diagram showing the sequencing of features of the bird call spectrogram. 
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1 .o
Cf(T-3,  Not Quiet) 

Cf(T-3, Up Fast) 

Cf(T-2, Not Quiet) O'* \ 
Cf(T-2, Up Fast) 7-

Cf(T-1, Down Fast) 

1 .o 
Cf(T, Constant) 

Cf(T, 2k) 
0.5 Cf(T, Screaming Phiha) 

Figure 16 Fuzzy logic for computing the confidence that the spectrogram feature sequence 
matches the finite state grammar of the Screaming Phiha bird in Figure 13. 

Screaming Phiha confidence at time T, C.'f(T, SP),  fuzzy logic can be written as 

C f (T ,SP)  = 0.8 * [Cf'( T ,  constant) A 0.9* 

0.5 * C'f( T ,  Ik)v 0.5 * C'( T ,2k) C f (T - 1 ,  t i o ~ ~jirst) 

A I 0.7 * cf'(T - 2 ,  UpfhSt)A Cj'(T - 3, LcpfU.st 

(14.1.31) 

Where the A symbol depicts a fuzzy AND and blend function and the symbol v 
depicts a fuzzy OR function with its inherent blend operator. Similarly, the Blue 
Jay signature seen in Figure 12 confidence, Cf(T, BJ) ,  can be written as 

Note that one can invert the "fuzzy true-false" by simply subtracting the confidence 
from unity.  The Musician Wren confidence (signature seen in Figure 14) is derived 
from a series of constant frequencies which are different from time to time. This 
confidence Cf;(T,M W )  is a little more complicated to implement, but is still 
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straightforward. 

Cf(T , M W )= Cf(T , consturzt) 

A C f ’ ( T , I k ) A [ l - C f ( T - l , I k ) ] A [ I  - C f ’ ( T - 2 , I k ) ]  

V cf(T ,2k) A [ I  - Cf( T - 1,2k)]A [ I  - Cf( T - 2.2k)l 

(14.1.33) 

The output of the syntactic classifier is all of the pattern class confidences. One 
can choose the one with the highest confidence, say above 0.5, or choose none if the 
confidences for any one class are too low. The power of the syntactic technique 
is that the algorithm is a completely general way to implement may forms of human 
logic on a computing machine. Inference engines which generate logic from rules are 
the basis for many powerful languages such as LISP and PROLOG. The main chal- 
lenge for the programmer is that one has to master the syntax of the problem. 
In other words, for a solid solution, one needs to explicitly follow the physics 
and use credible signal processing technique to determine the data confidences going 
into the syntactic classifier. The information “supportive weights” and choices for 
blend, AND, and OR functions are more a function of the required logic than 
the dynamic data quality. 

One other important technique in classification in the hidden M~irkovmo&/. A 
Markov chain is a sequence of states of something where the state transition is 
defined using a probability. When a classifier is constructed based on a sequence 
of pattern class decisions, often achieving a finer or more specific resolution with 
each sequential decision, i t  is said that the classifier is based on a hidden Markov 
model. This technique is widely used in speech and handwriting recognition, and 
interpretation. The difficulty is in defining the transitional probabilities. The 
syntactic classifier technique described here can also be based on a hidden Markov 
model. Furthermore, its inputs could be generated from statistical classifier metrics 
or  the outputs from a neural network. 

The syntactic fuzzy logic classifier technique is completely general and can be 
the basis for data fusion of all types to achieve the response which best produces 
artificial intelligence. Defining machine intelligence is still a somewhat subjective 
thing to many people, even computer scientists. However, we can assert a “layered” 
vision of machine intelligence. At the base one has sensors capable of producing 
calibrated physical data with some confidence measure. A the next layer, various 
feature extraction occurs with straightforward signal processing algorithms which 
carry forward the sensor confidence metrics. For example, an FFT and beamforming 
algorithm improves the SNR by a certain degree, thus allowing one to assert the 
probability of detection of a spectral peak on the output of the beamformer. At 
the third layer, basic pattern recognition occurs through the use of statistical or 
neural algorithms, which again carry along the confidence metrics as well as use 
them to discount unreliable data. The user employs whatever feature/pattern rec- 
ognition algorithm which makes sense physically. Finally, a syntactic fuzzy logic 
classifier covers the top layer to fuse various pieces of information to produce 
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an overall “situational awareness” which includes the state of the intelligent sensor 
system as well as the environmental and sensor data. In the future when humans 
interact with an intelligent sensor, they won’t want to see waveforms, they’ll want 
to know the situation the system is identifying and whether the system is in a reliable 
state. Perhaps the people who built the intelligent sensor system might be interested 
in the waveforms, but the general public and those who must act quickly in response 
to the intelligent sensor will likely never see or know the details of what data and 
processing are occurring in the system. 

Like many of the topics covered in this book, we can only provide the reader 
with a very brief introduction to the important concepts. I t  is our hope that this 
encounter provides a fascinating view of the forest, with a more detailed view of 
a few typical and important trees. To get down to the tree bark and the rigor necess- 
ary to enhance or  develop new algorithms in this area, the reader should consult one 
of the many excellent texts on fuzzy logic and natural artificial languages for more 
details. Syntactic pattern recognition is used for speech and handwriting recognition, 
as well as many other fascinating applications which are well beyond the scope of this 
book. However, i t  provides us an opportunity to examine our own logic, developed 
using the scientific method. By employing these techniques together, we stand to 
enjoy great triumphs in computing if we are willing to accept the inevitable humility. 

14.2 SIGNAL AND IMAGE FEATURES 

Features are distinguishing artifacts which can be assembled to define a useable pat- 
tern for classification of a signal. However, a better description of a feature is uiz 
irlfbrniution c-oncentrutor, which makes the job of detecting a pattern that much 
easier. For example, a sinusoid can have its information concentrated into one 
complex number (magnitude and phase) with a corresponding frequency by an FFT. 
If in the time domain, the signal is an impulse or burst waveform, there is no point in 
doing an FFT since it will only spread the signal over a wider space making feature 
detection more difficult. For an image with regular patterns across the focal plane, 
the spatial domain (the viewable image itself) is the obvious domain to compute 
features, since they are already concentrated by focusing of the lens-aperture system. 
The wavenumber (2-dimensional FFT) domain obviously offers advantages of 
spatial processing, filtering, etc., but not necessarily feature detection, unless the 
viewable image consists of regular periodic patterns or textures which are 
well-represented by a few FFT bins. 

Our discussion will focus first on l-dimensional signal features, such as those 
from acoustic, vibration, or electromagnetic sensors, or sensor arrays. Our funda- 
mental signal is a “delta function-like” impulse, which can be integrated into step, 
ramp, quadratic, and higher-order functions. These signal classes are very important 
to identify for control systems as well as other applications. Next we consider peri- 
odic signals, starting of course with the sinusoid but extending into impulse trains. 
The impulse train can be seen as one case of a linear superposition of harmonically- 
related sinusoids. Another signal class is a signal distorted by a nonlinear operation, 
which also generates harmonics from a single sinusoid, and more complicated dif- 
ference tones when several non-harmonic sinusoids are present, These nonlinearit ies 
can be detected using higher-order spectra as seen in Section 6.1. Finally, we will 
examine amplitude and frequency modulated sinusoid features. 
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Modulation of the amplitude (AM), phase (narrowband FM), or frequency 
(FM) of a high frequency radio wave “carrier” is a fundamental method to transmit 
information. Other modulation schemes can also be used such as generating digital 
maximal length sequences (a random sequence which repeats precisely) to modulate 
amplitude, phase, or cause “frequency hopping”. These latter “spread-spectrum“ 
techniques are the basis for secure digital communications and allow many infor- 
mation channels to share the same frequency bandwidth. Rather than pursue signal 
intelligence gathering techniques, we will focus more on the natural occurrence 
of AM and FM modulation in rotating machinery. Fatigue condition monitoring 
of machinery is becoming economically viable thanks to low cost microprocessors 
and networking equipment. As this technology becomes proficient at predicting 
remaining useful life for machinery as well as the current failure hazard, enormous 
sums of capital are to be saved by industry as well as the military. 

It can be seen that a signal function can be uniquely defined if its value and all 
its derivatives are known for one input data point. I t  can also be said that if 
one has a large number of samples of the function at different input values, the 
function can be approximated accurately using least-squared error techniques or 
Fourier series. From physical modeling of the processes which give rise to the signal 
of interest, one can develop an understanding of the physical meaning of a parameter 
change in the signal function. So, given that one needs to detect some physical event, 
signal source type, or condition, the corresponding signal function parameter can be 
converted into a signal feature. 

Basic statistical measures of signals are perhaps the common way to charac- 
terize a signal. The most basic time-domain 1-dimensional signal features are 
the mean, variance and crest.fuctor, which is usually defined as the ratio of the peak 
to rms (standard deviation or square-root of the variance) signal parameters. 
However, the mean, standard deviation, and crest factor are generally the rest 
of some degree of integration of the signal over a finite period of time. By integration 
we mean the sample interval over which the average is computed for the mean and 
standard deviation, and the interval over which the peak factor is obtained for 
the crest factor. Statistical measures can also include higher-order moments such 
as skewness and kurtosis (see Section 6.1). Yet another statistical signal feature 
is its histogram, which measures the number of occurrences of a particular value 
of the signal. This is used quite often in image signals as well as 1-dimensional signals 
to characterize the probability density function of the signal. There are a number of 
well documented distribution which can approximate a given signal by setting just 
a few parameters of the probability density function, or its frequency-domain 
equivalent, the characteristic function. 

Signal characterization by derivative/integral relationships is a very generic 
way to extract primitive signal information. Consider the primitive signal functions 
given in Figure 17 One can clearly see going down either column the effect of 
integration. These integrals can have fairly simple features starting with whether 
they are “impulse-like”, “step-like”, “ramp-like”, etc. Some useful impulsive signal 
features are: which integral produces the step function; the width of the impulse; 
the height of the step; the slope of the ramp, and so on. Together, these features 
can provide a set of primitive descriptors for an impulsive-like signal. For example, 
the popping sound made when speaking the letter “p” is recorded in the top 
waveform in Figure 18The 1st integral shows a wide Dirac-like delta function rather 
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Figure 17 Primitive signal functions starting with the Dirac delta function (upper left) 
showing subsequent integration as  one proceeds down, and corresponding differentiation 
in the right column (linear amplitude vs. time). 

than the actual popping sound. This is somewhat typical for acoustic impulsive 
sounds which tend to be zero mean (unless there’s some sort of explosion). The 
characteristics of the step and ramp functions (2nd and 3rd integrals) should dis- 
tinguish this “pop” waveforms from other impulsive sounds. The integral is used 
to generate other features with the assumption that the high frequency components 
of the sound are not important for classification. This is certainly not universally 
true. However, signal integration is inherently less susceptible to noise than signal 
integration, and is generally preferred. 

Periodic signals have unique harmonic patterns which can be identified. 
Applying derivatives and/or  integration to periodic signals is not very interesting 
in general because the integral or derivative of a sinusoid is yet another sinusoid. 
Clearly, the periodic signal features are best concentrated in the periodogram of 
an FFT. This is straightforward enough for single sinusoids, where the amplitude 
and phase are sufficient descriptors. But for periodic waveforms in general, there 
is much going on which can be parameterized into features. Consider the following 
generic digital impulse train waveform. 

(14.2.1) 

To convert Eq. ( 14.2.1) to a physical time waveform, simply replace 12 by t =) IT,  
where T, is the sample interval in seconds. 
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Figure 18 The popping sound in the letter “p” is used t o  generate some impulsive signal 
primitive features for analysis of the type of waveform showing the 1st integral giving a mide 
delta function. 

The response of this impulse train, which repeats every N ,  samples and has 
peak width N,,. samples, is very interesting depending on the bandwidth factor 
bp. If 13/1 is an even integer, one has an alternating impulse train as seen in the 
top row of plots in Figure 19 The bottom row of Figure 19 shows p p  chosen as 
an odd integer giving rise to the even harmonics in the bottom right plot. In both 
cases, one sees either even or odd harmonic multiples up to the bpth harmonic where 
every other harmonic is exactly zero. This has to do with the integer relationship 
between N ,  and N,,,. When p p  is irrational, the function in Eq. (14.2.1) is not 
realizable without spurious glitches. However, is nice result is given even if both 
N ,  and N,,, are irrational but p p  is an integer. Note that as N,. becomes small 
and bplarge, the number of harmonics becomes large. As P,, approaches 2 our pulse 
train becomes a sinusoid and at  13,= 1 the waveform is a constant dc-like signal. 
To avoid aliasing, N,,,must be greater than or equal to 2. In Figure 19 the top pair 
of plots have N ,  = 100 and N,. = 10, giving an even /3”7- 10, thus causing alternating 
time domain peaks (Fs is 1000 Hz) and odd harmonics in the frequency domain. 
The bottom pair of plots have N , =  100 and N,,.= 11.1  1 1  1, giving an odd /3,=9, 
thus causing even harmonics in the frequency domain. A surprising number of peri- 
odic signals can be characterized in terms of even or odd harmonics. 

The Fourier transform provides the spectral envelope of the signal defined by 
the magnitude frequency response or a discrete number of frequency-magnitude 
points defined by a series of narrowband peaks. This envelope can be fit to a poly- 
nomial where the zeros provide a basis for signallsystem recognition, or one 
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Figure 19 Even and odd harmonic series are generated by the appropriately repeated 
impulse trains. 

can simply assemble the peak heights and frequencies as a pattern feature set for 
identification. Harmonic sets can be separated by a straightforward logic algorithm 
or  cepstral techniques. The dominant Fourier coefficients naturally serve as a feature 
vector which can uniquely identify the signal. 

Figure 20 compares the Fourier spectra of the spoken vowels “e” (top) and ‘‘0” 

(bottom). The narrowband peaks are detected as a means to minimize the number of 
data points to work with. One can clearly see from the graphs the higher harmonics 
in the 2 kHz to 3.5 kHz band which the mouth and nasal cavities radiate for 
the “e” sound. One can also see a difference in low frequency harmonic structure 
due to the acoustic radiation impedance at the mouth and its effect on the response 
of the throat and vocal chords. The details of this wonderfully complex sound gen- 
eration model could allow one to build a sensor system which can identify a par- 
ticular individual (speaker identification). Or, one could put together an 
“envelope” function for the overall spectral shape to simply identify the speech 
sound, or plzonenie. There are over 40 such phonemes which make up the majority 
of spoken languages. Commercially available and surprisingly affordable speech 
recognition software detects the sequence of such phonemes and connects them 
together using combinations of fuzzy logic, statistical detection, and hidden Markov 
models. Text is then produced which best matches the speech recognition results. An 
even more interesting artificial intelligence problem is developing a way for the com- 
puter to understand and respond correctly to the spoken sentence. This is already a 
big enough problem for humans giving rise to the need for lawyers and politicians. 
Can one imagine a need for “legal” algorithms for arguing between intelligent 
computing systems? How about b‘political’l algorithms to simply impose the syntax 
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Figure 20 Peak detection of the spectra for the vowels “e” and “0” permits a very simple 
feature element construction representative of the important signal components for 
identification. 

of one intelligent operating system on another? Such intelligent algorithms are being 
used to map legal and political strategies in simulations today. 

The log-amplitude of the Fourier coefficients is a great choice for feature 
elements because a wide dynamic range of signal can be used to parse the feature 
space. The phase of the Fourier coefficients is also important, but only if this phase 
can be made time invariant from one FFT data buffer to the next. For example, 
the processed Fourier transform could represent a cross-spectrum with a particular 
signal, or a transfer function, or coherence. For the phase to be meaningful for 
an ordinary periodic signal, the FFT buffer size and sample rate should be synchron- 
ized with the harmonic of interest to produce a meaningful phase. Otherwise, the 
FFT phase will not likely be ergodic enough to converge with some averaging. 
However, one must have a linear, time invariant environment for the Fourier envel- 
ope to represent something meaningful physically. This approach to generating 
signal features is so intuitive and straightforward that we will not pursue its expla- 
nation further here. But, its usefulness and importance are only overshadowed 
by its simplicity of application. This is probably the easiest way to generate signal 
features in an objective way, 

Distortions in signals can be characterized using higher-order spectra. This is 
because a transducer or system filter nonlinearity can cause frequencies to modulate 
each other, generating sum and difference frequencies as well as signal harmonics. 
Signal distortion is a very interesting and important identification problem. Signal 
distortion can be present for a wide range of signal levels, or only when the signal 
exceeds some loudness threshold, such as what occurs in amplifier “clipping” where 
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the output voltage is limited to a fixed maximum range. Generally speaking, signal 
distortion effects always get stronger with increasing signal amplitude. This is 
because small signal level swings with a nonlinear input--output response can easily 
be linearized over small range. 

A useful way to parameterize nonlinearity is the bi-spectrum. Recall from Sec- 
tion 6.1, Eq. (6.1.32), that an efficient way to compute the bispectrum is to first 
compute the FFT, then detect the dominant narrowband peaks, and finally directly 
compute the bispectrum on the relevant combinations of those peaks. Recall that 

c;(cu,,(!h)= E(X(tol)X(cuZ)X*(cu,+ COZ)} ( 14.2.2) 

The interesting thing about signal nonlinearity is the “phase coupling” between fre- 
quencies generated by the nonlinearity and their principal linear components. This 
is because the nonlinear signal generation is occurring at precisely the same point 
in time for all frequencies in the time waveform. Therefore, for all applications 
of Eq. (14.2.2) we have coherence between the X*(ml+ w2 ) component and the X(col) 
and X(tu2) principal waveforms. 

As an example, consider the case of two sinusoids. 

. ~ ( t )  + 02) ( 14.2.3)= A C O S ( ( O ~+ 0 2 )  + BCOS((O~ 

The signal in Eq. (14.2.3) is passed through a simple nonlinearity of the form 

.I!(t )= s(t ) + E X Z (  t )  (14.2.4) 

By simply multiplying the signal input - v ( t )  by itself one finds the output of 
Eq. (14.3.4). 

( 14.2.5) 

I t  can be clearly seen in Eq. (14.2.5) that the phases are coupled between the m l  and 
2toI terms, the (02 and 2c02 terms, and the sum and difference frequency terms. 
The “phase coupling” is very interesting and clearly shows how the bispectrum 
in Eq. (14.2.2) can detect such coherence between different frequencies in the 
spectrum. Normally, (i.e. for linear time invariant systems), we expect the phase 
relationship between Fourier harmonics to be independent, and even orthogonal. 
Thus we would expect no “coherence” between different frequencies in a linear sig- 
nal spectrum. But we do expect bispectral coherence between the phase coupled fre- 
quencies for a signal generated using a nonlinearity. Also note that Gaussian 
noise added to the signal but not part of the nonlinear filtering will average to zero 
in the bispectrum. The bispectrum is the feature detector of choice for nonlinear 
signals. 
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Amplitude and frequency modulation of  signals is often detected as part of the 
spectrum of a signal of interest. But the physical features of amplitude modulation 
(AM) and frequency modulation (FM) can be broken down and exacted in a number 
of different ways. AM signals simply vary the amplitude of the “carrier” frequency 
with the message signal amplitude. It is useful to transmit messages in this way 
for radio because the use of a high frequency carrier allows one to efficiently 
use relatively small antennae (the wavelength at 300 Mhz is about 1 m). FM signals 
can be further categorized into narrowband FM, or phase modulation, and 
wideband FM. A formal definition of narrowband verses wideband FM is defined 
from the modulation index, which is the ratio of the maximum frequency deviation 
to the actual bandwidth of the message signal, or the signal doing the frequency 
modulation. The modulation index can be scaled any way desired because the fre- 
quency deviation of the FM signal from its carrier frequency is proportional to 
the amplitude of the message signal. But the message signal has its own bandwidth. 
which may be larger than or smaller than the bandwidth of the frequency 
modulation, which is proportional to the message signal amplitude. When the 
FM frequency deviation is smaller than the message signal bandwidth, we call 
the modulation narrowband FM. Likewise, when the FM frequency modulation 
is greater than the message signal bandwidth it is called wideband FM. Wideband 
FM uses much more bandwidth but offers a significantly greater signal to noise ratio 
than narrowband FM. Narrowband FM and AM use about the same bandwidth but 
the FM signal will have less susceptibility to background noise. For digital signal 
transmission, the transmitted bandwidth is roughly the maximum possible bit rate 
for the channel. It is generally on the order or 90%)of the available bandwidth 
because of the need for error correction bits, synchronization, stop bits, etc. 

While the general public is most familiar with AM and FM signals from their 
radio dial, AM and FM signals arise naturally in the vibration and electromagnetic 
signatures of rotating equipment. By applying a little physics and some 
straightforward communications signal processing, a great deal of useful infor- 
mation can be extracted. Information on machinery condition, fatigue, and failure 
hazard is worth a great deal of capital for the following (just to name a few) reasons: 
unexpected equipment failures cause substantial damage to the environment, per- 
sonal injury, and even deaths; failures of critical machines can cause a sequence 
of much greater catastrophic failures; time based maintenance (fixing things before 
its really needed) is on average significantly more costly than condition-based main- 
tenance (CBM). 

A quick analysis of rotating equipment can start with three simple mechanical 
rules: (a) one cannot make a perfectly round object; (b) even if one could make 
a perfectly round object, one cannot drill a hole exactly in the center of it; (c) 
no two pieces of material are identical, respond to stress from heat or external force 
in the same way, nor will respond to damage the same way. Rolling elements will 
always have some degree of imbalance, misalignment, and non-constant contract 
forces with other rolling elements. These elements will produce vibration, acoustic, 
and in some cases electromagnetic signals which can be systematically related to 
the condition of the rotating elements. The contact forces between two rolling 
elements can be broken down into centripetal and tangential forces. For a pair 
of gears, the average vibration signal is a harmonic series of narrowband peaks with 
the dominant frequency corresponding to the gear tooth mesh frequency. The shaft 
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frequency is found by dividing the fundamental gear mesh frequency by the number 
of teeth in the given gear. The centripetal forces end up on the shafts, propagate 
through the bearings, and are seen as amplitude modulated vibrations of the gear 
mesh frequency. The tangential dynamic forces become torsional shear on the shafts 
and are seen as a FM component of the gear mesh frequency. A typical transmission 
will have a large number of mesh harmonics and AM and FM sidebands, which can 
be explicitly attributed to specific rolling elements by a computer algorithm. As 
the surfaces and condition of each of the rolling elements change, the vibration 
signatures will also change. Therefore, one can monitor the condition of a piece 
of machinery through careful monitoring the vibration and other signatures. Given 
this capability, one can then track changes in signature features to predict the 
number of hours until a failure condition is likely. Feature tracking will be discussed 
in more detail in the next section. 

A M  signals are common in vibration 

Consider a gear mesh frequency of 5 kHz and a shaft frequency of 100 Hz (50 gear 
teeth). Our modeled AM modulated signal is 

y(t )  = [ 1 + o! cos(o,~t)]  cos(w,t) (1  4.2.6) 

where r represents the amount of modulation for the 100 Hz shaft rate w , ~ , ,  
component and w, represents the 5 kHz carrier frequency component. Once-per- 
shaft-revolution modulations are seen to be physically due to out-of-round, 
imbalance, and/or  misalignment problems. Figure 21 shows the time and frequency 
domain signals for Eq. (14.2.6) using a sampling frequency of 20 kHz and o! = 1. 

Coefficients for twice-per-rev, three times per-rev, and so on, for the mesh 
frequency fundamental can be seen as Fourier coefficients for the overall surface 
shape of the rotating component modulating the sinusoidal fundamental component 
of the gear teeth Fourier transform. T o  observe pits, spalls, and cracks in the teeth, 
analysis is often done at 4 times the mesh frequency including the sidebands, if such 
high frequency vibration is detectable. For most turbine-driven transmissions, this 
type of vibration analysis extends well into the ultrasonic range of frequencies. 
Equation ( 14.2.7) depicts a general, multiple harmonic and sideband representation 
of an AM signal. 

(14.2.7) 
y= I m= I 

Figure 22 shows the time and frequency representation of Eq. (14.2.7) with Q=4 and 
M =  5 and a shaft rate of 350 Hz which better shows the sidebands on the plot. The 
A,  coefficients are assumed unity in the response in Figure 22 and the x ' ~ , , , ~were 
taken as 1 @  for demonstration purposes. One would expect that small surface 
wear would first be detectable up in the sidebands of the higher mesh frequency 
harmonics, which is the case. Many defects such as spalls, peals, pits, and crack 
can be detected early in the high frequency range of the vibration spectrum. When 
a crack first occurs, a spontaneous ultrasonic acoustic emission is detectable which 
for some materials can also be detected in the electromagnetic spectrum. Complex 
machines such as helicopter transmissions have been monitored for fatigue at fre- 
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Figure 21 100'%,AM modulation of a 5 kHz carrier representing a gear mesh frequency 
and a 100 Hz modulation representing the shaft rate fundament in the AM modulation model. 
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Figure 22 Time waveform (top) and linear spectrum (bottom) of a multiple harmonic 
5 kHz AM signal with sideband at multiples of 350 Hz. 
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quencies up to four time the mesh frequency, or well into the ultrasonic frequency 
regime. 

FM signals are more complicated but recently becoming of interest to CBM 
because the presence of internal cracks in gear teeth and shafts can decrease the 
mechanical stiffness when the gear is in a particular contact position. As such, 
as the Gear rotates, a dynamic torsional rotation error signal is produced which 
is seen as an FM component on the gear mesh frequency. Detection of such defects 
before they reach the surface is of great value because they are precursors which 
can be used to predict the remaining useful life of the machine. As the crack grows, 
stiffness decreases more dramatically, the FM increases, and eventually the crack 
reaches the surface leading to high frequency features, but perhaps only shortly 
before component failure. In the case of helicopter gearboxes, a gear failure generally 
means a complete loss of the aircraft and crew and the aircraft needs to be flying for 
the gear to have sufficient applied stress to fail. To complicate matters more, the 
mere presence of FM does not imply imminent failure. I t  is when FM and other 
fatigue features are present and increasing that provides the basis for mechanical 
fai1ure prognos t ics. 

FM signals are a little more complicated than AM signals. For a FM signal. the 
frequency sweeps up and down proportional to the amplitude of the message signal. 
Consider a very simple case of a carrier frequency CO(. and FM message sinusoid 
frequency (o,,~. 

j f t )  = cos(tu,.t+ [j sin(to,,,t)) (14.2.8) 

The term [j in Eq. (14.2.8) is just a constant times the message signal maximum 
amplitude for what is called phuse modulation, but is inversely proportional to 
the message signal frequency for FM. This is because the time derivative of the phase 
is frequency (or the time integral of the modulation frequency gives the phase). A 
more general representation of Eq. (14.2.8) is 

where the right-most exponential is periodic with period 2nl(o,,, sec. Therefore, we 
can write this as a Fourier series. 

+x: 
( 14.2.10) 

,,=-cc 


The coefficients of this Fourier series are 

(14.2.1 1) 

making a frequency domain representation of our simple sinusoidal FM signal seen 
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as an infinite sum of sidebands about our carrier frequency with carrier and sideband 
amplitudes dependent on the value of Bessel functions of the first kind, J, , (p) .  

Figure 23 shows are fairly narrowband FM signal where the carrier is 5 kHz, 
the modulation frequency is 100 Hz, and p is 0.5. The sample rate of our digital 
signal model is 20 kHz, so the amount of modulation relative to the carrier phase 
is only around 7c/2:0.5, or about 30%. This can be seen as a very narrowband 
FM or phase modulation. Figure 24 shows the same carrier and FM modulation 
frequency, but with a modulation p of 40. In terms of phase shift, the FM can 
be seen as over 2400%. The maximum rate of this phase change gives the approxi- 
mate maximum frequency shift of the carrier. 

4f  
-= p- z 20% (14.2.13)
.fi .A 

The approximation in Eq. (14.2.13) tells us that the carrier frequency is warbling 
around f 2 0 %  of the sample frequency, or 4 kHz, spreading the signal spectrum 
from around I kHz to 9 kHz. The spectrum seen in the bottom plot of Figure 
24 shows the spectrum used by the FM as approximately covering this range. 
Clearly, the greater the modulation, the more wideband FM looks "noise-like" 
in the frequency domain. The message signal can also be specified as a sum of Fourier 
components, which complicates the spectrum significantly more. 

For FM radio, we all know the signal-to-noise ratio benefits from personal 
experiences listening to FM radio broadcasts of music and other information. 
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Figure 23 An FM signal with very small modulation has a barely noticeable frequent) 
shift in the time domain and almost the same bandwidth requireriients as A M  in the frequency 
domain. 
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Figure 24 An FM signal with wideband modulation produces a very noticeable chirp in 
the time domain and gives a very complex noise-like spectrum. 

The reason the received signal is nearly noise-free is because the FM carrier is con- 
verted in an nonlinear way into the signal amplitude. At the receiver, the carrier 
band (typically about 40 kHz wide) is bandpass filtered and connected to a frequency 
to voltage convertor, which is really just a high-pass filter with a constant slope in its 
frequency response, followed by an rms integrator, which provides the recovered 
amplitude signal information. Harry Armstrong, one of the 20th century's great 
engineers, developed this technology as far back as the 1930s but unfortunately 
did not live to enjoy the financial benefits of his invention. He committed suicide 
after long and costly legal battles over the patent rights to this brilliant invention. 
His legal battle eventually prevailed. 

Rotational vibration signal often contain both AM and FM signals 

This poses a significant challenge and opportunity to exploit the features of 
rotational vibration to measure the mechanical condition or rotating equipment, 
But how can one tell the two apart? The challenge is seen as how to get the 
AM and FM "message signals" into orthogonal spaces. This is done with a knowl- 
edge of the carrier frequency and the Hilbert transform, define as 

(14.2.14) 

One can think of the Hilbert transform as a way of representing a real sinusoid 
as an equivalent complex sinusoid. For example, if one had a Fourier transform of a 
cosine function with frequency (I). !A the spectral signal will be at -01 and !A the 
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spectral signal will be at  +U. If the real input signal was a sine function, the ‘/2 of the 
spectral signal at  - cu is multiplied by - 1 and added into the complex sinusoidal 
representation. If the input to the Fourier transform is a complex sinusoid, no nega- 
tive frequency component exists. The Hilbert transform provides a common basis for 
representing sinusoids for frequencies up to ‘/z the sample rate for real signals, and up 
to the sample rate for complex time-domain signals. The inverse transform of the 
Hilbert transform gives us a complex sinusoid, which is what we need to recover 
the AM and FM signal components. 

Consider our combination of AM and F M  signal modulation. 

Figure 25 shows a time plot (top) and spectrum (bottom of an example combination 
AM and F M  signal where the AM modulation frequency is 100 Hz with 2 = 0.9 (90% 
AM modulation), and the FM modulation frequency is 40 Hz with p = 50 ( f2 kHz 
modulation) about a common carrier frequency of 5 kHz. By computing the Fourier 
transform of the real signal in Eq. (14.2.15), applying a Hilbert transform, and 
inverse Fourier transforming, one obtains a complex sinusoid y;i/(t),the real part 
of which matches Eq. (14.2.15). Therefore, we can demodulate the complex sinusoid 
by a complex carrier to obtain a “baseband” complex waveform. 

(14.2.16) 
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Figure 25 A combination of 40 Hz FM with p = 50 and 100 Hz AM with a = 0.9 produces 
a very complicated waveform in the times domain as well as frequency domain spectrum. 
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Or, for digital waveforms sampled at 2nj.i.=U,,, 

(14.2.17) 

which has the effect of producing a waveform with frequency relative to the carrier 
frequency. The amplitude of this complex waveform is the AM part of the 
modulation signal, and the time derivative of the phase (unwrapped to remove 
crossover effects at A n )  is the FM part of the modulation. Figure 26 depicts 
the recovered AM and FM waveforms clearly. 

There several important physical insights to report on this interesting 
modulation feature extraction example. If the AM modulation is greater than loo'%, 
a phase change will occur when the amplitude modulation crosses zero. This too can 
be recovered, but only if one is sure that no FM exists. For very complicated 
broadband signals as the modulation signal (also known as the message signal 
in communication theory), one is fundamentally limited by bandwidth and the 
carrier. If the message signal bandwidth is less than the carrier frequency, there 
is sufficient signal bandwidth for AM and narrowband FM modulation. The band- 
width of the FM signal is the bandwidth of the message signal fiuws [), which 
has the potential to cover a very wide bandwidth. In the frequency domain, one 
can easily select either finite width bands or select spectral peaks within a finite band 
to focus the complex message signal on specific parts of the spectrum. I f  the carrier 
demodulating frequency in Eqs (14.2.16)-( 14.2.17) are in error, a slope will be seen 
in the recovered FM waveform. One can adjust the demodulating carrier until  this 
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Figure 26 The AM and FM components are recovered using a Hilbert transform and 
demodulation in  the time domain to given the envelope and phase signals. 
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FM slope is zero to be sure of the correct alignment for a given FFT buffer. Finally, it 
can be seen that extracting AM and FM signal parameters clearly has the effect of 
focusing important signal information spread over many time waveform samples 
and spectral bins into a few salient parameters for pattern recognition and tracking. 

Lets test our modulation separation with a more complicated FM signal. Con- 
sider a pulse train where N ,  = 20 and N ,  = 400 as defined in Eq. (14.2. l), where the 
sample rate is 20,000 samples per sec. The fundamental of the pulse train is 25 
Hz with odd harmonics extending up to 475 Hz. This gives our message signal a 
total bandwidth of about 1 kHz, which is readily seen in Figure 27 The recovered 
AM and FM signals are seen in Figure 28 where one can clearly seen the recovered 
FM-only pulse train signal. This is a narrowband FM case because the total band- 
width of the FM signal is approximately the same as the bandwidth of the message 
signal. In Figure 29, we increase p to 10 such that now the bandwidth of the 
FM signal requires most of the available bandwidth of our 20 kHz-sampled 
waveform with carrier frequency of 5 kHz. Figure 30 shows the recovered FM signal 
which appears correct with the exception of a bias in the modulation frequency. This 
bias is caused by the angle modulation in our digital signal. 

(14.2.18) 

If the FM message signal times exceeds n in magnitude, the phase of the 
carrier wraps causing the bias error in the recovered FM message waveform. 
Curiously, this did not occur when the message signal was a pure sinusoid as seen 

Figure 27 A narrowband FM signal where the message signal is a pulse train with about 
1 kHz total bandwidth and /3 is 1 in the FM signal (no amplitude modulation is used). 
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Figure 28 Recovered FM and AM signal components for the pulse train FM signal with 
p =  1. 

Figure 29 Wideband FM signal (no AM is used) with the 1 kHz bandwidth message signal 
and p = 10. 
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Figure 30 Recovered AM and AM components from the wideband /j = 10 signal with the 
1 kHz pulse train message signal showing a bias in the recovered FM signal. 

in Figure 26. To understand why, consider that the frequency shift of the carrier is 
the derivative of the carrier phase in Eq. (14.2.18). The 40 Hz sinusoid FM message 
signal in Figure 26 with a p = S O  corresponds to a maximum frequency shift of 
2 kHz, which in terms of digital frequency shift is range of 0.771 to 0 . 3 ~ .  For the 
case of a non-sinusoid message signal, once f l  times the maximum of in[r1] in Eq. 
(14.2.18) exceeds or equals n, a bias error in the recovered FM message waveform 
is possible due to the higher harmonics of the message waveform. With p =  10 
and a maximum harmonic of 475 Hz in the message signal, most of the available 
spectrum ( 5  k H z f 4 . 7 5  kHz) is used for our pulse train message signal. If /? were 
increased beyond around 15 for our example waveform, the AM signal recovery 
significantly breaks down, and if increased further beyond around 40, neither signal 
can be accurately recovered. 

Two-dimensional features can be extracted from image data as well as other 
two-dimensional signals. Our discussion will focus mainly on image data, but as 
the image is broken down into edges and other features, one can easily extend 
the analysis to any two dimensional data, or even higher dimensional data. Again, 
drawing on our philosophy that features should represent concentrated signal 
information, imagery data can be broken down into two main groups: .foca/-p/anc~ 
. f~a turesand texture features. Focal plane features represent concentrated infor- 
mation on the focused image such as edges, shapes, local patterns, etc. Examples 
of focal plane features are generally the things we can easily recognize with our eyes 
and are improved by contrast, edge enhancement, etc. To help a computer algorithm 
recognize focused objects, one typically removes the textures by applying first and 
second derivatives (see Section 4.3) to enhance edges and lines. These lines may then 
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be segmented into sequences of simple functions, like the pen strokes of an artist 
drawing the object. The functional segments can then be compared objectively 
to segments for known objects of interest. The functional representation of the object 
is useful because computing algorithms can be derived to take scale, rotation, and 
viewing aspect into account for object identification. 

Texture features are patterns which are periodic and cover broad areas of the 
focal plane. Texture features are good candidates for the frequency domain where 
the broad areas of a periodic pattern on the focal plane can be concentrated into 
a few two-dimensional FFT bins. For example, inspection of a filled case of 24 beer 
bottles using an aligned digital picture will normally have a regular pattern of bottle 
caps. A broken or missing bottle is seen as a “glitch” in the pattern, or aberration of 
the texture. A simple 2-FFT of the image data and spectral subtraction, and an 
inverse FFT will quickly reveal the problem before the product is shipped from 
the factory. Texture patterns can also be applied to a wide range of material 
inspections including color, reflectance, laser scattering patterns, an so on. 

One can examine what is known about the physiology of the eye for primates 
(monkeys, apes, and man) to gain some valuable insight into how biology has 
optimized our sight for detection and classification of objects (4).  Insect, fish, 
and other animal eyes generally do not see they way we do, and might be useful 
for some specific machine vision tasks. Man’s eyes and way of seeing (what is known 
of it) are truly amazing. By examining the psychophysics of the eye/brain operation 
we find some basic building blocks for the development of two-dimensional image 
features. 

The optical properties of the eye are surprisingly poor. I t  has a single simple 
lens with a rather small focusing range controlled by a ring of muscles. The optical 
aberration can be rather large (as most of us with eyeglasses know all too well) 
and the aberration over color can be over 2 diopters from red to violet. With little 
physical correction possible, biology provides the necessary interconnections 
between receptors to turn this color “de-focusing” to an advantage which allows 
remarkable color recognition over a wide range of ambient light. There are four 
types of receptors, red, green, and blue cones with a significantly overlapping color 
(light frequency) response, and blue-green rods where the outputs are pooled to allow 
a lower resolution night vision. These retina1 receptors are actually situated behind a 
layer of neural cells which contribute to a loss of acuity but allow more 
interconnections and additional protection from damage from intense light. 

The eye uses tremor and hexagonal variable sampling to enhance acuity. The 
resolution of the eye is on the order of 30 seconds or arc ( 1  degree=60 minutes 
or arc, 1 minute of arc =60 seconds of arc), but the eye actually tremors at a rate 
from 10 Hz to 100 Hz with about the same 30 seconds of arc. These “matched res- 
olution tremors” have the effect of smoothing the image and removing optical effects 
of sampling. This is known as “anti-aliasing” filtering in signal processing and has 
the effect of spatially low pass filtering the optical signal. I t  is interesting to note 
that during motion sickness, extreme fatigue, mental impairment (say from drugs), 
or while telling a big fat lie, most humans eyes become noticeably “shifty“ (perhaps 
the brain is too preoccupied). The arrangement of the receptors is hexagonal 
(honeycomb-like) which can be seen as naturally more optimal to the sampling 
of a point-spread function which is the fundamental resolution on the surface of 
the back of the eye to a pin-point of distant light. At the center of the field of \.iew 
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which corresponds to the center of the back of the eye called the.fowu, the density of 
the receptors is highest and it decreases as one moves away from the fovea. This 
variable sampling density, along with the optics of the iris and lens, physically cause 
the acuity to diminish as one moves away from the fovea. In  addition, the optics 
produce a smoothly diminishing acuity towards the other ranges which acts like 
a Gaussian window on the iris to suppress sidelobes in the point spread function 
(see Chapter 7). The result of this biology is that objects appear as “blobs” in 
our peripheral vision and the details are seen once we swivel our eyes around to 
bring the interesting part of the image over the fovea. This will translate into a useful 
strategy for image recognition where one scans the entire image with a small window 
to initially detect the “blobs” of interest, and then subsequently process those 
“blobs” with much higher resolution. 

The structure of the receptors and neurons gives a parallel set of 
“pre-processed” image features. There are essentially four layers of neurons in 
the signal path between the rods and cones and the optic nerve. They are the hori-
zoiitul cells, the hipolur cells, the uniacrine cells, und tlw gnngliori ct>lIs.In  humans 
and other primates, there are additional cells called the niicjget hipolur w1l.s w.hich 
provide more direct connections to the ganglions and interactive feedback to other 
groups of receptors. Surprisingly, there are very few blue cones and fewer blue-green 
rods for low-light vision in the fovea area, perhaps to make space for a higher overall 
density of receptors. However, we “think” we see blue quite readily i n  our central 
field of view perhaps because of the poor optical color aberrations of the eye 
and the feedback interconnections provided by the midget ganglions. The amacrine 
cells provide further neural interconnections between spatially separated groups 
of cells which may explain the eye’s superb vernierucuitj*(the ability to align parallel 
lines). Vernier acuity is about 6 times better (5 seconds of arc) than visual acuity and 
requires groups of spatially separated receptors to combine together their outputs. 
This is also likely to be a significant contributor to the brain’s ability to judge dis- 
tance with stereo vision, another superb human vision capability. From a 
Darwinistic point of view, without good stereo vision, one does not catch much food 
nor escape easily from being eaten - thus, these developments in primate eyes are 
seen as a result of either evolution or Devine good fortune. Finally, the ganglion 
cells can be categorized into two (among many) groups: the X ganglions which have 
a sustained output which responds in about 0.06 seconds decaying in up to 2.5 
seconds; and the Y ganglions which provide a transient output which responds 
in about 0.01 seconds and decays in about 0.1 seconds. Together, the X and Y 
ganglions provide the ability to detect motion quickly as well as “stabilize” an image 
for detailed sensing of textures, objects, and color. 

So how can one exploit these building blocks to make computer vision possible’? 
First, we recognize that many of the things we “see” are the result changes spatially 
and temporally. Temporal changes are either due to motion or changes in the scene 
-both of which are of great interest to situational awareness. Spatial changes pro- 
vide clues for edge detection, lines, and boundaries. In  the eye, the time constants 
of the X and Y ganglions, the spatial interconnections of the amacrine cells. and 
the receptor responses through the bipolar and horizontal cells provide a strong 
capability for providing .first iind sc~conddiflc>rencefeatures. The spatial derikrat ive 
images seen in Section 4.3 are an excellent example of techniques for detecting edges 
(such as a LaPlacian operator), and the direction or orientation of the edge (a  derikx-

TLFeBOOK



498 Chapter 14 

tive operator). Edge information and orientation can be seen as the primitives needed 
for object shape recognition. Much of this information is concentrated by the cellular 
structures and neural interconnections in the eye. 

The eye amazingly exploits some of its optical imperfections and turns them to 
its advantage. From a best engineering practice perspective, one wants as stable and 
clear an image as possible with constant resolution spatially, temporally, and across 
the color spectrum. The eye actually exploits tremor and optical aberration to its 
advantage using the tremor for spatial antialiasing, using the color aberration 
to feed interconnections and spatially “fill in” for, say, the missing blue cones 
in the fovea area, and uses the blurry images in the off-fovea area to cue motion 
or image changes to subsequently swivel the fovea into view of the change. 
The eye distributes its receptors unevenly to meet a wide range of viewing goals. 
For example, night vision is done at much lower resolution using rods which 
are pooled together for signal gain in low light. There are practically no rods 
in the fovea area, which is optimized for intense detail spatially. This is probably 
where the edges and object shapes are detected through the spatial interconnections 
and subsequently processed in the visual cortex to associate the viewed shape with a 
know shape . 

Finally, the receptors in the eye each have a nonlinear brightness response 
allowing detail in the shadows as well as bright areas of the image. Engineering 
practice to “linearize” the response of photodetectors on record and playback 
may not be such a bright idea. This is especially true now that analog circuits 
are largely a thing of the past. Linearization of the “gamma curve” in television 
cameras and receivers was very important to the standardization of television using 
analog circuits of the 1950sand 1960s.Digital systems can allow virtually any known 
nonlinearity in response to be completely corrected upon playback if desired. There 
is no technical reason why each pixel in a digital camera cannot have its own 
nonlinear response and automatic gain control such that the brightness dynamic 
range of the displayed image is compressed to meet the limits of the display device 
on playback only. The ability of the eye to see into shadows has long been a frus- 
tration of photographers using both chemical and digital film. However, such a 
change in digital image acquisition is so fundamentally different in terms of 
processing hardware that one might as well suggest the hexagonal pixel arrangement 
rat her than the current square row-and-column pixel arrangement. 

Figure 3 1 shows a logical way to layout the processing for computer vision. The 
reader should note that there are many ways of accomplishing this, but we will use 
the example in Figure 31 as a means to discuss two-dimensional features. First, 
we see that the camera output signal is received by a process which corrects any 
degrading optical aberrations, including color balance, brightness and contrast, 
but could also include focus, jitter, or blur corrections. The raw image can then 
be further processed in two main ways: matched field detection and segmentation. 

One can do  a ”matched signal” search for any desired objects by correlating a 
desired scene in the box we call the “fovea window” which scans the entire image 
for the desired scene. This is definitely a brute force approach which can be made 
somewhat more efficient through the use of FFTs and inverse FFTs to speed the 
correlation process. A high correlation at a particular position in the raw image 
indicates the presence of the desired sub-scene there. This is useful for applications 
where scale and orientation are not a problem, such as identifying an individual‘s 
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Figure 31 Block diagram depicting general computer vision using combinations of tem-
plate matching and image segmentation. 

retina1 blood vessel pattern, identifying currency, or scanning a circuit board for a 
particular component. 

When scale and orientation of the object in the image is part of the problem, a 
process called image segmentation is used to essentially convert the image to a maxi- 
mum contrast black and white image where edges and lines are easy to detect. Use of 
first and second derivatives allow line segments to be detected and assigned a length 
and orientation angle. A cluster of line segments can then be sequenced a number 
of ways as if one were drawing the lines using a pencil to reproduce the object. This 
sequence of segments can be scales, rotated, and re-ordered to compare with a known 
object. A least-squared error technique can be used to select the most appropriate 
object class. Fuzzy logic can then be used to assemble the primitive objects into 
something of interest. For example, a cluster of rectangle objects with ellipses 
protruding from the bottom is a likely wheeled vehicle. The arrangement of the rec- 
tangles as well as their relative aspect ratios, number and arrangement of ellipses 
(wheels) are then used to identify the vehicle as a truck, automobile, trailer, etc. 
from a functional description, or graph. 

Figure 32 depicts the process of line segmentation to create a two-dimensional 
object which can be described functionally to account for scale and orientation. 
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Window Segmentation 

3 1 
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Figure 32 A sketch of a window and the corresponding line segmentation to describe the 
bvindow iis ii series of lines sequenced to describe the window independent of scale and aspect. 

For example, a rectangle can be described as a series of four line segments in a coun- 
ter clockwise sequence where every other line is parallel. From one line segment to 
the next, a turn angle is noted and the even turn angles are equal and the odd turn 
angles are equal. The difference between the observed turn angles and a normal 
angle is due to the orientation and viewing aspect. Virtually any lined object can 
be segmented into a series of simple functions. These functions can be sequenced 
in different ways, scaled, skewed, and rotated using simple mathematical operations. 
Thus, one can systematically describe an object as a graph, or set of segmented 
functions in much the same way handwriting can be described as a series of pen 
strokes. As in handwriting recognition commonly seen in palm-sized computers, 
given a set of pen strokes, an algorithm can systematically test each knourn letter‘s 
segments, but that would be relatively slow. A more efficient process is to apply 
fuzzy logic to subdivide the alphabet into letters with curves only, straight lines only, 
combinations, etc. I n  this way, object recognition is similar to handwriting 
recognition, except the font set is much broader. 

The image line segmentation can be seen as a hypothesis testing operation. 
Starting at it point along a difference-enhanced edge, one hypothesizes that the point 
is on it straight line whose direction is orthogonal to the spatial gradient at the point. 
The line is extended in either direction and if corresponding “edge” pixels are found, 
the line continues. At the end of the line, a search begins for a new “edge” to start a 
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new line segment. Segments shorter than some prescribed minimum length are dis- 
carded (hypothesis proved false). Several possible hypothesis can be simultaneously 
alive until the final decision is made on the object. Such as final decision may include 
the context of other objects in the scene and allow obscured objects to still contribute 
to a correct image classification. This is an example of the power and flexibility of 
fuzzy logic. 

Connecting edge pixels to a curve can be done by either direct least-squared 
error fit or by employing a cartesian tracking filter such as an I X - ~tracker or Kalman 
filter. Curves belonging to ellipses (a special case of which is a circle) can be described 
as particle motion with acceleration. By tracking the “particle” motion along the 
edge pixels, the position, velocity, and acceleration components of the curve can 
be estimated from the state vector. I f  the curve is part of an ellipse, this acceleration 
will change over time and point in a direction nearly orthogonal to the particle vel- 
ocity direction. The curve can be segmented into sections which are described using 
specific functions, where the segmentation occurs as the particle “maneuvers” onto 
a new curve. The analytical representation of lines and curves to describe the salient 
features of an image allows one to detect objects when the scene is at an arbitrary 
scale and aspect. This is because our functions for the line and curve segments, 
and their relative position in the scene, can be easily scaled, skewed, and/or rotated 
for comparison to a functional description of a known object. The breaking down 
of an image into edges, lines, and ultimately functional line and curve segments 
is a computationally-intensive task. I t  is something that lends itself to parallel 
processing which is precisely how the brain processes signals from the optic nerve. 

We have been careful in addressing signal and image features to stay as general 
as possible. Every application of this technology eventually ends up with very 
specific, proprietary, even classified (via government security requirements) features 
which work in unique special ways. The interested reader should consult the books 
listed in the bibliography of this chapter for more detailed information on image 
features and algorithms. From our perspective of intelligent sensor system design, 
it is most important to examine the strategy of signal and image features, using 
physics and biology as a guide. 

14.3 DYNAMIC FEATURE TRACKING AND PREDICTION 

In this section, we explore a new area for intelligent sensor systems: prognostics. 
Prognostics is the ability to predict a logical outcome at a given time in the future 
based on objective measures of the current and past situation. For example, a phys- 
ician does an examination, checks the medical history of a patient, and then makes 
a careful prognosis of the outcome the patient can expect, and how long it  will take 
to reach that outcome. Intelligent sensor systems can aspire to do the same sort 
of thing within limits. The limits are determined by our ability to create software 
algorithms which can accurately measure the current situation, track the changes 
in situation over time, and predict an outcome with reasonable certainty in both 
fidelity and time. What is most interesting about prognostics is that most pattern 
classification is based on a “snapshot” of data. That is. the pattern is assumed fixed 
and is to be identified as such. This “snapshot” pattern recognition is repeated again 
and again over time in case the pattern does change for some reason. However, in  
prognostics, the evolution of the pattern is generally k w y  important. The 
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“trajectory” of the pattern over time is, in itself a pattern to be identified and 
exploited to improve future predictions. 

Take an example of the common cold verses a flu virus. Both can have similar 
symptoms at  times, but the path of the sicknesses are quite telling. A cold is actually 
a combination of dozens or even hundreds of viruses combined with a bacterial 
injection. Generally, the body has had time to build up immunity to some of the 
infection and viruses, but has become overwhelmed. A virus on the other hand, 
attacks the body within hours often causing severe illness for a day or two before 
the antibodies gain the upper hand and lead to recovery. So, if one had a “yuk” 
feature which is zero when one feels great and 10 when one wants to welcome 
the grim reaper, both cold and virus would have the same feature at  various times 
during the illness. However, the trajectory of the two illnesses are quite different. 
The cold comes on strong but then takes a while to eliminate while the virus attacks 
extremely fast and with great severity, but can often stabilize and fade away rather 
quickly. During the initial stages of a virus or  bacterial infection when the severity 
increases, there is actually a chance that a life-threatening disease is at work. 
However, once the fever and other symptoms stabilize (stop rising or getting worse) 
the prognosis becomes much better. During recovery, the rate of improvement 
can be used to estimate when things will get back to normal. 

This example illustrates an important point about prognosis. We know when 
things are deteriorating rapidly there is a significant health hazard. But as symptoms 
stabilize and begin to subside we can be assured that the prognosis is good if we are 
patient. T o  make a prognosis, a complete diagnosis of what is wrong is not necessary, 
only the likely causes of the current situation and their impact on the future pro- 
gression of the situation. A partial diagnosis with several plausible causes should 
be used as working hypotheses with corresponding feature trajectories from the cur- 
rent situation to an ultimate outcome feature regime. If any of the possible outcomes 
presents itself as a significant hazard then corrective action is taken. With machinery 
health, we cannot expect anything like the “healing” of the body unless we shut down 
and repair the damage ourselves, although some symptoms may be reversible with 
rest (such as over temperature conditions), or resupply. The issue with machinery 
is the cost and health hazard of an unplanned failure. 

Currently, most machinery maintenance is done based on a recommended 
schedule by the manufacturer. For example, automobile engine oil is changed every 
3,000 miles or 3 months, whichever comes first. But what if you didn’t drive the 
car for 3 months? Isn’t the oil perfectly good? Isn’t it unnecessary to replace the 
oil filter? Of course it  is! Yet time-bused muintenunce is quite common because 
it  is very easy to implement and plan around. However, some machinery is so 
complex and delicate that every time a maintenance action is done there is a sig-
nificant chance of damaging some component. The old proverb “if it’s not broken, 
don’t try to fix it ...” carries a great deal of weight with mechanical systems because 
doing too much maintenance generally leads to more damage and repairs resulting 
from the original maintenance action. One way an equipment owner can save 
on maintenance costs is to simply not do it. Obviously, this looks pretty good 
for a while until the whole plant infrastructure falls apart. Some plant managers 
have managed to get promoted because of their “maintenance efficiency” before 
their lack of maintenance causes a complete shutdown while others aren’t so lucky. 
A plant shutdown in big industry such as hydrocarbon production, refining, food 
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production, textiles, etc., can amount to enormous profit losses per day and an 
unplanned, if not catastrophic, equipment failure can lead to many days of 
shutdown. This is because these industries operate on huge volumes of commodity 
product with small profit margins. Therefore, a $1 loss of profit may be equivalent 
to a $100 loss in sales. If the gross production volume falls below a break-even point, 
you are out of business very quickly. 

Some plants are designed to be completely rebuilt after only a few years of 
operation. Examples are sulfuric acid production, semiconductor manufacture, 
or military weapons manufacture. An acid plant literally dissolves itself while semi- 
conductor manufacture for particular microprocessor and memory products 
become obsolete. A military production plant is designed to produce a finite number 
of weapons, bought by mainly one customer (the government), and possibly some 
more for the government’s allies. The industrial economics are such that these indus- 
tries have a break-even date for each plant once it enters into production. When a 
plant continues in production past the break-even date, i t  starts to make a profit 
on the capital investment, and this profit increases the longer the plant can run. 
When the product is a commodity such as gasoline, the capital investment is huge 
with very significant risks, but once a well strikes oil and the gasoline flows to 
the customer, the profits are significant because of the enormous volumes of 
production. So how does one increase profits in gasoline sales? The price at the 
pump and at the crude well are determined by the market. Profits are increased 
by improving efficiency in production and distribution, both of which have margins 
affected by technology. Smart sensor networks developed to monitor and predict 
machinery health are one such technology which will have a profound impact 
on manufacturing profits in the 21st century. This type of maintenance is called 
Condition-Based Mairztenance, or CBM and requires a broad spectrum of smart 
sensors, algorithms, pattern recognition, and prognostics algorithms for predicting 
machinery health. 

The military has a slightly different need for CBM. Most weapon platforms 
such as ground vehicles, aircraft and ships are to be used for periods of time sig- 
nificantly beyond their designed lifetime. The B-52 bomber is a perfect example 
which is actually planned to stay in service well into the 21st century. Doing 
unneeded repairs to irreplaceable hardware like a B-52 or CH-47 Chinook helicopter 
places unnecessary risks on causing fatal damage from the repair, as well as requires 
unnecessary manpower to execute the repair. In addition, military commanders 
always want to know as objectively as possible the battle readiness of their forces. 
Clearly, CBM is an important technology for military operations as well as a means 
to cut costs and gain more effectiveness. Given the value and long life expectancy of 
military hardware, CBM using vast networks of smart sensors is in the future. For 
the Navy, this will have multiplicative effect on reducing the number of personnel 
on board a ship. If you can eliminate the sailors monitoring the equipment, you 
also eliminate the sailors needed to clean up, cook, do laundry, and attend the main- 
tenance sailors. This has perhaps the biggest cost impact on the Navy because of the 
expense of supporting all those personnel on board a ship for extended periods of 
time. 

In  a CBM system there are essentially three “layers” to the network 
architecture. The bottom layer contains the smart sensor actually monitoring 
the machinery. This system is fully capable of pattern recognition and prognostics, 
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but is also capable of self-diagnosis so that one also has a confidence measure that 
the sensors are calibrated and in proper working order. We'll call this bottom layer 
the Intelligent Node Health Monitor, o r  INHM, which is designed to be robust and 
low cost, and eventually become a part of the motor, pump, bearing, gearbox, etc., 
provided by the manufacturer. The INHM is either locally powered or  self-powered 
using energy salvaging from local mechanical motion or  thermal gradients. The 
INHM output to the network is wireless, most likely TCPIP (Transfer Communi- 
cations Protocol - Internet Protocol) which is rapidly becoming the low-cost 
non-proprietary way to move packet data over large networks. The INHM has 
very limited storage to support its prognostics capability, so a hierarchal layer 
is established with Area Health Monitors, or  AHMs, each directly connected 
to a group of INHMs and serving as their hub, router, and data archive server. 
The AHM watches over its group of INHMs to assure proper operations and man- 
age their archival data. When an INHM signals an alert condition for machinery 
Fdilure prognosis, or  failure of one of its sensors, the AHM confirms the condition, 
assembles a report with the current and past history of INHM data, and sends an 
alert message to the next hierarchal layer, the Platform Level Monitor, or PLM. 
The PLM is where the human interfaces to the CBM system. To the PLM. the 
AHM is an unattended file server on the Internet (or Intranet - a private local 
network). The human responds to the alert from the A H M / I N H M  by reviewing 
and confirming the report, authorizing maintenance action, and assembling the 
information necessary, ordering parts and providing repair instructions. Note that 
the later data can be provided by the manufacturer through the INHM on the 
component expected to fail. At the PLM level, the repair decision can also be based 
on a wide range of factors beyond the information the AHM / INHM are providing. 
The human can "drill down" to the INHM level and re-program the alert 
thresholds to better meet the immediate information needs. For example, while 
in flight, a helicopter pilot does not need to be alerted about next week's 
maintenance. The pilot only needs to know if the current flight/mission needs 
to be aborted, and with enough time to abort the mission. The maintenance officer 
on the ground needs to know a great deal more. 

Building a CBM system out of networks of smart sensors is straightforward, 
albeit challenging, but does require a capability in information prognostics. Recall 
that the difference between data and information is that information is data uith 
a confidence metric and with context to an underlying physical model. Both of these 
important aspects of information are required for prognostics. The data confidence 
measures are included in a Kalman filter as part of the measurement error statistics 
and the contextual physical model is included in the state transition kinematic model. 
Given this Kalman filter, the "state" of either features, or  a "situation" can be 
tracked over time to produce a smoothed estimate of the current situation and a 
way to predict the situation in the future. This prediction, based on the current state 
vector (often contains a "position, velocity, acceleration. etc" elements), into the 
future is called a linear prediction and i t  will be accurate if things continue a s  cur-
rently measured. But that's not good enough for some prognostics applications 
where a great deal is known about the failure mechanisms. 

Gi\rcn a \+,ell-understood set of failure trajectories of a state vector we can apply 
a pattern matching algorithm to the current observed trajectory and these possible 
outcome trajectories. In much the same way a s  multiple hypothesis testing is 
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executed using syntactic fuzzy logic, we can continuously compare the current 
situational history defined by the observed track to each of the hypothesized 
trajectories, and use the nonlinear dynamics of the failure progression to determine 
which path we are on. Given the selected failure mode path, we can do a much better 
prediction of the remaining useful life and current failure hazard. This requires 
exquisite knowledge and scientific modeling of the underlying failure mechanisms 
which is where engineering should and will push the envelope of capability in 
the future. In the absence of such knowledge of failure mechanisms, we have linear 
prediction. In both cases we must define a “regime” for imminent failure so the 
remaining time and hazard rate can be computed. Defining a regime which signifies 
unacceptable risk for failure is much easier than defining the nonlinear fault 
trajectory from the current state to the failure point. 

Figure 33 depicts graphically the difference between linear prediction 
prognostics and nonlinear fault trajectory prognostics. Time-temperature plots 
are given for three hypothetical cases: a healthy power supply; a supply with a 
defective resistor; and a supply with a failing voltage regulator. The three trajectories 
are quite different and nonlinear. They are identifiable based on trends and under- 
lying physical modeling of the failure mechanisms. However, at different times along 
any of the trajectories one or more of the situations can exist as components can and 
do  begin to fail at  any time. The prognostics task is to detect the precursors to event- 
ual component failure, and provide accurate prognostics for the current hazard and 
remaining useful life of the component. “Regimes” are identified on the right edge 
of Figure 33 to identify a set of meaningful situations based on temperature. 
For example, above 300°C a fire is assumed imminent. For temperatures above 
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Figure 33 Temperature readings over time for three types of hypothetical Failure of an 
electronic power supply showing the health, cautionary, repair, and failure regimes. 
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150°C the components are operating out of specification and an immediate repair is 
warranted. Between 85°C and 150°C caution is warranted because the situation 
could quickly deteriorate, but currently is tolerable. Below 85°C there is no immedi- 
ate hazard of burning out the power supply. To complicate matters further, the 
power supply temperature will depend greatly on the load which can vary signifi- 
cantly as electronic devices are switched on and off, and catastrophically if an elec- 
tronic system on the power bus fails, pulling down the power supply with i t .  
With the exception of the latter case, which can often be handled using fuses or 
circuit breakers, the observed temperature can be expected to have many 
fluctuations. The job of the prognostic algorithm is to provide an accurate and 
meaningful prediction in the midst of all the fluctuation noise. This is why a com- 
bination of Kalman filtering based on physical modeling and fuzzy syntactic logic 
is needed to create machine prognostics. 

Up until about 30 hours in Figure 33, any of the trajectories can exist and the 
supply is considered "healthy", but a linear prediction alone might prematurely pre- 
dict a failure or cause an early repair. From 30 to about 130 hours the regulator fault 
trajectory and the healthy supply are not distinguishable, but when the regulator 
starts to fail, the temperature rises much quicker than the resistor failure. The dif- 
ferences in the nonlinear fault trajectory models is quite useful in improving the 
prognostics information to the user. We ought not expect the software of the INHM 
and AHM to make the full call, but rather to organize and prioritize the information 
for the human at the PLM level. For example, the alert message to the human might 
look like the following: 

Repair of component X requested in 10 hours 
Likelihood of failure 50% in 17 hr if current situation persists 
Likelihood of failure 90% in 17 hr if failure mode is Y 
Likelihood of failure 35% in 17 hr if failure mode is 2 
Failure mode probability is Y (80%), Z (50%). unknown (30(%) 
INHM # AHM # reporting all sensors calibrated f5(% 

Notice how the sum of the failure mode probabilities is greater than 1OO"h. This 
is an artifact of fuzzy logic which provides useful statistical measures to be associated 
with the multiple hypotheses. The human is now put into a desirable position of 
getting good information to contemplate for the repair decision from the CBM 
system. The diagnostic information while not complete, is very valuable to the 
human and may influence the repair decision. Finally, the self-diagnostics at the 
end of the message insures credibility of the message data and alert status. This 
information is straightforward for a smart sensor system to provide and creates 
a whole new economic basis for industrial production as well as military readiness 
and efficiency. 

Figure 34 shows some temperature data for our power supply example. The 
data is observed every hour and has a standard deviation of 10°C mainly from 
the load variations. Understanding the variance of the measurements is very import- 
ant to application of a tracking filter. Recall from Section 10.1 that the Kalman filter 
has both a predicted state vector and an updated state vector. The difference between 
them is that the one-step ahead prediction (Ttime units into the future) is a little less 
noisy than the updated state, which has been corrected using the Kalman gain and 
the prediction error. At any point in time, the predicted state vector can be estimated 
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Figure 34 After about 40 hours one cannot diagnose the problem but can make prognosis 
estimates based on the current state (linear produced), a resistor fault, or a regulator fault. 

d steps into the future. 

Y ( N  +dlN)  = F ( N  + d)x (NJN)  

1 Td $T2d2  (14.3.1) 
= 0 1 

~ N J N

[
0 0 ‘ p  ][ 

This can also be done using a new state transition matrix where T =  Td, or simply a 
one big step ahead prediction. This is a straightforward process using the kinematic 
state elements to determine the time and position of the state in the future. Therefore, 
i t  is really rather unremarkable that we can predict the future value of a state element 
once we have established a Kalman filter to track the trajectory of the feature of 
interest. This forward prediction is called a linear prediction. Its limitations are that 
i t  takes into account only the current state conditions and assumes that these con- 
ditions will hold over the future predicted step. 

But, we know that as most things fail, the trajectory is likely to become very 
nonlinear, making linear predictions accurate only for very short time intervals into 
the future. To take into account several plausible failure trajectory models, we treat 
each trajectory as a hypothesis and assess the statistics accordingly. Figure 34 shows 
a linear prediction along side predictions assuming a resistor or regulator fault. 
These “tails” are pinned on the end of our Kalman filter predicted state by simply 
matching a position and slope (rate of change) from the terminal trajectory of 
our models to the most recent data smoothed by the Kalman filter. This is like 
postulating, “we know we’re at this state, but if a resistor has failed, this is what 
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the future looks like, or if the regulator has failed, then the future looks like this.” At 
40 hr into our example, one really cannot tell much of what is happening in the power 
supply. I t  might be normal or it might be developing a problem. The data points ( + ) 
and Kalman filter track (solid line plot) represent our best knowledge of the current 
condition. The linear prediction at 40 hr in Figure 34 shows a repair action needed 
after 100 hr, and failure expected after 240 hr. The hypothesis of a resistor failure 
says that ii repair will be needed in 80 hr and failure is expected after 140 hr. 
The regulator failure hypothesis suggests a repair after 65 hr (25  hr from now) 
and that failure could occur after 90 hr. Since we have little information to judge 
what type of kiilure mode, if any is occurring, the linear predicted prognosis is 
accepted. 

At 140 hr into our example there is much more information to consider as seen 
in Figure 35. The temperature has stabilized for several days and for the most part, 
there is little cause for alarm. However, during the last 24 hr there has been a slight 
trend upward. The linear predicted prognosis suggests repair at 200 hr (60 hr from 
now) and Failure may occur after 400 hr. The resistor failure hypothesis suggests 
repair after 180 hr and failure after 300 hr. The regulator failure hypothesis suggests 
repair after 175 hr and failure after 210 hr. I t  appears that either the resistor or 
regulator is fidiling, but its far enough into the future that we don’t need to do any- 
thing at the moment. Figure 36 shows the results of our simulation at  150 hr. Failure 
now appears imminent, but more urgent is the need for a repair starting in a few 
hours. The linear predicted prognosis suggests repairing after 160 hr (just 10 hr from 
now) and failure after 220 hr. The resistor Failure prognosis suggests repairing even 
sooner after 155 hr and failure at 180 hr. The regulator hypothesis suggests repair 
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Figure 35 After about 140 hours, there is no immediate need for repair and the prognosis 
can be hypothesis based. 
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Figure 36 At 150 hours there appears to be an immediate need for repairs and the prog- 
nosis is that a regulator failure is likely in 10-12 hours, but if it‘s a resistor the failure 
may be 30 hours away. 

now and that failure could occur after 170 hr, just 20 hr into the future. By failure, we 
mean the feature will cross the threshold we have defined as the failure regime, where 
failure can happen at any time. For our example, the regulator failed causing the 
failure threshold to actually be crossed at  180 hr. Even though our prognostic algo- 
rithm did not exactly pinpoint the precise cause nor the precise time of failure, 
i t  provided timely and accurate information necessary for the CBM actions to take 
place. As technology and science improve our ability to model fatigue and perform 
prognostics, the performance of such algorithms for predictive maintenance will 
certainly improve. But the basic idea and operations will likely follow our example 
here. 

Figure 37 shows the results of the Kalman filtering. The measurements and 
predicted temperature state are seen in the top plot, the middle plot shows the esti- 
mated rate of temperature change, and the bottom plot shows the temperature 
“acceleration”. These state components are used to do the forward prediction as 
shown in Eq. (14.3.1). However, as one predicts a future state, the state error 
covariance increases depending on the size of the step into the future. The process 
noise matrix is defined as 

where GT,, is the minimum standard deviation of the “acceleration” element of the 
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Figure 37 The Kalman filter states for our power supply failure example where the states 
will be used for failure prognosis and the associated time statistics and hazard prediction 
estimates. 

state vector. Setting CT,,to a small value make a very smooth track, but also one which 
is very sluggish to react to dynamical changes in the data. When Trepresents the time 
interval of the future prediction step, the state error covariance is predicted accord- 
ing to 

P’(N + 1 J N )= F ( N ) P ( N I N ) F H ( N )+ Q ( N )  (14.3.3) 

Thus, the larger Tis (the further one predicts into the future) the larger the state error 
covariance will be. One can extract the 2 by 2 submatrix containing the “position” 
and “velocity” state elements, diagonalize via rotation (see Eqs (14.1.1I )-( 14.1,12)), 
and identify the variance for position and the variance for velocity on the main 
diagonal. 

The variance for position is rather obvious but, to get an error estimate for our 
RUL time requires some analysis. Our prediction of the time until our state crosses 
some regime threshold is the result of a parametric equation in both time and space. 
Our state elements for position and velocity are random variables whose variances 
increase as one predicts further into the future. To parametrically translate the stat- 
istics to time, we note dimensionally that time is position divided by velocity. 
Therefore, the probability density function (pdf) for our RUL time prediction is 
going to likely be the result of the division of two Gaussian random variables (our 
state vector elements). This is a little tricky but worth showing the details here. 

A detailed derivation for the probability density of the ratio of two random 
variables is seen in Section 6.1. Let the random variable for our predicted RUL 
time, t F .  be 2 .  Let the random variable representing the final “position” prediction 
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be simply swith variance a;, and the random variable representing the “velocity” be 
simply)? with variance a:. Our new random variable is therefore z =x/ji. One derives 
the pdf by first comparing probabilities, and then, differentiating the probability 
function for z with respect to z to obtain the desired pdf. The probability that r 
-<2,or P ( z 5 Z) ,is equal to the probability that s5 j7.Z for j*2 0, plus the probability 
that s 2j -2for j’<0. 

(14.3.4) 

Assuming the tracked position and velocity represented by s and j j ,  respectively, are 
statistically independent, one differentiates Eq. (14.3.4) with respect to z using a 
simple change of variable S=JY to obtain 

0 -cc 

(14.3.5) 

The pdf in Eq. (14.3.5) is zero mean. It is straightforward to obtain our physical pdf 
for the time prediction where the mean is IF .  

(14.3.6) 

The mean of the pdf in Eq. (14.3.6) is and Figure 38 compares the shape of 
the time prediction pdf to a Gaussian pdf where the standard deviation 
a =a F / a R= 10. The density functions are clearly significantly different. While 
the second moment (the variance) of the time prediction pdf in Eq. (14.3.6) is infinite 
(therefore the use of the central limit theorem does not apply), one can simply inte- 
grate the pdf to obtain a confidence interval equivalent to the 68.4% probability 
range about the mean of a Gaussian pdf defined by fa. This confidence range works 
out to be 1.836 times the Gaussian standard deviation. To present the confidence 
limits for our RUL time prediction, we can simply use 1.836 times the ratio of aF/aR .  
Figure 39 shows the RUL time based on linear prediction and also shows the 68.4% 
confidence limits. The straight dashed line represents real-time and shows the actual 
time the temperature crossed our failure threshold at  300°C was about 180 hr. Our 
RUL prediction converges nicely to the correct estimate around 140 hr, or nearly 
two days before the failure condition. However, it is only in the range beyond 
170 hr that the confidence interval is very accurate. This is exactly what we want 
the prognostics algorithm to provide in terms of statistical data. 
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Figure 38 Comparison of the time prediction pdf in equation (10) where the standard 
deviation ration ( T F / ( T R  = 10 to a Gaussian pfd with CJ = 10. 
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Figure 39 Using only linear prediction, the remaining useful life (RUL) is predicted and 
compared to actual remaining life (straight dashed line) showing the 63% confidence bounds 
on the RUL prediction (dotted line encompassing the RUL prediction plot). 
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Figure 40 is a three-dimensional rendering of Figure 39 showing the RUL 
pdf at  several interesting times. The RUL pdf is centered over the R U L  time 
prediction. But, for most of the time before 170 hr, the statistics on the RUL 
time are not very good. This is due mainly to the failure threshold being signifi- 
cantly in the future when the trajectory of the temperature plot is fairly flat from 
around 50-160 hr. During this period and situation, we should not expect any 
reliable prognostic RUL time predictions. The corresponding RUL time pdfs  
in the period leading up to 160 hr are almost completely flat and extremely broad. 
As the RUL time prediction converges, the corresponding RUL time pdf 
sharpens. As the temperature feature trajectory passes the threshold, the RUL 
time becomes negative (suggesting it should have failed by now), and the 
RUL time pdf is then fixed because we are interested in the time until the failure 
threshold is crossed and beyond as our failure regime. Again, this is seen as desir- 
able algorithm behavior. 

Consider Figure 41 which shows the probability of survival, which is the inte- 
gral from infinity down to the current time. When the statistics of the RUL time 
prediction are accurate (giving a sharp pdf) and the failure time is well off into 
the future, the survivor probability would be near unity. When the time statistics 
are not well defined or the RUL time is in the immediate future, the survivor prob- 
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Figure 40 A 3-dimensional plot showing the RUL times probability density function 
centered over three points of interest near the end of the RUL showing the integral of 
the density functions (shaded with vertica! lines) which provide the probability of surviving. 
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ability is near 50%).Equation (14.3.7) Gives an analytical expression for the survivor 
rate. 

(14.3.7) 

In Figure 41 the survivor probability is initially around 50% because it is so 
broad. As the statistics improve the survivor rate improves. This is desirable because 
we need assurances that failure is not immediate in the regime approaching the fail- 
ure threshold. Then the RUL time prediction crosses the current time at  180hr giving 
a 50% survivor rate. At this point we fix the pdf for the RUL time prediction since we 
have crossed the failure regime threshold. In other words, we do  not want the RUL 
pdf to start flattening out again from a growing “backward time prediction”. 
However, the survivor rate, which is the integral of the RUL pdf from infinity 
to the current time still changes as the fixed (in shape that is) RUL pdf slides 
by such that less and less of the pdf is integrated as time progresses. This causes 
the survivor rate to diminish towards zero as the hazard rate increases. The hazard 
rate H ( t )  is defined as the RUL time pdf for the current time divided by the survivor 
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Figure 41 Estimated probability of survival and hazard rate showing a changing survivor 
probability over time due to the changing statistic of the Kalman state vector. 
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rate. 

The ( t - tF)2 term in the right-most square-bracketed term in Eq. (14.3.8) is set to 
zero once the failure threshold is crossed (i.e. the term t - t F  becomes positive). 
Again, this has the effect of stating that we’ve met the criteria for passing the failure 
regime threshold, now how far past that point are we? The hazard rate measures the 
likelihood of immediate failure by comparing the current probability density to the 
probability of surviving in the future. The hazard rate needs to be normalized to 
some point on the pdf (in our case the last point taken) because it  will generally 
continue to increase as the survivor rate decreases. Clearly, we have an objective 
“red flag” which nicely appears when we cross into a prescribed regime we associate 
with failure. 

We have one more metric seen in Figure 42 which helps us define component 
failure we call the stability metric. This term is design to measure how stable 
the feature dynamics are. When positive, it indicates the dynamics are converging. 
This means if the feature is moving in a positive direction, it is decelerating. If 
it is moving with negative velocity, it is accelerating. In both stable cases the velocity 
is heading towards zero. We can associate zero feature velocity as a “no change” 
condition, which if the machinery is running indicates that it might just keep on 
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Figure 42 A simple stability metric is formed from minus one over the product of the 
feature velocity and feature acceleration where a negative indicates the system is not stable 
and will fail soon. 
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running under the same conditions. Obviously, the most stable situation is when the 
feature velocity is zero and there is no acceleration. Our stability metric is defined as 

(14.3.9) 

such that a zero or positive number indicates a stable situation. If  the feature is 
moving in a positive direction and is accelerating, or if moving with negative velocity 
and decelerating, the stability metric in Eq. (14.3.9) will be negative indicating that 
the feature dynamics are not stable and are diverging from there current values. 
Change is not good for machinery once it  has been operating smoothly for a time. 
Therefore, this simple stability metric, along with the hazard and survivor rates, 
are key objective measures of machinery health. 

14.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

This Chapter was probably the most challenging to write of the entire book because 
of the breadth and depth of diverse information covered. As a result, a significant 
amount of important approaches to automatic target recognition had to be tersely 
presented, which provides a concise broad view of the area. In  Section 14.1 we 
covered the three main types of decision algorithms used in automatic target 
recognition: statistical, neural network, and fuzzy logic-based classifier algorithms. 
Statistical recognition is based on the idea that the statistics of a pattern class 
of interest can be measured through training. Therefore, one can measure how close 
a particular pattern matches a known pattern class statistically. A pattern to be 
classified is then assigned to the known pattern class it  most closely matches in 
a statistical sense. A neural network, on the other hand, does not require that 
one ”knows” anything about the pattern classes of interest, nor the “unknown” 
pattern to be classified. I t  works by a brute force training of artificial neurons 
(weights and interconnections) to match a set of known patterns to a particular 
class output of the network. This amazing algorithm can truly conger the idea 
of a simple artificial brain which for some applications may be most appropriate. 
But its shortfall is that it teaches us little about why it works, and more importantly, 
what information in the patterns is causing the classification. Therefore, there is 
always a criticism of neural network about extendability to new patterns outside 
the training set. The syntactic fuzzy logic approach captures the best of both stat- 
istical and neural algorithms. But the difficulty is that one must know the syntax, 
design the fuzzy set membership criteria (blend functions, AND,  OR, operations), 
and test (rather than train) the algorithm on real data to validate the logic. The 
beauty of syntactic fuzzy logic is i t  allows us to use any combination of algorithms 
to produce inputs to the logic. As a result of testing the logic, flaws are trapped 
and re-wired (re-coded in software), and further testing is used to validate the 
response. Syntactic fuzzy logic embraces the scientific method for model 
development. I t  requires the most from us in terms of intelligence, and offers us 
the ability to refine our own intelligence. We apologize to the creators of those many 
ingenious algorithms which have been omitted due to space, since this is not a pat- 
tern recognition book. From the viewpoint of intelligent sensor systems, a basic 
view of automatic target recognition is needed to integrate this technology into 
the entire intelligent sensor system. 
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In Section 14.2, we presented some useful techniques for generating signal fea- 
tures in both one and two dimensions. A completely generic summary of feature 
strategies is given with emphasis on the concept that useful signal features comwi-
trute information. This information should certainly be based on real physics rather 
than heuristics. But in the case of computer vision, a strategy of following the biology 
and psychophysics of the primate eye is suggested for developing image features. 
Vision is extraordinarily complex and an aspect of human performance in which 
machines may never really surpass. But we can train machines to see things, albeit 
crudely. And the suggested approach is to first determine whether one is interested 
in a texture or an object. Textures can be matched in the frequency domain while 
objects may best be identified via image segmentation. Segmentation of object shapes 
leads one to syntactic logic for combining segments into particular objects. This logic 
can include influence from the presence of other objects or data to suggest a par- 
ticular scene. Segmentation also offers the ability to account for rotation, skewness. 
and scaling, which are major algorithm problems for computer vision. 

Section 14.3 presents the concept of feature tracking, where the track over time 
can itself become a feature. This concept considers the evolution of information, 
rather than just situational awareness in a “snapshot” of data. The concept of 
prognostics is presented where the algorithm presents where the feature will be 
in the future, based of current information and reasonable hypotheses. This has 
significant economic value for machinery systems where maintenance is to be devel- 
oped based on condition, rather than hours of operation. Condition-based mainten- 
ance (CBM) has the potential for significant economic impact on basic industry as 
well as increasing reliability of life-critical systems. The prognostics problem is 
of course helped by as much diagnostic information as possible as well as fault 
trajectory models for particular cases of damage. This follows closely the medical 
prognosis we all have experienced at  some time. For example, the doctor says “You 
have a cold. You can expect to feel bad for a few days followed by slow improvement 
back to normal.” Or, the doctor says, “You have liver cancer. I’m sorry but you only 
have a 50% chance of living more than 6 months.” In both cases, the prognosis is 
based on current information and some projection (model) of how things will go 
in the future. Even when these prediction are not precisely correct, if they are inter- 
preted correctly, the information is highly valuable. This is definitely the case with 
machinery CBM as the information regarding several prognoses can be very useful 
in determining the most economic repair actions. 

The “Intelligent” adjective in the term “Intelligent Sensor Systems” is justified 
when the sensor has the capability of self-evaluation, self-organizing communi- 
cations and operations, environmental adaption, situational awareness and 
prediction, and conversion of raw data into information. All five of these concepts 
require some degree of pattern recognition, feature extraction, and prediction. 
Earlier chapters in the book cover the basic signal processing details of sampling. 
linear systems, frequency domain processing, adaptive filtering, and array processing 
of wavenumber signals. Using these techniques, one can extract information from 
the raw data which can be associated with various features of a particular infor- 
mation pattern. This chapter’s goal is to show the basic techniques of pattern 
recognition, feature extraction, and situational prognosis. We still need to know 
more about transducers, noise, and noise control techniques to complete our under- 
standing of the raw signal physics, and this is the subject of the next chapter. 
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PROBLEMS 

1. A pair of features are being considered for use in a statistical classifier. A 
training set for class A reveals a variance of feature 1 of 2.5 and mean 
5 ,  a variance for feature 2 of 5.5 and mean of 9, and a covariance of 
feature 1 and 2 of - 3.2. What are the major and minor axis and rotation 
angle of the ellipse representing the 1-sigma bound for the training set? 

2. A training set for class B reveals a variance of feature 1 of 1.75 and mean 
2, a variance for feature 2 of 6.5 and mean of 5 ,  and a covariance 
of feature 1 and 2 of +0.25. Sketch the ellipses defining class A (from 
question 1) and class B. 

3. Suppose you are given a feature measurement of (4.35, 5.56) where 4.35 is 
feature 1 and 5.36 is feature 2. If the probability of class A existing is 75%) 
and class B is 45%, which class should the feature pair be assigned to? 

4. Consider a neural network with two input nodes, four nodes in one hidden 
layer, and three output nodes. The inputs range from 0 to 1 and the output 
classes represent the binary sum of the two inputs. In other words class A 
is for both inputs being “zero”, class B is for one input “zero”, the other 
“one”, and class C is for both inputs “one”. Train the network using 
a uniform distribution of inputs, testing each case for the correct class 
(i.e. if the input is > 0.5 it is “one”, t 0 . 5  it is “zero”). 

5 .  Build the same classifier as in problem 4 but using syntactic fuzzy logic. 
Select the weights as unity and use identical sigmoidal functions as 
the neural network. Compare the two classifiers on a set of uniform 
inputs. 

6. A condition monitoring vibration sensor is set to give an alarm if the crest 
factor is greater than 2 5 .  If the main vibration signal is a sinusoid of peak 
amplitude 100 mV, how big must the transients get to trip the alarm, 
assuming the sinusoid amplitude stays the same? 

7. The harmonic distortion of a loudspeaker is used as a condition 
monitoring feature in a public address system. To test the distortion, 
two sinusoid signals drive the loudspeaker at 94 dB (1.0 Pascals rms) 
at 1 m distance at 100 Hz and 117 Hz. If distortion signals are seen 
at a level of 0.1 Pascals rms at 17 Hz and 217 Hz, and 0.05 Pascals 
rms at 200 Hz and 234 Hz, what is the ”/o harmonic distortion? 

8. Define a segmentation graph for the numbers 0 through 9 based on 
“unit-length” line equations. Show how the segmentation functions 
can be scaled and rotated using simple math operations. 

9. The temperature of a process vessel is currently 800°C and has a standard 
deviation of 5°C. If the temperature is rising at a rate of 1O‘C per minute, 
where the velocity standard deviation is l”C, how much time will i t  take 
for the vessel to get to 1000°C?What is the standard deviation of this 
time estimate? Hint: assume U,, (the tracking filter process noise) and 
T are unity for simplicity. 

10. Compute the hazard and survivor rates as a function of time for the tem- 
perature dynamics given in problem 9. 
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Sensors, EIect ro nics, and Noise Reduction 
Techniques 

One of characteristics of an Intelligent Serisor Sjtstcwi is its ability to be self-aware of 
its performance based on physical models, analysis of raw sensor data, and data 
fusion with other sensor information. While this capability may sound like very 
futuristic, all of the required technology is currently available. However. very 
few sensor systems at the end of the 20th century exploit a significant level sewticvit 
processing. By the end of the 21st century, it is very likely that all sensors will have 
the capability of self-(iH’(ire~i24.s,s, The definition and even situcitiorzcil c i ~ ~ i r ~ v i c ~ . s . s .  

of “sentient” can be seen as “having the five senses of sight, hearing, smell, touch, 
and taste” according to most dictionaries. In general, “sentient” applies only to 
animal life and not machines as of the end of the 20th century. HoRrever, there 
is no reason why machines with commensurate sensors of video, acoustics, vibration, 
and chemical analysis can’t aspire to the same definition of sentient, so long as we’re 
not going as far as comparing the “intelligent sensor system” to a being with a con- 
science, feelings, and emotions. Some would argue that this too is within reach 
of humanity within the next few centuries, but we prefer to focus on a more 
straightforward physical scope of sensor intelligence. I n  other words, we’re dis- 
cussing how to build the sensor intelligence of an “insect” into a real-time computing 
machine while extracting the sensor information into an objective form which 
includes statistical metrics, signal features and patterns, as well as pattern dynamics 
(how the patterns are changing). The information is not very useful unless we have 
some computer-human interface, so it  can be seen that we are building the sensor 
part of an insect with an Ethernet port for information access! 

In  order to make an algorithm which can extract signal features from raw 
sensor data, match those features to known patterns, and then provide predictive 
capability of the pattern motion, we must have a solid foundation of sensor physics 
and electronic noise. Given this foundation, i t  is possible for the sensor algorithms 
to identify signal patterns which represent normal operation as well as patterns 
which indicate sensor failure. The ability to provide a signal quality. or sensor 
reliability, statistical metric along with the raw sensor data is extremely lduable  
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to all subsequent information processing. The sensor system is broken down into the 
electronic interface, the physical sensor, and the environment. Each of these can be 
modeled physically and can provide a baseline for the expected signal background 
noise, signal-to-noise ratio (SNR), and ultimately the signal feature confidence. 
Our discussion of electronic noise will obviously apply to all types of sensor systems. 
However, our discussion of sensors will be limited to acoustic and vibration sensors, 
which are involved in most array signal processing and control systems. There are 
many important low bandwidth (measures signals which change slowly) sensors such 
as temperature, pressure, etc., which require a similar SNR analysis as well as a 
physical model for the sensor linearity over desired sensor range, which will not 
be explored in detail here. Our discussion is limited to sensors where we are interested 
in the SNR and response as a function of frequency. This is clearly the more com- 
plicated case as the basic presentation of electronic and transducer noise can be 
applied to any sensor system. 

Finally, we present some very useful techniques for cancellation of noise coher- 
ent with an available reference signal. This can also be seen as adaptive signal 
separation, where an undesirable signal can be removed using adaptive filtering. 
Adaptive noise cancellation is presented in two forms: electronic noise cancellation 
and active noise cancellation. The distinction is very important. For active noise 
cancellation, one physically cancels the unwanted signal waves in the physical 
medium using an actuator, rather than electrically “on the wire” after the signal 
has been acquired. Active noise cancellation has wider uses beyond sensor systems 
and can provide a true physical improvement to sensor dynamic range and SNR 
if the unwanted noise waveform is much stronger than the desired signal waveform. 
The use of adaptive and active noise cancellation techniques give an intelligent 
sensor system the capability to countermeasure poor signal measuring 
environments. However, one must also model how the SNR and signal quality 
may be affected by noise cancellation techniques for these countermeasures to 
be truly useful to an intelligent sensor system. 

15.1 ELECTRONIC NOISE 

There are four main types of electronic noise to be considered along with signal 
shielding and grounding issues when dealing with the analog electronics of sensor 
systems. A well-designed sensor system will minimize all forms of noise including 
ground loops and cross-talk from poor signal shielding. But, an intelligent sensor 
system will also be able to identify these defects and provide useful information 
to the user to optimize installation and maintenance. As will be seen below, the noise 
patterns are straightforwardly identified from a basic understanding of the under- 
lying physics. The four basic types of noise are ttzerniul noise, .slzot noise, c‘orittrct 
noise, and popcwrrz noise. They exist at some level in all electronic circuits and 
sensors. Another form of noise is interference from other signals due to inadequate 
shielding and/or  ground loops. Ground loops can occur when a signal ground is 
present in more than one location. For example, at the data acquisition system 
and at the sensor location at the end of a long cable. The ground potential can 
be significantly different at these two locations causing small currents to flow 
between the ground points. These currents can cause interference with the signal 
from the sensor. Usually, ground loop interference is seen at the ac power line fre- 
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quencies because these voltages are quite high and return to ground. Ground loops 
can be identified a number of ways and eliminated by proper shielding and floating 
of sensor signal grounds. 

Thermal Noise results from the agitation of electrons due to temperature in 
conductors and resistors. The physical aspects of thermal noise were first reported 
by J. B. Johnson ( 1 )  and is often referred to as “Johnson noise”. But it was Nyquist 
(2) who presented a mathematical model for the rms noise level. A little background 
in electronic material science is useful in describing how resistors and conductors can 
generate noise waveforms. 

Recall that all solids can be described as a lattice of molecules or atoms, some- 
what like a volume of various-sized spheres representing the molecules. The atoms 
are spatially charged where the nucleus is positive and the electron shells are 
negative. Atoms bonded into molecules also have spatial charges. The negative- 
charged electrons of one atom or molecule are attracted to the positive-charged 
nucleus of neighboring atoms or molecules, yet repelled by their electrons. One 
can visualize the “spheres” (atoms or molecules) connected together by virtual 
springs such that the motion of one atom or molecule effects the others. Because 
the spheres have thermal energy, they all vibrate randomly in time and with respect 
to each other. A solid crystalline material will generally have its molecules arranged 
in a nearly regular pattern, or lattice, the exceptions being either impurities or crystal 
defects called dislocations. These imperfections in the lattice cause “grain 
boundaries” in the material and also cause blockages to the natural lattice-formed 
pathways in the lattice for electrons to move. As two spheres move closer together, 
the repulsion increases the potential energy of the electrons. If the material is a con- 
ductor with unfilled electron shells (such as the metals of the periodic chart i.e. AI”), 
which tend to lose electrons readily in reactions. Metals tend to be good heat con- 
ductors, have a surface luster, and are ductile (bend easily without fracture). 
The unfilled electron shells allow a higher energy electron to enter and be easily 
transported across the lattice, but with an occasional collision with an impurity, 
dislocation, or vibrating atom. These collisions cause electrical resistance which var- 
ies with material type and geometry, temperature, and imperfections from 
dislocations and impurities. At absolute zero, a pure metal theoretically forms a 
perfect lattice with no dislocations or vibration, and therefore should have zero elec- 
trical resistance as well as zero thermal noise. Insulators, on the other hand, tend to 
have filled electron shells, are brittle and often amorphous molecular structures, 
and are often poor heat conductors. This binds the electrons to their respective atoms 
or  molecules and eliminates the lattice pathways for electron travel. This is why 
oxides on conductor surfaces increase electrical resistance as well as cause other 
signal problems. 

Nyquist’s formula for thermal noise in rms volts is given in Eq. (15.1.1). 

v,= J4kTBR (15.1 .l) 

The following parameters in Eq. (1 5.1 . I )  need to be defined: 

k-Boltzmann’s constant (1.38 x 10-23 Joules/”K) 
T-Absolute temperature (OK) 
B-Bandwidth of Interest (Hz) 
&Resistance in ohms (Q) 
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Note that thermal noise can also apply to purely mechanical systems such that the 
ohms are mechanical and one ends up with an rms mechanical force from the dis- 
sipation effects of the damping material. The rms spectral density of the thermal 
noise in volts per &E is 

= J4kTBR ( 1  5. I .2)01 


which can be used to model the spectrum of circuit thermal noise. 
As an example of the importance of thermal noise considerations, at  room 

temperature (290 K )  an accelerometer device with 1 MR resistance will produce 
about 10 pV rms thermal noise over a bandwidth of 10 kHz. I f  the accelerometer’s 
sensitivity is a typical 10 mV/g (1  g is 9.81 misec’), the broadband acceleration 
noise “floor” is only 0.001 g. This is not acceptable if one needs to measure 
broadband vibrations in the 100 pg range. One way to reduce thermal noise is 
to operate the circuitry at  very low temperatures. Another more practical approach 
is to minimize the resistance in the sensor circuit. The structure of thermal noise 
is a Gaussian random process making the noise spectrally white. Thus, the noise 
is described by use of a spectral density (Section 6.1) which is independent of spectral 
resolution. 10 pV rms over 10 kHz bandwidth (0.01 pV’/Hz) power density corre- 
sponds to 0.1 p V / G  rms noise density, which is physically a reasonably small 
1 n g / m .  For detection of a narrowband acceleration in a background noise 
of 1000 jig rms using a 1024-point FFT (spectral resolution of 10 Hz per bin), 
one can simply consider that the power spectrum SNR gain is about 30 dB, thus 
making a narrowband acceleration greater than about I pg rms detectable just above 
the noise floor. Note that thermal noise can also be generated mechanically from 
atomic and molecular motion, but instead of rms volts from electrical resistance 
the Boltzman energy one gets rms forces using mechanical resistance. 

These background noise considerations are important because they define the 
best possible SNR for the sensor system. Of course, the environmental noise can 
be a greater source of noise. If this is the case, one can save money on electronics 
to achieve the same overall performance. To easily model a thermal noise spectrum, 
simply use the rms spectral density in Eq. (15.1.2) times the width of an F F T  bin in 
Hz a s  the standard deviation of a zero-mean Gaussian (ZMG)  random process 
for the bin (the real and imaginary parts of the bin each have ‘/z the variance of 
the magnitude-squared of the bin). 

Shot Noise is also a spectrally-white Gaussian noise process, but i t  is the result 
of dc currents across potential barriers, such as in transistors and vacuum tubes. The 
broadband noise results from the random emission of electrons from the base of a 
transistor (or from the cathode of a vacuum tube). More specifically in a transistor, 
i t  comes from the random diffusion of carriers through the base and the random 
recombination of electron-hole pairs. A model for shot noise developed by Schottky 
is well-known to be 

where It ,( .is the average direct current across the potential barrier, B is the bandwidth 
in Hz, and y is the charge of an electron (1.6 x 10.- ’’) Coulombs). The shot noise 
current can be minimized for ii given bandwidth by either minimizing the dc current 
or the number of potential barriers (transistors or  vacuum tubes) in a circuit. 
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To model the power spectrum of the shot noise, multiply Eq. ( 1  5.1.3) times the circuit 
resistance and divide by the square-root of total bandwidth in Hz to get the standard 
deviation of the noise voltage. For a power spectrum, each bin of an N-point FFT is 
modeled as an independent complex ZMG random process with 1 / N of the noise 
variance. For a real noise time-domain waveform, the real and imaginary parts 
of the bin are also independent, each having 1 / 2 N of the total noise variance. Figure 
1 shows a ZMG noise waveform as a function of time and frequency. 

Contact Noise is widely referred to as “one-over-f noise” because of the typical 
inverse frequency shape to the spectral density. Contact noise is directly 
proportional to the dc current across any contact in the circuit, such as solder joints, 
switches, connectors, and internal component materials. This is the result of 
fluctuating conductivity due to imperfect contact between any two materials. While 
connections like solder joints are considered quite robust, after years of vibration, 
heat cycle stress, and even corrosion, these robust connections can break down lead- 
ing to contact noise. Like shot noise, it varies with the amount of dc current in the 
circuit. But unlike shot noise, its spectral density is not constant over frequency 
and the level varies directly with dc current rather than the square-root of dc current 
as seen in the model in Eq. (15.1.3). 

(1 5 . I .4) 

The constant K in Eq. (15.1.3) varies with the type of material and the geometry of 
the material. Clearly, this type of noise is very important to minimize in low fre-
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Figure 1 Both thermal and shot noise are zero-mean Gaussian and spectrally kvhite 
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quency sensor circuits, If we write the contact noise current as an equivalent voltage 
by multiplying by the circuit resistance R, and divide by the square-root of 
bandwidth, we get the rms spectral density in units of rms volts per G. 

o,.(f) = RKI‘/$ (15.1.5) 

The rms spectral density in Eq. (15.1.5) is clearly a function of frequency and the 
variance represents the classic “1 /f” noise often seen in real sensor systems. Contact 
noise is best modeled only in the frequency domain using a power spectrum. The time 
domain waveform can then be obtained via inverse Fourier transform. To get the 
power spectrum using an N-point FFT, first square Eq. ( I  5.1.5) and then multiply 
by j ; / N ,  the bin width in Hz to get the total variance of the complex FFT bin 
magnitude-squared. The imaginary and real parts of this bin each are modeled with 
a ZMG process with !4 of the total bin variance for a real contact noise time-domain 
waveform. T o  insure that the time domain waveform is real, apply Hilbert transform 
symmetry to bins 0 through N / 2  - 1 for the real and imaginary parts of each bin. In 
other words, the random number in the real part of bin k equals the real part 
of the random number in bin N - k ,  while the imaginary part of bin k equals 
the minus the imaginary part of bin N -k for 0 5 k < N/2. The inverse FFT of 
this spectrum will yield a real time noise waveform dominated by the low frequency 
1 lf contact noise as seen in Figure 2. 
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Figure 2 Contact noise is dominated by low frequencies and has a characteristic “ 1  i f ”  
shape in the frequency domain (note a log base 10 scale is displayed for dB). 

TLFeBOOK



Sensors, Electronics, and Noise Reduction Techniques 527 

Popcorn Noise is also known as burst noise, and gets its name from the sound 
heard when it is amplified and fed into a loudspeaker. Popcorn noise arises from 
manufacturing defects in semiconductors where impurities interfere with the normal 
operation. It is not clear whether popcorn noise is a constant characteristic of a 
semiconductor or if it can appear over time, perhaps from internal corrosion, 
damage, or wear-out of a semiconductor. Popcorn noise in the time domain looks 
like a temporary offset shift in the noise waveform. The amount of shift is fixed 
since it is due to the band gap potential energy of a semiconductor junction. 
The length of time the offset is shifted is random as is the frequency of the offset 
“bursts”. The burst itself is a current offset, so the effect of popcorn noise can 
be minimized by keeping circuit impedances low. In the frequency domain, popcorn 
noise can have a spectral shape which averages to 1 lf”, where n is usually 2. Figure 
3 depicts popcorn noise and the corresponding power spectrum. Popcorn noise 
is most readily identified in the time domain. 

Electronic Design Considerations to reduce intrinsic noise can be summarized 
into the following practical guidelines for any sensor system. 

1 .  Physically locate the sensor and choose the sensor type to maximize SNR 
2. Minimize circuit resistance to reduce thermal noise 
3. Minimize dc currents and circuit resistance to reduce shot and contact 

noise 
4. Choose high quality electronic components and test to verify low popcorn 

noise 
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Figure 3 Popcorn noise (also known as burst noise) is due to a semiconductor defect where 
the plateau offsets are always the same but random in duration. 
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Following the above general guidelines, it can be seen that low noise sensor 
circuits will generally have low impedance, strong ac signal currents, and minimal 
dc currents. Low dc currents are obviously is not possible when the sensor is very 
low bandwidth, such as temperature, barometric pressure, etc. However, for dc-like 
sensor signals, the noise can be greatly reduced by simple averaging of the data. 
Depending on the desired sensor information, one would optimize the sensor circuit 
design as well as the data acquisition to enhance the SNR. For example, in 
meteorology, a precise pressure gauge (say f2” H 2 0  full scale) could measure baro- 
metric pressure relative to a sealed chamber as well as pressure fluctuations due to 
turbulence using two sensor circuits and data acquisition channels. If one wants 
the barometeric pressure, the turbulence needs to be averaged out of the 
measurement. The SNR of the pressure measurement is enhanced by low pass 
filtering a dc-coupled circuit while the turbulence SNR is enhanced by pass filtering 
a separately sampled channel. 

Controlling calibration gain in dc-circuits is particularly a challenge because 
small voltage or current offsets can drift over time, with supply voltage (say from 
batteries), or with environmental temperature. One power-hungry technique for con- 
trolling temperature drift is to locate the entire sensor circuit in a thermal mass which 
is heated to a constantly controlled temperature above the environmental 
temperature. Another approach is to purposely include a temperature or supply volt- 
age sensitive part of the circuit and then compensate the sensor output bias due to 
temperature. However, such temperature compensation, which is often nonlinear 
over a wide range of environments, is very easily done in the digital domain. Finally, 
one should consider the slew rate and bandwidth of the electronic circuitry 
amplifiers. For example, if the gain-bandwidth product of a particular operational 
amplifier is 1 million and the sensor bandwidth is 20 kHz, the maximum theoretical 
gain is 50. If a gain of 160 ( +44 dBV) is required, two amplifier stages each with 
a gain of 12.65 ( + 22 dBV) should be used. The electronics bandwidth now exceeds 
the required 20 kHz. In high gain ac-circuits, dc offsets may have to be compensated 
at each stage to prevent saturation. 

Signal Shielding can improve SNR by reducing cross-talk between signal chan- 
nels as well as suppressing environmental electric fields. A basic understanding of 
field theory suggests that wrapping the signal wire in a coaxial conductor will com- 
pletely suppress all environmental electric fields. However, it is actually more com- 
plicated due to the wave impedance of the interfering signal and the shield 
impedance, which has a small amount of resistance. Recall that the characteristic 
impedance of a plane electromagnetic wave in air is 

ZlC. = 20 = /?= 377R ( 15.1.6) 

where r(i0=4n x l op ’  H / m  and ~ ~ = 8 . 8 5  x 10-l’ F / m  are the characteristic per- 
meability and dielectric constants for free space (a vacuum or dry air). This makes 
air a pretty good insulator given that copper is about 17 nR. The impedance of 
ii conductive material (a >> j w z ,  where (T is the conductivity in mhos) is 

( 15.1.7) 
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The loss due to plane wave reflection at  the conducting shield surface is 

( 1  5.1.8) 

where 11,. = p / p o  and 0,. = a/ao are the relative permeability and conductivity, 
respectively and a. = 5.82 x 107 ohms is the conductivity for copper. Both 11,. and 
a,. are unity for copper in Eq. (15.1.8). At 100 Hz, there is about 148 dB reflection 
loss to a plane wave impinging on a copper shield. But, at 1 MHz, this drops to 
108 dB which is still pretty good shielding. But, a plane wave in free space occurs 
approximately only after several wavelengths from a point source, a hundred or 
more wavelengths to be precisely a plane wave (recall Section 6.3). Since the wave 
speed is 300 x 106 m/sec, a hundred wavelengths at 60 Hz is 5 million meters! Since 
the radius of the earth is 6.3 million meters, we can safely say that power line fre- 
quencies (50-60 Hz) from the other side of the planet are plane waves, but any power 
line electromagnetic fields within about 10 km of our circuit are definitely not. 
However, radio and television signals around 100 MHz can be considered plane 
waves if the source is 100 m away or more. 

Non-plane wave shielding is much more difficult mainly due to currents 
induced in the signal wire from magnetic field and the asymmetry of the field around 
the signal wire. The electrical nearfield ( r - c A/271) wave impedance can be 
approximated by 

1 = 271fEOr ( 15.1.9)IZWlE 

where r is the distance in meters from our signal wire to the field source. Applying Eq. 
(15.1.8) with our nearfield wave impedance one obtains the approximate electrical 
refection loss for the shield. 

RE = 321 + lOlog - - 1010g(f3r2) dB (1  5.1.10)(3 
Equation (1 5.1.10) tells us that electrical shielding is fairly strong even at  close 

distances. But, one must also consider that the field strength is also increasing as the 
signal wire is moved closer to the source. Magnetic shielding is not nearly as strong in 
the nearfield. The magnetic nearfield wave impedance ( r  < i/2rr) is approximately 

(15.1.1 1)  

in free space. Again, applying Eq. (15.1.8) gives the approximate nearfield magnetic 
reflection loss. 

RH = 14.6 + 10log 2 + 10 log(fr2) dB (15.1.12)(3 
However, for thin shields multiple reflections of the magnetic wave within the shield 
must be accounted by adding a correction factor which should only be used for thin 
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shields in the nearfield. 

(5.1.13) 

Note that for really small thickness t ,  the correction may cause R H to be negative in 
Eq. ( 15.1.13) which is erroneous. For the cases where R H  is either negative or near 
zero in both Eqs ( 1  5.1.12) and ( 1  5.1.13), i t  is reasonable to use R H=0 dB (no 
magnetic field shielding) as a further approximation. The skin depth, 6, in meters 
is defined as 

0 = 2J-
2njpa ( 15.1.14) 

and describes the exponential decay in amplitude as the field penetrates the con- 
ductor. The skin depth effect also results in an absorption loss to the wave given 
in Eq. (15.1.15). 

(15.1. I  5) 

Equation ( 15.1.15) says that as a rule of thumb one gets about 9 dB absorption loss 
per skin depth thickness shield. (The "rule of thumb" dates back to medieval times 
and specifies the maximum thickness stick one may use to beat one's spouse.) 
For copper at about 100 Hz, the skin depth is a little over 1 cm, but even so, in 
the nearfield this is the dominant effect of shielding at low frequencies when close 
to the source! Some additional shielding is possible by surrounding the signal wire 
with a shroud of low reluctance magnetic material. Magnetic materials, sometimes 
known as "mu-metals, ferrite beads, donuts, life-savers, etc," are sometimes seen 
as a loop around a cable leaving or entering a box. The mu-metal tends to attract 
magnetic fields conducted along the wire, and then dissipate the energy through 
the resistance of the currents induced into the loop. They are most effective however, 
for high frequencies (i.e. MHz) only. Magnetic shielding at low frequencies is 
extremely difficult. For all shielding of components in boxes where one must have 
access holes, it is better to have a lot of small holes than one big hole of the same 
total area. This is because the leakage of the shield is determined by the maximum 
dimension of the biggest opening rather than the total area of all the openings. 
In general, for low frequency signal wires one must always assume that some small 
currents will be induced by nearby sources even when shielding is used. To minimize 
this problem, one should make the sensor signal cable circuit as low impedance as 
practical and make the signal current as strong as possible. 

Ground Loops occur when more than one common signal ground is present in 
the sensor system. Grounding problems typically are seen as the power line fre- 
quency (60 Hz in North America, 50 Hz in Europe, etc) and its harmonics. Note 
that if your sensor is detecting acoustic or vibration waves and you see multiples 
of t , t v i c s c )  the power line frequency in the power spectrum (i.e. 120, 240, 360 Hz, etc, 
in North America), you may actually be sensing the thermal expansion noise from 
a transformer or motor which is a real wave and not a ground loop. Direct current 
powered circuits can also suffer from ground loops. This is because our power dis- 
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tribution system generates electricity relative to an earth ground which is local to 
each generating station. The distribution system is grounded at  many places, includ- 
ing the main circuit breaker box in any given dwelling. If one simply attaches the 
positive and negative leads of a spectrum analyzer to two points on a non-conducting 
floor one would very likely see these stray power line voltages. These voltages, which 
may be less than 1 mV, could be due to a current from the local ground rod, or may 
be a magnetically induced current from a nearby power line. When the chassis 
of a sensor data acquisition system comes in contact with the ground, or a part 
of a structure with magnetically-induced currents, there will be some small voltages 
actually on its electrical ground reference. It is for this reason that most electrical 
measurement and high fidelity multimedia gear make a separate signal ground con- 
nection available. The problem is made even more vexing when multiple sensors 
cabled to a distance from the data acquisition system come in contact with yet a 
slightly different ground potential. In this situation ground loops can occur between 
sensors as well as each sensor and the data acquisition system. As noted in the 
shielding description above, the cable itself becomes a source for magnetically 
induced power line voltages especially if it is a high impedance circuit (signal currents 
are as small as the magnetically-induced ones). 

The solution for almost all ground loop and power line isolation problems is 
seen graphically in Figure 4 and starts by selecting a common single point for 
all sensor signal grounds. This is most conveniently done at  the data acquisition 
system. The grounds to all sensors must therefore be “floated”. This means that 
for a 2-wire sensor, a 2-wire plus shield cable is needed to extend the ground shield 
all the way out to the sensor, hut this cable shield must not he connected to an?’ C‘OH-

ductor at the sensor. Furthermore, the sensor “ground lead” must not be grounded, 
but rather brought back along with the signal lead inside the shielded cable to 
the data acquisition system. The sensor case if conductive must also be insulated 
from the ground and the cable shield. With both the sensor signal ( + ) and sensor 

2 - W i r e  Sensor 

Common 
/- Ground 

Cable Shields 
3 - Wire Sensor 

FET 
I t v  supply 

(+I 
(-) \ I 

1 Common 
Ground 

0 

Figure 4 Proper ground isolation and shielding for 2-wire and 3-wire sensors to minimize 
interference and insure no ground loops are created. 

TLFeBOOK



532 Chapter 15 

ground ( - ) floated inside the shielded cable, any magnetically-induced currents are 
common to both wires, and will be small if the circuit impedance is low. At the 
front end of the data acquisition system, the common mode rejection of an instru- 
mentation operational amplifier will significantly reduce or eliminate any induced 
currents, even if the sensor ground ( - )  is connected to the cable shield and data 
acquisition common ground at the acquisition input terminals. By floating all 
the sensor grounds inside a common shield and grounding all signals at the same 
point ground loops are eliminated and maximum shield effectiveness is achieved. 

For a 3-wire sensor such as an electret microphone with FET preamplifier, one 
needs a 3-wired plus shield cable to float all 3 sensor wires (power, signal, and sensor 
“ground”). The FET should be wired as a current source to drive a low impedance 
cable circuit. At the data acquisition end, a small resistor is placed between the 
sensor signal ( +) and sensor “ground” ( - ) wires to create a sensor current loop 
and to convert the current to a sensible voltage. Without this resistor, the impedance 
of the sensor signal-to-ground loop inside the cable shield would remain very high 
with a very weak sensor signal current. This weak sensor current could be corrupted 
by magnetic field-induced currents, thus, it is advisable to make the sensor signal 
current as strong as possible. Shot and contact noise-causing dc currents can be 
eliminated from the signal path by a simple blocking capacitor at one end of the 
sensor signal ( +) wire. Using an FET at the sensor to transfer the high resistance 
of a transducer to the low resistance of a signal current loop is the preferred method 
for using high impedance sensors. That’s why they’re called transistors. The 
field-effect transistor (FET) is of particular value because its input impedance is 
very high. The resistors seen in Figure 4 should be chosen to match the impedance 
of the sensor (2-wire case) or the FET source resistor (3-wire case with a common 
drain n-channel FET shown). This maximizes the current in the twisted pair of con- 
ductors inside the cable shield, thus minimizing the relative strength of any 
interference. Note that if the shield ground isolation is lost at the sensor, interference 
voltages could appear from the potential difference between the ground at the data 
acquisition end and the sensor end of the cable. 

15.2 ACOUSTICS AND VIBRATION SENSORS 

Acoustics and vibration sensors are really only a small subset of sensors in use today, 
but they are by far the most interesting in so far as magnitude and phase calibration 
of wide band signals, transducer physics, and environmental effects. Our attention 
focuses on acoustics and vibration because antenna elements for electromagnetic 
wave sensing are basically a simple unshielded wire or  coil, video sensors are just 
large arrays of photodiodes which integrate an rms measure of the photons, and 
low bandwidth sensors generally do  not require a lot of sensor signal processing. 
The color correction/calibration problem for video signals is certainly interesting, 
but will be left for a future revision of this book. Correction of sensor nonlinearities 
(low bandwidth or video) is also an interesting and worthy problem, but i t  its really 
beyond the scope of this book, which is based almost totally on linear system signal 
processing. Acoustic and vibration sensors are used in a wide range of sensor signal 
processing applications and also require calibration periodically to insure sensor 
data integrity. 
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We must make a very useful distinction between sensors and transducers. A 
sensor detects a physical energy wave and produces a voltage proportional to 
the energy. But, sensors are not reversible, meaning that an electrical energy input 
also produces a proportional energy wave. A transducer passively converts physical 
wave energy from one form to another. Furthermore, a transducer is reversible, 
meaning for example, that if a mechanical wave input produces a voltage output, 
a voltage input produces a mechanical wave output. All linear passive transducers 
are reversible in this way. Transducers which are linear (meaning very low distortion 
but not necessarily constant frequency response) obey the laws of reciprocitji for 
their respective transmitting and receiving sensitivities. In a conservative field if 
one transmits a wave at  point A of amplitude X and receives a wave at  point B 
of amplitude Y, the propagation loss being Y / X ,  one would have the same propa- 
gation loss Y / X  by transmitting X from point B and receiving Y at point A. 
For reciprocal transducers, one could input a current I at point A and measure 
a voltage V at point B, and by subsequently inputting a current I in the same trans- 
ducer at  point B one would measure the same voltage V from the transducer still 
at  point A. 

Our discussion focuses initially on two main types of transducers. The first is 
the electromagnetic mechanical transducer and the second is the electrostatic mech-
anical transducer. These two types of transducer mechanisms cover the vast majority 
of microphones, loudspeakers, vibration sensors, and sonar systems in use today. 
Later, a brief discussion of micro-electro-mechanical system ( M E M S )sensors will 
be given, which will also help clearly distinguish the physics between transducers 
and sensors. 

The electromagnetic mechanical transducer is most commonly seen as a mov- 
ing coil loudspeaker. There are literally billions of moving coil loudspeakers in the 
world today and has probably had one of the most significant impacts on society 
of any electronic device until the digital computer. The transduction mechanism 
in a loudspeaker is essentially the same as that in a “dynamic microphone”, a 
geophone (used widely in seismic sensing and low frequency vibration), as well 
as electric motors and generators. Figure 5 shows the electromotive force (voltage) 
generated when a conductor has velocity U in a magnetic flux B in part (a), and 
the mechanical force f generated when a current i flows through the conductor 
in the magnetic field B in part (b). The orthogonal arrangement of the “voltage 
equals velocity times magnetic field” or “force equals current times magnetic field”, 
follow the “right-hand-rule” orientation. This is where with the right-hand index 
finger, middle finger, and thumb pointing in orthogonal directions, the index finger 
represents velocity or current, the middle finger represents magnetic field, and 
the thumb points in the direction of the resulting voltage or force, respectively. 
The physical equations describing the relationship between electrical and mechanical 
parameters are 

f = Bli e = Blu ( 1  5.2.1) 

where i is the current in amperes, B is the magnetic field in Tesla, (1  Tesla equals 1 
Weber per square meter, 1 Weber equals 1 Newton meter per ampere), I is the effec- 
tive length of the conductor in the magnetic flux, e is the velocity-generated voltage, 
and U is the conductor velocity. One can see a very peculiar and important relation- 
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Electromagnetic- Mechanical Transducer 

Z,=(BI)* / Z,
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Figure 5 Voltage generated by moving conductor in magnetic flux (a), force generated by 
current in magnetic flux (b), transformer representation (c), and gyrator representation (d). 

ship by examining the impedances defined by Eq. (15.2.1). 

7 12,v = f - = @I)- -= (BI)2 1  - (15.2.2)
U ZE e 

The mechanical impedance Z Mis seen to be proportional to the inverse of electrical 
impedance Z E . This is not required for a transducer to be reversible, its just the 
result of the relationship between force and current, and voltage and velocity. It 
does create some challenging circuit analysis of the transducer as seen in Figure 
6 for a complete loudspeaker system in a closed cabinet. Figure 7 shows a cutaway 
view of a typical loudspeaker. 

Analysis of the loudspeaker is quite interesting. To maximize the efficiency of 
the force generation, the conductor is wound into a solenoid, or linear coil. This 
coil has electrical resistance Re and inductance Le as seen on the left in Figure 
6 part (a). The movable coil surrounds either a permanent magnet or a ferrous pole 
piece, depending on the design. When a ceramic permanent magnet is used, i t  is 
usually a flat “washer-shaped” annular ring around the outside of the coil where 
a ferrous pole piece is inside the coil as seen in Figure 7.  When a rare earth magnet 
such as Alnico (aluminum nickel and cobalt alloy) is used, its favored geometry 
usually allows it  to be placed inside the coil and a ferrous return magnetic circuit 
is used on the outside. In some antique radios, an electromagnet is used in what 
was called an “electrodynamic loudspeaker”. Clever circuit designs in the mid 1930s 
would use the high inductance of the electromagnet coil as part of the high voltage dc 
power supply, usually canceling ac power line hum in the process. A gyrator (there is 
no physical equivalent device of a “gyrator”) is used in part (a) and (b) of Figure 6 to 
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Figure 6 Equivalent circuit representations of a moving coil loudspeaker in a closed 
cabinet. 

leave the mechanical and acoustical parts of the circuit in an impedance analogy. The 
coil is mechanically attached to a diaphragm, usually cone-shaped for high stiffness 
in the direction of motion. The diaphragm and coil assembly have mass Md.  
The diaphragm structure is attached to the frame of the loudspeaker, called the 
basket, at the coil through an accordion-like structure called the spider, and at 
the outer rim of the diaphragm through a structure called the surround, usually 
made of foam rubber. The spider and surround together has a compliance (inverse 
of mechanical stiffness) Cd, and mechanical damping Rd. The velocity of the 
diaphragm U produces an acoustic volume velocity U =  Su cubic meters per second, 
where S is the surface area of the diaphragm. The acoustic pressure p is the mech- 
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Figure 7 Typical loudspeaker cutaway showing the magnetic field, voice coil and 
diaphragm suspension where the driving force is created in the gap at the top of the pole piece. 

anical forcefdivided by S. The air in the closed cabinet of the loudspeaker has 
acoustic compliance C, = Vb/pc2,where V, is the volume in cubic meters, the density 
p = 1.21 Kg/m3 for air, and c is the speed of sound in air (typically 345 m/sec). Note 
that for an infinite-sized cabinet the capacitor equivalent is short circuited while if 
the cabinet were filled with cement (or other stiff material) the capacitor equivalent 
becomes an open circuit signifying no diaphragm motion. Finally, we have the 
acoustic radiation impedance Z ,  defined as 

Z u = T ( T + j 0 . 6 k apc k2a2 
(1 5.2.3) 

where M ,  =0.6pa/S and S =za2 (diaphragm is assumed circular). Multiplying 
acoustical impedance by S2 gives mechanical impedance, which can be seen on 
the right in part (b) of Figure 6. The mechanical compliance (the inverse of stiffness) 
of the cabinet air volume C,/S2 is combined with the mechanical compliance of the 
diaphragm C, to give the total mechanical compliance CA,. 

C’ -
c d  c u  

da - S2CA + c, (1 5.2.4) 

The combination of diaphragm compliance with the compliance of the air in the 
closed cabinet adds some stiffness to the loudspeaker system, raising the resonance 
frequency and giving rise to the popular term “acoustic suspension loudspeaker”, 
owing to the fact that the air stiffness is the dominant part of the compliance. 

To continue in our transducer analysis, we must convert the mechanical 
impedance to a mechanical mobility (inverse of impedance) as seen in part (c) of 
Figure 6 In a mobility analogy, the impedance of each element is inverted and 
the series circuit is replaced by a parallel circuit. Using a mechanical mobility 
analogy, a transformer with turns ratio BZ:1 represents a physical circuit device 
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where the force in the mechanical system is a current proportional to the electrical 
input current i by the relationf= Bfi and the diaphragm velocity U is a voltage 
in the equivalent circuit directly to the physical applied voltage e by the relation 
e =Blu. Finally, part (d) of Figure 6 shows the equivalent electrical analogy circuit 
with the transformer proportionality reflected in the mechanical mobility elements. 
One literally could build this electrical circuit, using the physics-based element values 
for the mechanical parts, and measure exactly the same electrical input impedance as 
the actual loudspeaker. Figure 8 shows the modeled electrical input impedance for a 
typical 30 cm loudspeaker where Re =6 0,Le =3 mH, Bl= 13.25, M d  =60 gr, 
R d =  1.5 mechanical R, the box volume Vb is 1 m3, and the driver resonance is 
55 Hz. Figure 8 shows the electrical input impedance to the equivalent circuit 
for the loudspeaker in its closed cabinet. 

The loudspeaker input impedance is a very interesting and useful quantity 
because it provides features indicative of many important physical parameters 
and it can be monitored while the loudspeaker is in use. One can simply monitor 
the voltage across a 1R series resistor in series with the loudspeaker to get the 
current, and the voltage across the voice coil terminals and calculate a transfer func- 
tion of voltage over current, or electrical impedance. In electrical impedance units, 
the input impedance is simply Re + j u L e  + (B02 divided by the mechanical 
impedance of the loudspeaker. As easily seen in Figure 8 the impedance at OHz 
is simply the voice coil resistance Re. At high frequencies, the slope of the impedance 
curve is Le. The total system mechanical resonance is also easily seen as the peak at 

Loudspeaker Input Electrical Impedance 
100 
 I I 1 I 1 I 1 I I 

n 

I 1 1 I 1 1 I 1 1-1 00 
0 50 100 150 200 250 300 350 400 450 500 

I 
100 -

v) 

E' 5 0 -

Figure 8 Electrical input impedance for a typical loudspeaker in a closed cabinet showing 
the total system resonance at 57.7 Hz, a dc resistance of 5 ohms, and a voice coil inductance 
of 3 mH. 
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57.7 Hz. The system resonance is slightly higher than the loudspeaker resonance of 
55 Hz because of the added stiffness of the air inside the 1 m3 cabinet. The total 
system resonance quality factor, Q T ,  can be measured by experimentally determining 
the frequencies above and below resonance, where the impedance drops from Z,.,,s 

,/-.Z(f;,ff)(the value at  resonance) to = This “geometric mean” is used 
because the total system QT is the parallel combination of the mechanical Qnls 
and electrical Qes.The system QT is correspondingly 

( 1  5.2.5) 

whereff and ffare the frequencies above and below resonance, respectively, where 
the impedance is ,/a.

One can measure the other loudspeaker parameters by simple experiment. To 
determine the diaphragm mass and compliance, one can simply add a known mass 
M’ of clay to the diaphragm. If the resonance of the loudspeaker isfo and with 
the added mass isf;, the mass and compliance of the diaphragm are simply 

( 1  5.2.6) 

A similar approach would be to place the loudspeaker in a closed cabinet of pre- 
cisely-known air volume and note the resonance change. To measure the magnetic 
motor force, one can apply a known dc current to the coil and carefully measure 
the deflection of the driver. The force is known given the compliance of the 
loudspeaker and measured displacement. Thus the “Bl factor” is obtained by direct 
experiment. However, it can also be indirectly measured by the following equation 

( 15.2.7) 

where Rll can be found from Rd = ( (U ,MDRE/QTZ, .~~) .  
Given all the physical parameters of a loudspeaker, one can design an efficient 

high fidelity loudspeaker system. We start by determining an analytical expression 
for the total system Q T .  

( 1  5.2.8) 

The Q T  factor is an important design parameter because is determines system 
response. If QT= !h the system is critically damped. If more low frequency response 
is desired, one may select a loudspeaker with QT= 0.707 which will align the pressure 
response to a maximally flat “2nd order Butterworth” low pass filter polynomial, as 
seen in Figure 9. The pressure response is analytically 

P Bl S R ,  
( 15.2.9) 
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Figure 9 Pressure response for the loudspeaker example with Qr = 0.707 for a maximally 
flat 2nd order low pass filter Butterworth alignment. 

For a given loudspeaker, QTcan be raised by raising the system resonance frequency 
fs,which is easily done by using a smaller cabinet volume. However, as Q T  is raised 
above 0.707, the alignment is technically a Chebyshev, or “equal ripple” high-pass 
filter response. The response will peak at the system resonance as Q T  is increased 
above 1.O, but the effective low frequency bandwidth does not increase significantly. 
This suggests that for a given driver, there is an optimal cabinet size. Thiele and 
Small published a series of articles during the 1970s in the Joirrizal oftlze Azrdio 
Engineering Society available today as part of an Anthology (3) .  There one can find 
similar 4th-order polynomial alignments for vented loudspeaker systems where 
an acoustical port is designed to extend the low frequency response. 

While loudspeakers are definitely fun and certainly extremely common, one 
can also use this true transducer as a sensor. Since the diaphragm is relatively heavy 
compared to air, the motion of the diaphragm is caused mainly by pressure differ- 
ences across the diaphragm. If the diaphragm is large, these forces can be quite 
significant. The force on the diaphragm due to an acoustic pressure wave is F =  Sp, 
where S is the diaphragm area. The diaphragm velocity is this force divided by 
the mechanical impedance. Since e =  Blu, we can simply write the voltage output 
of the loudspeaker due to an acoustic pressure on the diaphragm. 

e B l S  
(152.10) 

Figure 10 shows the voltage response relative to acoustic pressure for our 
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Figure 10 Voltage response of the loudspeaker when used as a “Dynamic Microphone”. 

loudspeaker example. Even though the loudspeaker QT is 0.707 the receiving 
response is anything but uniform. This is why loudspeakers are rarely used as 
microphones and vice-versa. One would either optimize the transducer design 
for a loudspeaker or optimize the design for a bandpass microphone rather than 
try to design a system that would work well for both. 

However, moving coil microphones are quite popular in the music and com- 
munication industries mainly because of their inherent non-flat frequency response. 
For example, in aviation a microphone “tuned” to the speech range of 500 Hz 
to 3 kHz naturally suppresses background noise and enhances speech. The simple 
coil and magnetic design also provide an extremely robust microphone for the harsh 
environment (condensation, ice, high vibration, etc) of an aircraft. The “bullet 
shape” of aviator microphones is still seen today and the unique frequency response 
has become the signature of many blues harmonica players. 

A variant of the dynamic microphone even more important to the broadcast 
and music industries is the ribbon microphone. These large microphones originally 
introduced in the 1930s are still in high demand today for very good reasons well 
beyond historical stylistic trends. The ribbon microphone is seen in a sketch in Figure 
11  and works by direct sensing of acoustic velocity with a light-weight metal ribbon 
in a magnetic field. As the ribbon moves with the acoustic waves, an electrical current 
is created along the length of the ribbon from the magnetic field traversing across the 
face of the ribbon. A typical ribbon size is about 3 cm long and only about 1-2 mm 
wide. I t  is used above it’s resonance and essentially has a perfectly flat frequency 
response. The deep rich sound of a voice from a ribbon microphone can make 
any radio announcer sound like a giant. Also contributing to the low frequencies, 
are nearfield acoustic velocity waves (refer to Section 6.3) which add to the volume 
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Figure 11 A ribbon microphone is used to sense the acoustic velocity directly and also has 
a unique frequency response and dipole directivity response. 

of wave energy in the proximity of the person talking into the microphone. Finally, 
since the ribbon has a dipole response pattern aided by the acoustic baffle around 
the edges of the ribbon, it can be oriented to suppress some unwanted sounds in 
the studio. However, because of its strong low frequency velocity response, the 
ribbon microphone is an extremely poor choice for outdoor use due to high wind 
noise susceptibility. 

The ribbon microphone senses velocity directly, so the force on the ribbon is 
proportional to the ribbon mass times the acceleration due to the velocity j o U / S .  
The resulting mechanical velocity of the ribbon is this force divided by the mech- 
anical impedance. Therefore, the velocity response is sirliply 

(15.2.10) 

which can be seen in Figure 12for a transducer widely known as a geophone. We also 
call this a “geophone” response because it represents the transducer’s response to 
velocity. Geophones are the standard transducer used for seismic surveys and 
for oil exploration. Obviously, one would isolate a ribbon microphone well from 
vibration and design a geophone for minimal acoustic sensitivity by eliminating 
the diaphragm and completely enclosing the coil. A photograph of a com-
mercially-available geophone is seen in Figure 13. 

The electrostatic transducer is commonly used for wide frequency response 
condenser microphones, accelerometers for measuring vibrations over a wide fre- 
quency range, force gauges, electrostatic loudspeakers, and in sonar and ultrasonic 
imaging. The Greek word piezen means to press. The piezoelectric effect is found 
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Figure 12 Voltage response of the loudspeaker as a pure velocity sensor such as a ribbon 
microphone or a geophone, commonly used for low frequency vibration measurements. 

Figure 13 A cutaway in the case of a common geophone shows the enclosed coil which 
produces a high voltage sensitivity in response to low frequency velocity vibration (photo 
courtesy Oyo-Geospace). 

TLFeBOOK



543 Sensors, Electronics, and Noise Reduction Techniques 

in crystal and polymer transducers which when stress in applied, a voltage is 
produced. Microphones and electrostatic loudspeaker transducers can be made 
based on the electrostatic charge on a lightweight movable plate capacitor (also 
known as a condenser). With one plate constructed as a lightweight diaphragm, 
movement of the diaphragm results in a corresponding change in capacitance, thus 
producing a subsequent change in voltage for a fixed amount of charge in the 
capacitor. Both piezoelectric and condenser-based transducers can be physically 
modeled using equivalent circuits. From Coulomb's law, we know that the force 
between two charges is directly proportional to their produce and inversely 
proportional to the square of the distance between them F= k 4142/r2. This force 
can also be written as a charge times the electric field F = q E ,  where E has units 
N t / C  or V/m. For constant charge, there is a hyperbolic relation between the electric 
field and distance separating the charges. Therefore, one can linearize the relation 
between electric field and displacement for small changes, and to a greater extent, 
if a bias voltage or static force has been applied to the transducer. Since pressing 
into the piezoelectric crystal or on the capacitor plates causes a voltage increase, 
the linearized constitutive equations for small displacements and forces are 

e =  -$It f =$I4 (1  5.2.12) 

where $I has physical units of Volts perm (V/m) or Newtons per coulomb (Nt/C).  It 
can be seen that if one supplies charge to the device (input an electrical current 
i =d q / d t )  it will produce and outward positive force. But, if the voltage potential 
is increased, there will be an inward displacement 5 .  Assuming a sinusoidal 
excitation, the constitutive equations become 

U 

e =  -$I- f = $ I T -1 (1 5.2.13) 

j w  J" 

which can be seen as similar to the relations between mechanical and electrical 
impedances for the electromagnetic transducer (f= Bli and e =Blu) with the excep- 
tion of the sign. 

Piezoceranzic materials are materials which when a static electric field is 
applied, produce a dynamic voltage in response to stress waves. Piezoelectric 
materials are polarized either naturally or by manufacturing process so that only 
a small dc voltage bias is needed, mainly to insure no net charge leakage from 
the transducer. Piezoelectric materials require a little more detailed description 
of the physics. Natural piezoelectrics like quartz are crystals of molecules of silicon 
bonded to a pair of oxygen atoms denoted chemically as Si02. In the crystal lattice 
of atoms these molecules form helical rings. When the ring is compressed along 
the plane of the silicon atoms, an electric field is produced along the orthogonal 
direction from the extension of silicon's positive charge on one side (above the stress 
plane) and 02 ' s  negative charge on the other side (below the stress plane). Clearly, 
there is a complicated relation between the various stress planes available in the 
crystal as well as shear planes. For our simplistic explanation, it is sufficient to 
say that the crystal can be cut appropriately into a parallelepiped such that the volt- 
age measured across two opposing faces is proportional to the stress along an 
orthogonal pair of faces. Piezoelectric effects are also naturally found in Rochelle 
salt, but its susceptibility to moisture is undesirable. Man-made ceramics dominate 
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the marketplace for piezoelectric transducers because they can be molded into desir- 
able shapes and have their electrodes precisely bonded as part of the ceramic firing 
process. Polarization of the ceramic is done by heating the material above a tem- 
perature known as the Curie temperature where the molecular orientations are some- 
what mobile, and then applying a strong electrostatic field while cooling the 
transducer. Polarization can thus be applied in the desired direction allowing the 
transducer to respond electrically to orthogonal stress (called the 1-3 mode) or even 
to longitudal stress (in-line or 1-1 mode). However, when the ceramic is stressed in 
one direction, the other two orthogonal directions also change, effecting the coupling 
efficiency. Some of the formulas for man-made piezoceramics are PZT 
(lead-zirconate-titanate), BaTi03 (barium-titanate), and a very unique plastic film 
called PVDF (polyvinylidene fluoride), which also has a pyroelectric (heat sensing) 
effect used commonly in infrared motion sensors. 

With the exception of PVDF, piezoelectrics are generally very mechanically 
stiff and have very high electrical resistance due to the strong covalent bonds of 
the molecules. This means that a generated force has to overcome the high stiffness 
of the ceramic to produce a displacement. Thus piezoelectrics can produce a high 
force but only if very low displacements occur. Conversely, a force applied to a 
piezoelectric will produce a high voltage but very little current. If the electricity 
produced is harvested as a power source or dissipated as heat from a resistor, 
the work done is seen mechanically as damping. An example of electronic material 
damping can be seen in some high performance downhill skis, which have embedded 
piezoelectrics and light-emitting diodes to dissipate the vibrational energy. Another 
common application of piezoelectrics is a mechanical spark generator on for 
gas-fired barbeque grills. But perhaps the most technically interesting application 
of piezoelectric ceramics is as a force, strain, acceleration, or acoustic sensor, or 
as an acoustic pressure or mechanical force generator. 

To analyze the transducer response, we introduce the Mason equivalent circuits 
for plane waves in a block of material with cross-sectional area S,  thickness I ,  density 
p, and wave speed c in Figure 14 where the mechanical wavenumber k,, is Q I C .If 
material damping is significant, the mechanical wavenumber is complex. For rela- 
tively low frequencies where the wavelength 1 is much larger than any dimension 
of the material block, the inductors and capacitor equivalents are shown in Figure 
14. However, at high frequencies where the block becomes resonant, these par- 
ameters will change sign accordingly representing the material as a waveguide rather 
than as a lumped element. The equation for the “mass” components M 1seen on the 
left in Figure 14 is 

( 1  5.2.14) 

such that M 1  in Figure 14 represents actually half the mass of the block of material. 
The complementary impedance for the left circuit is 

(15.2.15) 

such that the mechanical compliance is seen to be l/{p,plcilS}, or the stiffness is 
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M l  M ,  M 2  

M ,  = jac,S t a n ( k , l / 2 )  M 2  = jpmc,S s i n ( k m l )  

/ t a n ( k J 2 )C, = -jRc,S / s i n ( k m l )  C2 = -jpmcmS 

Figure 14 Mason equivalent circuits for a block of material of density p n l ,  plane wave 
speed c,,,,area S ,  and length 1 showing the low frequency approximation symbols for capacitor 
and inductor. 

p,,c$S/l which has the proper units of Kg/sec. Either circuit in Figure 14 can be 
used, the choice being made based on which form is more algebraically convenient. 
The low frequency approximations given in Eqs (1 5.2.14) and (1 5.2.15) are quite 
convenient for frequencies where geometry of the block is much smaller than a 
wavelength. For high frequencies, the block behaves as a waveguide where for 
any given frequency it  can be either inductive or capacitive depending on the 
frequency's relation to the nearest resonance. 

Applying the Mason equivalent circuit to an accelerometer is straightforward. 
As seen in Figure 15, it is quite typical to mount a proof mass (sometimes called 
a seismic mass) on the transducer material (referred to here as PZT) using a com- 
pression bolt or "stud". The compression stud makes a robust sensor structure 
and is considerably less stiff than the PZT. Its presence does contribute to a high 
frequency resonance, but with clever design, this resonance can be quite small 
and well away from the frequency range of use. 

The electrical part of the accelerometer is seen in Figure 15 as a capacitor CO 
connected through a transformer with turns ratio 1: CO4. For our example here, 
we will assume the resistance of the piezoceramic crystal Ro is similar to quartz 
at 75 x 10l6 i2 or greater (750 peta-ohms, therefore we can ignore the resistance) 
and the electrical capacitance is 1600 pF. If the resistance Ro is less than about 
1 GR, it will significantly cut the ultra low frequency response which can be seen 
as well for condenser microphones later in this section. One can appreciate 
the subtleties of piezoelectric transducers by considering that the crystal con-
tributes both an electrical capacitance and a mechanical compliance which are 
coupled together (4). The unusual turns ratio in the transformer in Figure 15 pro- 
vides a tool to physically model the piezoelectric circuit. For example, if one 
applies a current i to the electrical terminals, a voltage appears across the 
capacitor CO of i/jcuCo, which subsequently produces an open circuit force of 
f=  (@CO)i/jcuCo=4i/jcu, as expected assuming the mechanical velocity is blocked 
(u=O). Going the other way, a mechanical velocity U, .  on the right side of the 
transformer produces an open circuit current through COof -uCo$. This gen- 
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Figure 15 Physical sketch and block diagram of a typical PZT accelerometer constructed 
with a compression stud showing the electrical circuit interface through a transformer with 
a transformer with turns ratio 1:Cod. 

erates an open circuit voltage of e= -uCo 4/jcoCo=4 iljco, as expected. The 
effect of the electrical capacitance on the mechanical side of the transformer 
is a series compliance of value l/(Co42). In other words, the mechanical 
impedance effect of the electrical capacitor is CO42/jco.For our example we 
assume a value of 4 of 1 x log Nt / C  or V/m. The coupling coefficient d31= 1 / 4 
is therefore 1000 pC/Nt. The coupling coefficient d31 is a common piezoelectric 
transducer parameter signifying the orthogonal relation between the voltage 
and stress wave directions. The crystal actually is sensitive to and produces forces 
in the same direction as the voltage giving a dll coupling coefficient as well. Manu- 
facturing process and mechanical design generally make the transducer most 
sensitive in one mode or the other. 

The parameters A4 and C in Figure 15 represent the mass and compliance of the 
PZT material block. We assume a density of 1750 Kg/m3, a plane longitudal wave 
speed of 1 x 107 m/sec, a cylindrical diameter of 1 /4” and length of 1 /4”. This gives 
a mechanical compliance of 1.1458 x 10- l 5  and a mass of 3.5192 x 10-4 Kg. The 
compression stud is assumed to be stainless steel with a density of 7750 Kg/m3 
and wave speed of 7000 m/sec. The stud is cylindrical, 1/8” in diameter, and 1 /4” 
long, giving a mass of 3.8963 x 10-4 Kg and a compliance of 2.112 x lOP9 s/Kg. 
It can be shown using kinetic energy that exactly 1 /3  of the spring mass contributes 
to the mass terms in the mechanical impedance. A small mechanical damping of 
400 Cl is used and the proof mass is 2.5 grams. As the base of the accelerometer 
accelerates dynamically, the force applied to the PZT is simply the total mass times 
the acceleration. The velocity into the base is this applied force divided by the total 
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mechanical impedance ZM. 

(15.2.16) 

The mechanical impedance looking to the right at the node defined byf,. in Figure 15 
is the parallel combination of the branch with C and the electrical mobilities and the 
right-hand branch. 

2,.= 

1 
(1 5.2.17)

1 ($2co 1 
+-+-+R’+jcc,JZ J C L )  JCL)c, 

The total input mechanical impedance from the base of the accelerometer is Z.\, =jw 
M/2+Z, . .  It can be seen that the velocity U, in the PZT is 

(1  5.2.18) 

where a is the base acceleration. Using Eq. (15.2.13) we can solve for the voltage 
sensitivity in Volts per m/sec2 (multiplying by 9810 gives the sensitivity in mV/g). 

(15.2.19) 

Figure 16 shows the calculated voltage sensitivity for our example in mVper g. 
Piezoelectric materials are also widely used as transmitters and receivers for 

underwater sound and as force sensors and actuators. To convert from force to 
acoustic pressure, one simply divides the force by the diaphragm area radiating 
the sound. For the underwater acoustic radiation impedance, apply Eq. ( 1  5.2.3) with 
p = 1025 Kg/m’ and c = 1500 mlsec. It can be seen that a force gauge and hydro- 
phone receiver are essentially the same transducer hydrophone transmitter and a 
force actuator will have a response depending on the load impedance. To convert 
from an accelerometer to a hydrophone or force transducer, replace the compression 
stud and proof mass with a general load impedance Z L .  This has the effect of shifting 
the transducer resonance much higher in frequency. If the transducer is blocked on 
the left, the PZT mass inductor on the left can be ignored. Otherwise, if the left 
side is free floating, the PZT mass inductor is attached to ground on the left. To 
simplify the algebra, we will assume we have a blocked transducer. Also to simplify 
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Figure 16 Typical accelerometer receiving voltage response in mV/g showing the 
resonance from the stud and proof mass and an extremely flat response at low frequencies. 

our algebra, let 

1 M 
Z M= -+jw - 2 + R (1  5.2.20)JWC 

where C is the PZT mechanical compliance, M is the PZT mass, and R is the trans- 
ducer mechanical damping. Applying a current i, the forcef,. in Figure 15 is seen 
to be 

( 1  5.2.2 1) 

The resulting mechanical velocity through the load is 

. 4  
I -

(15.2.22) 

The resulting force across the load impedance relative to the current is 

fL-- ZL 
(15.2.23) 

Figure 17 shows the force actuation response when the load is a 1 Kg mass. As seen in 
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Figure 17 Force response relative to applied current for the PZT driving a 1 Kg mass. 

the response plot, at  resonance a substantial amount of force can be generated. For a 
hydrophone transmitter, we replace Z L with Z a / S 2for water. However, it is more 
interesting to examine the pressure response relative to applied voltage. To convert 
current to voltage we need the total electrical input impedance. 

(1 5.2.24) 

The third term in the denominator of Eq. (15..2.24) is relatively small and can be 
ignored. Actually, the input electrical impedance is dominated by the electrical 
capacitance Co. The acoustic pressure radiated to the far field assuming a narrow 
beamwidth is 

P Rl (1 5.2.25) 

where R, is the real part of the acoustic radiation impedance defined in Eq. (1 5.2.3). 
Figure 18 presents a plot of the transmitted pressure response in water. 

For a PZT force gauge or hydrophone receiver, one calculates to applied force 
on the PZT (across the load impedance) and solves for the velocity through the 
crystal by dividing by the mechanical impedance plus the mechanical compliance 
of the electrical capacitor. Given the velocity, i t  is straightforward to derive the 

TLFeBOOK



550 Chapter 15 

Hydrophone Transmited Pressure Response 
60 


50 

40 

> 
30 


a 

Q 

20 


10 

0 

1o2 10' 10' 1OS 1o8 

Hz 

Figure 18 Transmitted acoustic pressure response relative to applied voltage for a PZT 
hydrophone. 

voltage on the transducer's terminals due to the applied force. Further dividing by 
the diaphragm area S gives the voltage response to acoustic pressure, rather than 
mechanical force. 

e 4 
( 15.2.26) 

Figure 19 shows the voltage response for our example PZT in a receiving hydrophone 
configuration. Clearly, one would want to add significant damping for the hydro- 
phone receiver and force actuator if a broadband response is desired. The hydro- 
phone transmitter does not need any additional mechanical damping because of 
the high resistive component of the radiation impedance into the water. Since 
the radiation resistance increases as to', the transmitting pressure response of 
the hydrophone remains constant above the resonance, just as is the case with a 
common loudspeaker. 

I t  is useful to discuss why the resonance of the accelerometer is so different 
from the receiving hydrophone and why adding a compression stud to a hydrophone 
or force transducer has little affect on the frequency response. Without the com- 
pression stud, the accelerometer's response would resemble its electrical input 
impedance, which is essentially a capacitor. The stud-less response would thus show 
the maximum response a 0 Hz and then fall as 1/CO as frequency increases. This 
makes our accelerometer a very sensitive gravity sensor provided a dc-coupled 
amplifier is used which does not drain any net charge from the accelerometer. 
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Figure 19 Receiving pressure sensitivity for our (undamped) PZT in a hydrophone 
configuration. 

The compression stud, if infinitely stiff, would block any velocity through the crystal 
and if infinitely compliant would vanish from the equivalent circuit. Thus, a series 
capacitor between the PZT and the proof mass is the appropriate circuit model. 
The affect of the compression stud is to shift the accelerometer resonance up from 
0 Hz while also bringing down the low frequency voltage sensitivity to a value that 
is constant for acceleration frequencies below the resonance. Note that for vibrations 
with a given velocity, at  low frequencies the displacement will be large and at high 
frequencies the acceleration will be large. Generally, this makes force, displacement, 
and strain gauges the natural choice for dc and ultra low frequency measurements, 
geophones the good choice for measurements from a few Hz to a few hundred 
Hz, and accelerometers the best choice for almost high frequency measurements. 
However, accelerometer technology is a very rapidly developing field and new tech- 
nologies are extending the bandwidth, environmental robustness, and dynamic 
range. For example, some “seismic” accelerometers are recently on the market with 
voltage sensitivities as high as 10 V/g with excellent response down to less than 
1 Hz. Generally these low-frequency accelerometers configure the PZT into a layered 
cantilever sandwich with the proof mass on the free end of the cantilever. Stacking 
the PZT layers and constructively adding the voltages from compression and tension 
makes a very sensitive transducer. 

The condenser microphone is physically a close cousin to the piezoelectric 
transducer. It has a nearly identical equivalent electro-mechanical circuit as the 
piezoelectric transducer and in actuator form is known as an electrostatic 
loudspeaker. The “condenser” transducer is optimized for air acoustics by simply 
replacing the crystal with a charged electrical capacitor with one plate configured 
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as a light-weight movable diaphragm. Configuring the movable diaphragm as one 
surface of a sealed air-filled chamber, the diaphragm will move from the applied 
force due to acoustic waves. As the diaphragm moves, the capacitance changes, 
so for a fixed amount of charge stored in the condenser one obtains a dynamic volt- 
age which is linear and constant with the acoustic pressure for frequencies up to 
the resonance of the diaphragm. This is analogous to the response curve in Figure 
19 for the receiving hydrophone or force gauge. The stiffness of the condenser 
microphone is found from the tension of the diaphragm and the acoustic compliance 
of the chamber. However, since 1 atmosphere is 101,300 Pa, and 1 Pa rms is equiv- 
alent to about 94 dB relative to 20 pPa, a small “capillary vent” is added to the 
microphone chamber to equalize barometric pressure changes and to allow for high 
acoustic sensitivity. We also include a shunt resistor in the circuit for a very good 
reason. Since the capillary vent is open to the atmosphere, the condenser microphone 
cannot be hermetically sealed from the environment. Water condensation or direct 
moisture can get into the microphone cavity and significantly change the electrical 
resistance. It will be seen that moisture, condensation, or damage to the vent or 
cavity can cause a very significant change to the condenser microphone’s low fre- 
quency response, and in particular, its low frequency phase response. We note that 
temperature is also a significant environmental factor affecting diaphragm tension, 
air density, and resistance. Some scientific-grade condenser microphones are heated 
slightly above room temperature as a means to hold the sensitivity response constant 
during calibrations and measurements. 

Figure 20 depicts a typical condenser microphone design and its equivalent 
circuit showing a thin tensioned membrane as the diaphragm and the back plate 
with an applied dc voltage bias. This back plate usually has small holes or annular 
slots to let the air easily move. Some felt or other damping material is used to sup- 
press these and other high frequency acoustic resonances of the cavity structure, 

Figure 20 Condenser microphone and equivalent circuit showing acoustic cavity, capillary 
vent, bias voltage supply, and mechanical velocities. 
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and we limit the fidelity of our model to the basic physics. The small capillary vent in 
the cavity allows for barometric pressure equalization and also causes a low fre-
quency sensitivity reduction. The force acting on the movable part of the cavity (the 
diaphragm and vent hole) is approximately S,lp, where p is the acoustic pressure 
and S,/=4 x 10 - 6  m2is the diaphragm area for our example condenser microphone. 
This force results in a diaphragm velocity U, / ,  and vent velocity U,.,while a much 
smaller force S,B, where S, .=m,,  is the vent area, that causes a vent velocity 1 4 ,  

to be compensated slightly. The vent velocity takes away from the diaphragm vel- 
ocity at low frequencies, which directly a weak voltage sensitivity c‘ at the 
microphone terminals at  low frequencies. The mechanical compliance of the cavity 
behind the diaphragm is C,,,= I / / ( p c 2 S i )where V is 5 x 10 m3 for our example. ~ 

The mechanical response of the diaphragm contains the damping R,, = 100 R, 
diaphragm compliance C,/ =6.3326 x 10-’ (free space diaphragm resonance is 
20 kHz), diaphragm mass M,l= 1 gram, and the mass of the air which moves with 
the diaphragm M,,,. =0.6pcr,lS,/, where S,I= nai as seen from the radiation reactance 
in Eq. (15.2.3). The air-mass is included because its mass is significant relative 
to the lightweight diaphragm. 

The capillary vent requires that we present some physics of viscous damping. 
For a cylindrical vent tube of length L,. and area S,, =m,,,some of the fluid sticks 
to the walls of the tube affecting both the resistance and mass flow. When the tube 
area is small the frictional losses due to viscosity and the moving mass are seen 
in acoustic impedance units to be 

( 1 5.2.27) 

where 11 = 181 ,L( Poise for air at  room temperature. There are forces acting on both 
ends of the capillary vent, S,,p on the outside and the much stronger force S(/p 
through the cavity. We can simply our analysis by ignoring the small counteracting 
force S, .p . The mechanical impedance of the vent is therefore 

( 15.2.28) 

because the volume velocity through the vent is determined by the diaphragm, not 
the capillary vent area. The length of our example capillary tube is one mm and 
several vent areas will be analyzed. In our example, the electro-mechanical coupling 
factor is 360,000 V/m, which may sound like a lot, but its generated by a dc bias 
voltage of 36 V over a gap of 0.1 mm between the diaphragm and the back plate. 
This gives an electrical capacitor value of 0.354 p F  since our diaphragm area is 
4 x I O - ‘  m’. 

Figure 2 1 shows our example “typical” condenser microphone frequency 
response from 1 Hz to 100 kHz in units of mV/Pa and degrees phase shift for a 
range of shunt resistances. The 10 GR shunt is typical of a high quality professional 
audio condenser microphone where the resistance is provided by an audio line trans- 
former. The 100 Gf2 shunt is typical of a scientific-grade condenser microphone and 
is usually the gate impedance of an FET (field-effect transistor) preamplifier attached 
directly to the microphone terminals. The infrasonic condenser microphone requires 
an extraordinary high shunt resistance to maintain its low frequency response. 
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Figure 21 Magnitude and phase response of a typical condenser microphone showing the 
effect of input shunt resistance changes which can occur as the result of' moisture of 
condensation. 

Infrasonic microphones can be used to measure earthquakes, nuclear explosions, 
and even tornadoes from thousands of kilometers distance. This is because there 
is very little absorption in the atmosphere below 10 Hz. However, it is so difficult 
to maintain the required shunt resistance, alternative parametric techniques such 
as carrier wave modulation are used. To observe the diaphragm motions in the 
infrasonic range, one can measure the phase shift of a radio-frequency electromag- 
netic signal passed through the capacitor. This straightforward modulation tech- 
nique is widely used in micro electro-mechanical systems (MEMS) as an indirect 
means to observe the motions of silicon structures. 

Figure 22 shows our example condenser microphone frequency responses as a 
function of capillary vent size. The capillary vents are all 1 mm long and the 
cross-sectional area is varied to explicitly show the sensitivity of the magnitude 
and phase responses. The shunt resistance Ro is taken as 1 x 10" Q to insure it  
is not a factor in the simulation. The most important observation seen in both Figure 
2 1 and 22 is the very significant phase changes seen all the way up to about 1 kHz.  If 
the condenser microphone is part of an acoustic intensity sensor, or  part of a low 
frequency beamforming array, this phase response variation can be very detrimental 
to systern performance. The effect of the phase error is compounded by the fact that 
the observed acoustic phase differences at  low frequencies across an array might well 
already be quite small. A small phase difference signal with a large phase bias will 
likely lead to unusable results. Again, the most common threat to condenser 
microphones is moisture. But,  the vent size sensitivity also indicates that damage 
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Figure 22 Typical condenser microphone response showing the effect of various capillary 
vent diameter changes to the sensitivity magnitude and phase. 

to the microphone housing or vent can have a profound effect on the microphone 
response. Note that the shunt resistance and all sources of mechanical and acoustic 
damping contribute to the thermal “Johnson” noise of the transducer. 

One of the major engineering breakthroughs in audio which led to widespread 
inexpensive condenser-type microphones was the development of the electret 
microphone (5). There are a number of possible configurations and respective 
patents, but the “electret” material is essentially a metallized foil over an insulating 
material which is permanently polarized. The metallic side of the electret sheet 
serves as an electrode. The electret sheet can be directly stretched over a backplate 
(see Figure 20) of a condenser microphone and the charge of the electret reduces 
the required bias voltage. The electret material can also be place on the backplate 
with the charged insulated side of the sheet facing the metal diaphragm of the 
condenser microphone in the so-called “back-electret” configuration. But the most 
inexpensive to manufacture configuration has the electret material placed directly 
on an insulating sheet attached to the backplate. As with the condenser 
microphone, holes in the backplate allow sound to enter a cavity behind the 
backplate, thus allowing the diaphragm to move in places. N o  tension is required 
in the diaphragm and this extremely simple arrangement can produce a reasonable 
sensitivity, signal to noise ratio, and frequency response at very low cost. Electret 
style condenser microphones can be found is almost every small microphone, par- 
ticularly in telephones. 

Micro Electro-Mechanical Systems (MEMS) are a fascinating product of 
advancements in silicon manufacturing at  the nanometer scale during the last 20 
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years of the 20th century. Recall that integrated circuits are manufactured as layers 
of p-doped silicon, 11-doped silicon, insulating glass (silicon dioxide), and wires 
(typically aluminum). The actual circuit weaves its way through the layers on 
the chip as part of the artful design which has brought us inexpensive micropro- 
cessors with literally hundreds of millions of transistors. Micro-machining is a vari- 
ant of large-scale integrated circuits where 3-dimensional structures are created 
out of silicon. Micro-machining is not done using a micro lathe and more than 
the first table-top radios had micro-sized musicians inside. Micro-machining is done 
by etching away layers of material to create 3-dimensional structures. Analogy 
would be to create a 3-dimensional casting of various metals by making a sand mold, 
digging out the desired shape, casting the metal, then stacking another sand mold on 
top, digging out the desired shape for that layer, casting the metal, and so-on. When 
the casting is complete, the sand is washed away to reveal the complex 3-dimensional 
structure. For a silicon structure, the layering is done by diffusion doping (kiln pro- 
cess), vacuum vapor deposition, electron beam epitaxy, to name just a few methods. 
In micro-machining, some of these layers are made from materials which can be 
dissolved using various acids. One can subsequently remove layers from the 
structure, analogous to removal of the sand from the metal casting, to produce 
remarkable structures on a nano-meter scale. Scientists have built small gears, 
pumps. electric motors, gyros, and even a turbine! One of the widest MEMS sensors 
in use today is the micro-machined accelerometer which is used as a crash sensor to 
deploy a driver air bag in an automobile. 

The MEMS accelerometer essentially has a movable silicon structure where the 
motion can be sensed electronically. The electronic interface circuitry is integrated 
directly into the surrounding silicon around the MEMS sensor. The sensing of 
motion is typically done by either measuring changes in capacitance between the 
movable and non-movable parts of the silicon, o r  by sensing changes in resistance 
of the silicon members undergoing strain. Figure 23 shows a MEMS accelerometer 
which measures the changes in resistance in several thin members attached to a mov- 
able trapezoidal cross-section of silicon. By combining the resistance of the silicon 
members a s  part of a Wheatstone bridge, temperature compensation is also 
achieved. This MEMS sensor is a true dc device and therefore can measure gravity 
and orientation of an object relative to gravity. However, because it  has relatively 
high resistance and requires a net dc current to operate, the intrinsic electronic noise 
(see Section 15.1) of the device can be a design concern. The more common 
micro-machined accelerometer is the capacitance sensing type, where the capaci- 
tance between the movable and non-movable silicon is measured in much the same 
way a s  the operation of a condenser microphone. An FET or  high input impedance 
operational amplifier is used in current amplifier mode to produce a strong sensor 
voltage. Again, because of the electronic elements and high resistance. electronic 
background noise is a design concern. 

MEMS sensors are going to be important for the foreseeable future even if they 
are not as good as a traditional transducer for reasons of cost, shock robustness, and 
obviously, their small size. Because the layering and etching processes can be highly 
automated, large numbers of MEMS sensors can be made for very low cost and 
with very high mechanical precision. Shock robustness is a slightly more elusive 
feature of MEMS. because i t  requires thoughtful mechanical design. However. if 
;i material can withstand a certain stress before breaking. the amount of acceleration 
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Figure 23 A strain-type accelerometer cut-away showing the movable trapezoidal section 
and the thin resistance bridges used to detect the deflection due to gravity or motion due 
to acceleration (photomicrograph courtesy of EG&G IC Sensors). 

tolerable can be significantly increased if the mass of the structure can be reduced. 
Therefore, very small stiff structures can be inherently very difficult to break. This 
is one reason why the micro-machined accelerometer is used as a crash impact detec- 
tor in automobiles. The initial shock of the crash can conceivably crack the 
piezoelectric crystal before the deceleration signal of the collapsing car body is 
sensed to cause the proper deployment of the air bag. MEMS sensors will likely 
have a role in many unusual and extreme applications ranging from sports equi- 
pment to heavy manufacturing and construction process controls. Finally, the small 
size of MEMS sensors has several intriguing aspects worth noting. Small size allows 
for use in less invasive medical operations such as catheterization sensors, 
implant-able sensors, and cellular biology technology. Another artifact of small size 
is the ability to generate very high voltage fields as well as high frequency mechanical 
resonances. Very recently, material scientists have been able to grow piezoelectric 
materials on silicon MEMS structures which opens a whole new avenue for 
development. 

Electronic sensor interface circuits are worthy of discussion especially for the 
capacitive-type sensors of piezoelectric transducers, condenser and electret 
microphones, and MEMS sensors. Because these sensors all have very high output 
impedance, they can deliver only a very small current. Under these conditions, a 
cable connecting the transducer to the data acquisition system is subject to electro- 
magnetic interference. As noted in Section 15.1, magnetic fields will induce small 
currents into these high-impedance cables, which are comparatively large to the 

TLFeBOOK



558 Chapter 15 

small sensor currents. There are two practical choices to correct the wear signal 
current: (a) use a transformer to increase the current (the sensor voltage will be 
proportionately stepped down), or; (b) convert the line impedance at  the sensor using 
a junction field effect (JFET) transistor. The JFET has extremely high input resist- 
ance and thus will draw little current from the sensor. An n-channel JFET works 
by controlling the conductivity of a bar of n-type silicon by inducing a charge 
depletion region with an applied “gate” (p-type gate) voltage across the path of 
current flow along the bar. The current through the source and drain (at their 
respective ends of the bar) can be varied by the gate voltage between the gate 
and source. As the gate voltage is driven negative, the depleted charge carriers 
in the bar cause the n-type silicon to change from a conductor to an insulator, 
or more appropriately, behave as a semiconductor. By supplying a dc current 
and appropriately biasing the gate voltage of the JFET, small fluctuations of the 
gate voltage directly vary the drain current, which is of course much stronger than 
the current from the high impedance sensor. By locating the JFET as close as poss- 
ible to the high impedance sensor, the size of the “antenna” which can pick up elec- 
tromagnetic fields is greatly reduced making for inefficient reception of 
unwanted electromagnetic interference. Proper voltage biasing of a JFET is an art, 
made more difficult by the variations in transconductance and the sensitivity of 
the JFET to temperature. To  avoid saturating or even damaging the JFET, the sup- 
ply current must be limited to a fairly narrow range. This is usually done using 
a device known as a current-limiting diode. 

When the sensor has a high output impedance which is predominantly 
capacitive, special care should be taken to provide an interface circuit which will 
not oscillate at high frequencies. Figure 24 depicts what is known as a charge 
amplifier. The charge amplifier is really just a modified current amplifier with 
the addition of a feedback capacitor. The negative feedback resistor and capacitor 

CO 


Figure 24 Charge amplifier circuit showing the capacitive sensor, sensor bias voltage Eo, 
and a current amplifier modified with a feedback capacitor C, where Vo = -EoAC/C, .  
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have the effect of defining a low frequency limit of 

fL =27cR1(1/ ( 1  5.2.29) 

where one make Rfand Cl as large as practical for extended low frequency response. 
Above this lower corner frequency the “charge gain” is V, , /Aq= - 1 / Cl. But since 
the dynamic voltage e of the transducer output is e =Aq/  CO,one can also write that 
the net voltage gain of the charge amplifier is V , / e  = - CO/Cl . The resistor R I  also 
serves the important purpose of creating a high frequency cutoff at  

1 
fH =zzz ( 1  5.2.30) 

which helps keep the charge amplifier stable at  very high frequencies. With R I  
nonexistent, the operational amplifier loses its ability to suppress oscillations at high 
frequencies. Note that for a given amount of amplifier response delay (slew rate), 
what is stable negative feedback at  low frequencies can become unstable positive 
feedback at high frequencies. This is because the phase shift due to delay T increases 
with frequency as 8 =COT. For the given sensor capacitance CO,one simply increases 
R 1until an acceptable amount of stability margin is implemented. 

The Reciprocity Calibration Technique is used to obtain an absolute cali- 
bration of a sensor or transducer by using a reversible transducer and the associated 
reciprocity physics to obtain a receiving voltage sensitivity. I t  should be noted that 
there are really two types of calibration, relative calibration and absolute 
calibration. With relative calibration one transducer or sensor is compared to 
another calibrated transducer or sensor which has a traceable calibration to national 
metrology standards. The second type of calibration is called absolute calibration 
because the calibration can be derived from traceable non-transducer quantities. 
such as mass, length, density, volume, etc. For the absolute calibration to be 
traceable, these other quantities must also be traceable to the national standard. 

Figure 25 depicts reciprocity calibration in a free field (top) and in a cavity 
(bottom). Both configurations require two setups to allow a measurement with trans- 
ducer B used as a sensor (setup A) and as an actuator (setup B). For setup A, we 
require that both sensor A and transducer B receive the same pressure field from 
C. CO-locating transducer B with sensor A some distance from C or locating all 
3 transducers in a small cavity (small compared to wavelength) is adequate insurance 
of a uniform received pressure for transducers A and B. In setup B, transducer B is 
used as a transmitter and one notes the distance dofor the free-field reciprocity case. 
For our example, we consider acoustic pressure and that transducer A is only used as 
a sensor for which we seek the receiving voltage sensitivity. But, the reciprocity tech- 
nique is powerful and completely general for any type of transducers. 

We define the receiving voltage sensitivity as A4 (V/Pa),  the transmitting volt- 
age sensitivity as S (Pa/A),  and the reciprocity response function as J =  M / S ,which 
has the units of mobility (inverse impedance) in whatever domain the transducers are 
used (mechanical, acoustical, or electrical). For the case of electromagnetic 
transducers, recall that the transduction equations are,f = B/i and e = Blzr while 
for electrostatic or piezoelectric transducers the transduction equations are.f= @/.j(o 
and e = - bu / j (o ,thus the “B/”can be replaced by ‘‘4/.j(o’’provided the minus sign is 
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Figure 25 Reciprocity calibration in a free field or in a cavity requires two setups to exploit 
the reciprocal physics of transduction in transducer B to obtain an absolute voltage calibration 
for sensor A. 

handled correctly for the piezoelectric/electrostatic transducer case. When a 
microphone diaphragm is subjected to acoustic pressure p , the applied force is pS,,, 
where S,, is the diaphragm area. The velocity of the diaphragm ir is this applied 
force divided by the mechanical impedance of the diaphragm ZAlf.The voltage gen- 
erated by a velocity ii is P = Blir. For an electromagnetic transducer, the receiving 
voltage is the velocity times BI. 

( 15.2.3 1 ) 

Therefore, the receiving voltage sensitivity is 

( 152.32) 
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The transmitting sensitivity is found for a free space by noting the pressure generated 
by a point source with volume velocity Q a distance do meters away 

( 15.2.33) 

where k is the wavenumber (colc)  and the time harmonic dependance has been 
suppressed. To get the mechanical velocity of the diaphragm, we note the applied 
force due to the current i is f= Bli, the velocity is the applied force divided by 
the mechanical impedance, or U =Bl i /ZM.  Multiplying the mechanical velocity 11 

times the diaphragm area S,, give the acoustic volume velocity Q in Eq. ( 1 5.2.33). 
The free-space transmitting voltage sensitivity is therefore 

( I  5.2.34) 

and the free-space reciprocity response function is 

(1  5.2.35) 

When all three transducers are in a small closed cavity of volume V as seen in 
the bottom of Figure 25, we note that the acoustical compliance of the cavity 
CA is Vlyca2, and that the mechanical equivalent C,%,= C,4/Sj.Since the cavity 
is small, this compliance is low (the stiffness is high) and the transducer diaphragm 
motion is affected by the stiff cavity impedance. The receiving voltage sensitivity 
for the cavity is therefore 

(15.2.36) 

For an applied force due to a current i, the pressure in the cavity is the diaphragm 
velocity (applied force over total mechanical impedance) time the acoustic 
impedance of the cavity. The transmitting voltage sensitivity is 

(15.2.37) 

where CA is the acoustic compliance of the cavity. 
The reciprocity response function for the cavity is simply 

M
J =-=joCdq (15.2.38)

S 

where the result is the acoustic mobility of the cavity. The reciprocity response in Eqs 
(1  5.2.35) and ( 1  5.2.38) are called absolute because they do not have any terms associ- 
ated with the transducers, only dimensions ( V and do ), parameters of the medium ( p  
and c), and frequency, which can be measured with great precision. 
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How does one make use of reciprocity to calibrate a sensor? Consider setup A 
in Figure 25 where both sensor A and transducer B receive the same pressure from 
transducer C. We measure a spectral transfer function of E,4 over EH for the 
frequency range of interest and can write the following equation for the receiving 
voltage sensitivity of sensor A. 

( 1  5.2.39) 

For setup B the voltage output of sensor A due to current Is driving transducer B is 

where SB is the transmitting voltage sensitivity of transducer B. Therefore, we can 
write another equation for M , 4 , the receiving voltage sensitivity for sensor A, in 
terms of the transfer function E,: over I s  for the frequency range of interest. 

Independently, Eqs ( 1 5.2.39) and ( 1  5.2.41) may not appear useful, but if we multiply 
them together a take the square root (the positive root) we get an absolute expression 
for sensor A’s receiving voltage sensitivity. 

( 15.2.42) 

One simply uses the appropriate reciprocity response function J (free space or 
cavity) depending on the situation the reversible transducer B is employed, measures 
the required transfer functions, and calculates the receiving voltage sensitivity as 
given in Eq. ( 1  5.2.42). Given good transfer function estimates (i.e. linearity enforced, 
low background noise, and large numbers of spectral averages used) and an accurate 
reciprocity response function model, the calibration technique is both broadband 
and accurate. The calibration seen in Eq. (15.2.39) is referred to as a “relative” 
calibration where the sensitivity of one transducer is gauged against another. 
Usually, a calibration transducer traceable to national standards (i.e. NIST in 
the United States) is used to provide a relative calibration metric for a number 
of other transducers in a system. However. the reciprocity technique provides an 
absolute calibration, provided one can measure the needed dimensions, medium 
parameters, and frequency in an accurate and traceable way. 

Reciprocity is the preferred technique for intelligent sensor systems to 
self-calibrate their transducers. I t  requires one or more reversible transducers in 
addition to the typical sensor. It requires some environmental sensing (such as tem- 
perature and static pressure for acoustical measurements), and some control over 
the environment (fixed dimensions or masses in a mechanical system). There are 
two or more transducers available to check measurements as well as check relative 
calibration. But if the reciprocity technique is employed, all the transducers can 
be calibrated absolutely and automatically by the intelligent sensor system. Sensor 
damage, poor electrical connections, or breakdowns in sensor mounting can be 
identified using calibration techniques. This “self-awareness” capability of an intel- 
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ligent sensor system is perhaps the most intriguing aspect of what we define as a truly 
“smart” sensor system. The obvious benefit is that sensor data from a questionable 
or out-of-calibration sensor can be discounted automatically from the rest of the 
intelligent sensor system’s pattern recognition and control algorithms allowing auto- 
matic re-optimization of the system’s mission given a new situation. 

15.3 NOISE CANCELLATION TECHNIQUES 

Noise reduction is both straightforward and useful to a wide range of signal 
processing applications. We define noise simply as any unwanted signal. The noise 
may not be random, but rather some sort of interference which adversely effects 
the desired information processing of the signal. One can even describe an FFT 
as a noise reduction technique because is separates the signal into frequency bins 
and allows the magnitude and phases of many signals to be processed with little 
interference from each other as well as random background noise. But, if our sigual 
is itself a random waveform and we wish to separate it from other signals, one 
has an interesting and challenging task. 

Signal and noise separation can be achieved in one of two general approaches: 
by using a statistical whitening filter (see Sections 3.3 and 10.2) or  by optimal Wiener 
filtering (Section 10.2). The optimal “Wiener” separation filter is defined from a 
knowledge of the signal one wishes to reject. “Knowledge” of the undesirable noise 
is defined here as either access to the waveforms or the ability to accurately 
synthesize either the signal or “noise” waveform coherently. On the other hand, 
a whitening filter is based on the approach of our “signal” waveform being periodic, 
thus, we can synthesize it coherently for a short time into the future (say one sample 
ahead), and use this linear prediction to suppress the “noise” waveform and there- 
fore enhance our signal. This is done by first suppressing all the periodic components 
of our waveform, or “whitening” the waveform. The whitened waveform “residual” 
can then be subtracted from the original waveform to enhance the signal, which is 
assumed periodic. This is called Adaptive Signal Enhancement and is generally used 
to remove random noise components (or unpredictable noise transients) from a 
waveform with periodic (predictable) signal components. A good example of this 
are signal processing algorithm which remove “hiss”, “clicks”, and “pops” from 
old audio recordings in music and film archives. Using considerably more numerical 
processing, the same technique can be applied to images in film or video archives to 
remove “snow” or “specs” from damaged film. 

Optimal Wiener filtering for noise suppression (and even complete 
cancellation) is more straightforward than whitening filtering. Suppose our desired 
signal is 62 Hz and our “noise” waveform is a 60 Hz sinusoid (typical of a ground-
loop problem). The “optimal” separation filter has a narrow unity-gain passband 
at 62 Hz with a zero response at 60 Hz. Obviously, filtering our signal in this 
way rejects the 60 Hz interference. For separation of steady-state sinusoids of dif- 
ferent frequencies, the FFT can be seen as having each bin as an optimal filter 
to allow separation and measurement of the amplitude and phase of the signal closest 
to the bin center frequency. Indeed, the convolution of a signal with a sinusoid 
representing a particular bin frequency can be seen as a FIR filter where the integral 
of the FIR filter output gives the FFT amplitude and phase for the bin. In general, 
optimal Weiner filtering is best suited for situations where a “reference signal” 
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of interfering noise is available. This noise waveform is also a component of our 
original waveform of interest, but the net time delay and frequency response of 
the channel which introduces the noise into our original waveform is unknown. 
In Section 10.2. the optimal Wiener filter problem was discussed from the point 
of view of identification of this transfer function. In the system identification con- 
figuration, the “reference noise” is the system input, and our original waveform 
is the system output corrupted by another interfering waveform (our desired signal). 
For noise cancellation, one uses a Wiener filter to remove the “reference noise” 
which is coherent with the original waveform. The residual “error signal”, which 
optimally has all components coherent with the reference noise removed, provides 
us our “desired signal” with this reference noise interference suppressed. This is 
sometimes called a c w w l u t i o n  c*anceIer in the literature because the optimal filter 
removes any components of our waveform which are correlated with the reference 
noise. 

In this section we will describe in detail the adaptive signal processing 
applications of adaptive signal whitening, adaptive signal enhancement, adaptive 
noise cancellation, and the physical cancellation of unwanted noise known as active 
noise cancellation. In active noise cancellation, one must take into account the possi- 
bility of feedback from the physical actuator back into the reference signal. In  
addition, active noise control requires delays in the error plant to be accounted 
for in the adaptive controller updates. Finally, we will present a brief note on 
feedback control approaches for active noise control. 

Adaptive Signal Whitening describes the technique of removing all predictable 
signal components, thus driving the processed signal towards spectrally-white 
Gaussian noise. One begins by assuming a model for our waveform as the output 
of an infinite impulse response (IIR) filter with white noise input, or innowf iorz .  
Using :-transforms, the waveform is 

E[:] ( 1  5.3.1)Y [ z ]= [ I  + U,:-’ + (Qz-2 + . . . + C l M z - M ]  

where E[z]  is the :-transform of the white noise innovation sequence for the IIR 
process J“. Rearranging Eq. ( 1  5.3.1) yields 

( I  5.3.2) 

and taking inverse :-transforms one has 

( 1  5.3.3) 
i= I 

where E, is the innovation. To remove the periodicity in j i l ,  or in other words remove 
the predictability or correlation of j f ,  with itself, one can apply a FIR filter A[:]  = 1 + 

~u l z  I +U?: - 2  + . . . +U ~ Z - to our waveform j i r  and the output approximated the 
innovation, or white noise. The filter A[z]  is said to be a “whitening filter” for 
j i I  such that the residual output contains only the “unpredictable components” 
of our waveform. We can call our approximation to the innovation the “prediction 
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error” and define the linear one-step-ahead prediction for j f l  

( 1  5.3.4) 

where the notation "tit - 1 ”  describes a prediction for the waveform for time t using 
past waveform samples up to and including time t - 1. This “linear predicted” signal 
by design does not contain very much of the unpredictable innovation. Therefore, the 
predicted signal is seen as the enhanced version of the waveform where the noise is 
suppressed. 

To estimate the linear prediction coefficients of A[=] ,  a variety of adaptive 
algorithms can be used as seen in Section 10.2. The most straightforward adaptive 
algorithm is the least-mean square, or LMS algorithm. If we consider the innovation 
in Eq. ( 1  5.3.3) as an error signal, the gradient of the error is a positive function of the 
coefficients a, ; i =  1, 2,. . ., M .  Therefore, a gradient decent for the LMS algorithm 
will step the coefficient updates in the opposite direction of the gradient its seen 
in Eq. (15.3.5). Figure 26 graphically depicts a whitening filter. 

(1  5.3.5) 

The step size p in Eq. (15.3.5) is defined in terms of its theoretical maximum 
(the inverse of the model order times the waveform variance) and a relative par- 
ameter p,.(,/which effectively describes the memory window in term of N waveform 
samples. As described in Section 10.2, the smaller p,.(,/is, the slower the LMS con-
vergence will be, effectively increasing the number of waveform samples influencing 
the converged signal whitening coefficients. This is a very important consideration 
for whitening filters because the filter represents a sigrial r?~o&lrather than a system 
model. By slowing the adaptive filter convergence we can make the whitening filter 
ignore nonstationary sinusoids. This can be very useful for canceling very stationary 
sinusoids such as a 60 Hz power line frequency from a ground fault. 

Figure 26 Flow diagram for an adaptive FIR whitening filter for the signal where E, is 
the whitened “error” signal used to drive the adaptive filter, and - P f ~ I - ~is the linear predicted 
or “enhanced” signal. 
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Adaptive Signal Enhancement is the technique of enhancing desired predict- 
able signal components by removal of the unpredictable noise components. Signal 
enhancement usually requires a whitening filter to produce the unpredictable com- 
ponents to be removed. To further illustrate whitening and enhancement filters, 
Figure 27 shows the results of the whitening filter output, and the enhanced (linear 
predicted) signal output for a case of a stationary 120 Hz sine wave in white noise 
along with a non stationary frequency in the 350 Hz range with a standard deviation 
of 10 Hz. The instantaneous frequency is found for the nonstationary sinusoid by 
integrating a Gaussian random variable over several thousand samples to obtain 
a relatively low frequency random walk for the sinusoid frequency. Since instan- 
taneous frequency is the time derivative of the instantaneous phase, one can 
synthesize the nonstationary spectra seen in Figure 27 on the left spectrogram. 
The center spectrogram shows the enhanced signal (from the linear prediction) 
and the right spectrogram shows the whitened error signal output. An LMS adaptive 
algorithm is used in the time domain with a memory window of about 200 samples. 
Figure 28 shows the time-averaged power spectra of the original and whitened 
signals for the time interval from 60 to 70 sec. The whitened signal clear shows over 
50 dB of cancellation for the 120 Hz stationary sinusoid and about 20 dB cancel- 
lation for the nonstationary sinusoid. Figure 29 shows the time average spectra 
for the enhanced signal which clearly shows in detail a 10-20 dB broad band noise 
reduction while leaving the sinusoids essentially intact. 

Adaptive Noise Cancellation significantly suppresses, if not completely 
removes, the coherent components of an available noise reference signal from 
the signal of interest through the use of optimal Wiener filtering. Figure 30 shows 
a block diagram for a straightforward Wiener filter used to remove the interference 
noise correlated with an available “reference noise”, thus leaving the residual error 
containing mostly the desired signal. If coherence is high between the reference 

Figure 27 Adaptive whitening and enhancement results for a 120 Hz sinusoid in white 
noise plus a frequency-modulated sinusoid to show the effects of signal nonstationarity. 
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Figure 28 Ensemble-averaged original and whitened signal spectra showing the most 
significant whitening of the 120 Hz stationary sinusoid. 
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Figure 29 Ensemble-averaged original and enhanced spectra showing the suppression of 
unpredictable noise in the adaptively-enhanced signal produced by the linear prediction. 
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Figure 30 An adaptive Wiener filter for removing noise correlated with a known reference 
noise signal, thus driving the error signal output to contain mostly the desired signal 
components. 

noise and the waveform with our desired signal plus the noise interference, the 
cancellation can be nearly total. This of course requires that we have a very accurate 
model of the transfer function between the reference noise and our waveform. The 
Wiener filtering in Section 10.2 is mainly concerned with the identification of this 
transfer function system, or “system identification”. A valuable by-product of 
precise system identification is the capability of separating the reference noise com- 
ponents from the output waveform to reveal the “desired signal” with the noise 
interference removed. 

For example, suppose the President, not wishing to answer reporters’ questions 
while walking from his helicopter to the White House, instructs the pilot to race the 
turbine engines creating enough noise to mask any speech signals in the area. 
However, one gadget-wise reporter places one microphone near the helicopter 
and uses another to ask a question of the President. A real-time Wiener filter is used 
to remove the turbine noise from the reporter’s microphone allowing the question 
to be clearly heard on the videotape report. This technique has also been used 
to reduce background noise for helicopter pilot radio communications, as well 
as many other situations where a coherent noise reference signal is available. 

We begin our description of the adaptive noise cancellation seen in Figure 30 by 
assuming an FIR system model (the model could also be IIR if desired), with the 
following linear prediction of the noise interference n, ,  given a reference signal 
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xi ,  and system model last updated at time t - 1. 

(1  5.3.6) 
k=O 

The linear prediction error is then simply 

( 1  5.3.7) 

where d, is our desired signal. 
The adaptive LMS update for the FIR coefficients is 

(15.3.8) 

where a plus sign is used to insure the step is in the opposite direction of the gradient 
of the error with respect to the coefficients. 

Use of the LMS algorithm and a FIR system model makes the processing 
remarkably simple. If the transmission channel between the reference signal and 
the noise interference is essentially propagation delays and multipath, the FIR model 
is very appropriate. If the transmission channel contains strong resonances (the sys- 
tem transfer function has strong peaks in the frequency domain), an IIR filter struc- 
ture is to be used because it requires fewer coefficients to accurately model the 
system. 

If the reference noise contains signal components which are uncorrelated with 
our waveform, these components will unfortunately add to the noise interference. 
This is because the converged system filter only responds to the coherent signals 
between the reference noise and our waveform. The uncorrelated noise in the ref- 
erence signal will be “filtered” by the system model, but not removed from the output 
waveform. This is a particular concern when the reference signal contains random 
noise from spatially uncorrelated sources, such as turbulence on a microphone. Such 
situations are problematic when acoustic wind noise is interfering with our desired 
signal. Because the turbules shed and mix with the flow, the pressure fluctuations 
are spatially uncorrelated after a given distance depending on the turbulence 
spectrum. The signal plus turbulence at  one location (or generated by one 
microphone in air flow) is in general not correlated with the wind noise at  another 
location. If one attempts to cancel the flow noise using a reference sensor a large 
distance away one would simply add more random noise to the output signal. 
However, wind noise on a microphone has been canceled using a co-located hot-wire 
turbulence sensor signal as a reference noise (6). When tonal acoustic noise is to be 
removed, one can design, or synthesize, a “noiseless” reference signal by using a 
non-acoustic sensor such as an optical or magnetic tachometer pulse train designed 
to produce all the coherent frequencies of the noise generating device. This 
frequency-rich reference signal is then adaptively-filtered so that the appropriate 
gain and phase are applied to cancel the coherent tones without adding more random 
noise. This is the best strategy for canceling fan noise in KVAC systems (heating, 
ventilation, and air conditioning), propellor noise in commercial passenger aircraft, 
and unwanted machinery vibrations. 
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As an example demonstrating the ease, power, and simplicity of adaptive noise 
cancellation, a pair of nonstationary sinusoids is seen in the left spectrogram of 
Figure 31. Nonstationary noise (around 100 Hz) and signal (around 300 Hz) 
sinusoids are used to emphasize that one the system transfer function is identified, 
cancellation occurs independent of the actual signals. For this case our reference 
noise is the lower sinusoid near 100 Hz plus white Gaussian noise. The SNR of 
the signals is 20 dB, the SNR gain of the 1024-point FFT is 30.1 dB, yet the observed 
SNR of about 40 dB is less than 50.1 dB because of the nonstationarity of the 
frequencies. The reference noise mean frequency is 105 Hz and its standard deviation 
is 10 Hz while our desired signal has a mean of 300 Hz and a standard deviation of 20 
Hz. The Gaussian frequency estimates were integrated over 10,000 samples (sample 
rate for the simulated waveforms is 1024 Hz) to give a low-frequency randomness. 
The center spectrogram represents the predicted noise interference signal consisting 
of the system-filtered 105 Hz nonstationary sinusoid plus the random noise. The 
right spectrogram illustrate the nearly complete removal of the noise interference, 
even though the signals are nonstationary. Figure 32 depicts the time-average 
spectra of the original waveform and the cancellation filter error output averaged 
over records 40-45. One can clearly see the cancellation of the random noise as well 
as the interfering 105 Hz nonstationary sinusoid. Adaptive noise cancellation is 
a straightforward and impressively simple technique for separating signal and noise 
interference. 

Active Noise Cancellation suppresses the unwanted noise in the physical 
medium (rather than on the signal wire or in a digital recording of the waveform). 
This physical cancellation requires that feedback from the actuator to the reference 
signal be accounted for, and that delays in the actuator to error sensor transfer func- 

Figure 31 Signal separation using Wiener filtering on two nonstationary sinusoids where 
the approximately 100 Hz wave in white noise is available as a reference noise signal for 
cancellation. 
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Figure 32 Average spectra from records 40-45 in Figure 31 showing the original signal 
plus interference (100 Hz sinusoid plus noise) and the output signal with the interference 
canceled. 

tion be accommodated. There are significant complications due to the additional 
delays and control loop transfer functions and we emphasize here that Active Noisc 
Cancellation and Adaptive Noise Cancellation refer to significantly different signal 
processing tasks. 

Figure 33 provides a basic comparison between active noise cancellation and 
adaptive noise cancellation (ANC). While both algorithms are adaptive controllers, 
the word active signifies that a physical actuator produces a real wave which mixes 
the interfering noise to produce a physical cancellation. Where does the wave energy 
go? The answer depends on how the ANC system in configured. If one is canceling an 
acoustic wave outdoors, the cancellation simply occurs at  a point in space from 
out-of-phase superposition. If the acoustic cancellation occurs in a duct where 
the wavelength is larger than twice the longest dimension in the duct cross section, 
the ANC actively causes an impedance zero at  the active control source. This actu- 
ally causes a reflection of the acoustic wave back towards the “primary” noise 
source, and zero power radiation downstream in the duct (7). The concept of active 
control of impedance control is extremely powerful because it allows one to control 
the flow of power and the efficiency of energy conversion. To reduce radiated energy, 
one drives radiation impedance to zero. To create a “zone-of-silence” at  the location 
of a sensor, one is not concerned so much about impedance and uses ANC to allow 
sensor signal gains to be increased for a physical increase in SNR. 

As seen in Figure 33, the ANC control system is considerable more com- 
plicated than a Wiener filter for adaptive noise cancellation “on the wire”. The Block 
“S[z]” symbolizes an active source which could be electrical, mechanical, or 
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Adaptive Noise Cancellation 

d 
t 

x t  Unknown’ System 

Active Noise Cancellation 

Figure 33 Comparison of Adaptive Noise Cancelation and Active Noise Cancelation 
Algorithms. 

acoustical. However, once the ANC “secondary” source produces its canceling 
wave, i t  can have an effect on the reference sensor which is symbolized by the 
feedback block “ f l z ] . ”  For adaptive noise cancellation seen in the top of Figure 
33, the effect of the control signal output is seen immediately in the error signal 
after subtracting the predicted noise interference from the waveform. However, 
in the ANC system, this control output must first pass through the actuator transfer 
function “S[z] ,”  and the through the error propagation channel and transducer 
symbolized by “E(:].” The error loop transfer function can be seen as “S[z]E(z],” 
or “SE“ for short, and can have significant time delays due to the physical separation 
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and the electro-mechanical transfer function of the transducers. Since in the 
least-squared error adaptive filter the error and reference signals are cross-correlated 
to provide the filter coefficient update (no matter which adaptive algorithm is used), 
any phase shift (or time delay caused by the response of S E  will be significantly 
detrimental to the success of the cancellation. Thus, by filtering the reference signal 
with S E  we make a new signal Y,, which we call the “filtered-x” signal which is prop- 
erly aligned in time and phase with the error signal. Note that a small amplitude error 
in the error signal due to S E  is not a significant problem since the adaptive algorithm 
will continue to update the control filter coefficients until the error is zero. But with 
a phase or time delay error, the coefficients of the controller will be updated with 
the wrong cross correlation. The “Filtered-X” adaptive ANC algorithm is seen 
in Figure 34. 

To see the optimal converged control filter solution for ANC, we break down 
the system transfer functions into frequency-domain representative blocks which 
we can manipulate algebraically. These transfer functions could be of FIR or 
IIR type in terms of model paradigm. For now we will simply leave them as a letter 
block to simplify our analysis. The error signal can be seen to be 

which A ( f ) ,  or A[,-] in the digital z-domain, can be solved for the control filter A 
which gives zero error signal explicitly as (dropping t h e f  or z for brevity) 

-P 

A =  ( 1  5.3.10)

S( 1 - FP) 

assuming the propagation and error sensor transfer function “ E ’  is nonzero for all 
frequencies. If the error loop response is zero at some frequency(s), the ANC control 
system will not respond to that frequency(s), but otherwise is stable. 

II, 


Figure 34 The signal “r,” is the Filtered-X signal required for adaptive control filter con- 
vergence when a non-zero time delay exists in the actuator-to-error sensor control loop. 
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One can clearly see from the optimal ANC control filter in Eq. (15.3.10) that to 
be a stable filter, “S” must be non-zero at  all frequencies and the forward path ‘bP” 
times the feedback path “F’ must be less than unity when the phase is near zero. 
While this makes A a stable filter, the feedback loop from the actuator S back into 
the reference sensor through F must also be stable. This is guaranteed if the loop 
gain through A S F  is less than unity, or IFPI< % . We call the requirement for  IFP( 
< ‘/z the “passivity condition” for ANC systems which must be met to insure system 
stability. In general, the feedback from the active control source back into the ref- 
erence sensor is highly undesirable and robs the ANC system of performance 
and dynamic range. It is best eliminated by using a reference sensor which does 
not respond to the acoustic or mechanical waves from the actuator, such as an 
optical tachometer for canceling tonal noise interference. Directional sensor arrays 
can also be used to insure passivity. While eliminating the feedback is the best 
strategy, if present and meeting the passivity constraint, feedback will simply cause 
the ANC system to have to cancel much of its own signal, leading to poor overall 
performance. Clearly, applying a basic physical understanding of the system can 
significantly improve the performance of the applied adaptive signal processing. 

We now turn our attention to measurement of the error loop transfer function 
SE.  Clearly, one could measure this while the ANC system offline and apply the 
SE Filtered-X operation while hoping that this transfer function does not change 
during the ANC system operational time. But, the Filtered-X operation is important 
in that it is generally done concurrently with the ANC adaptive filtering in com- 
mercially-available systems (8). Figure 35 shows an “active” on-line system identi- 
fication which injects a white noise signal into the error loop to simultaneously 
identify the S E  transfer function while the ANC system is operating. Clearly, this 

Figure 35 White noise is injected at low, but detectable, levels into the control signal for 
active identification of the error loop transfer function SE. 
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noise has to be strong enough that the S E  transfer function can be measured in a 
reasonable amount of time. However, if the noise is too loud than the point of 
the ANC is defeated. Figure 36 shows a very clever (9) approach which allows both 
the PE and S E  transfer functions to be estimated using only the available control 
signals. This is desirable because it adds no noise to the ANC system, and ANC 
error output. It works by balancing the models for PE and S E  to predict the error 
signal, which could be near zero during successful cancellation. The “error of 
the error”, E ; ,  is then used to update the estimates for the PE and S E  transfer 
functions. Only the S E  transfer function is needed for the Filtered-X operation, 
and only its phase at  the frequency components in the noise, reference, and error 
signals is needed to insure correct convergence of the ANC system. However, if 
the reference noise is narrowband, the estimated SE transfer function will only 
be valid at  the narrowband frequency. 

The Filtered-X algorithm can also be applied for multichannel ANC where one 
hasp reference signals, 4 actuators, and k error sensors (10). One would choose to use 
multiple reference signals when several independently observable coherence refer- 
ence noise signals are available, and as such, one can optimize the adaptive control- 
lers independently for each type of reference signal summing the control outputs 
at  the actuators. The ANC control filter A is represented in the frequency domain 
as a p s 4  matrix for each frequency. This way each reference signal has a path 
to each actuator. In general, when a number of actuators and error sensors are used, 
the ANC system is designed to produce spatial, or modal, control. One should note 
simultaneously minimizing the squared error at  every error sensor location is 
but one spatial solution. One can apply a number of useful modal filters to the error 
sensor array for each frequency of interest in much the same way one could design 
a beampattern with nulls and directional lobes as desired. The issue of modal control 

m m 
. I  

Figure 36 Passive system identification can be done by using both the reference and con- 
trol signals to identify the time delay of the error loop which is all that is required for system 
convergence. 
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is central to ANC problems of sound radiation from large structures and high fre- 
quency sound cancellation in enclosures such as airplanes, automobiles, and HVAC 
ducts. Using modal ANC control, one can design the ANC converged response 
to minimize vibrational energy which radiates from a structure, or excites enclosure 
modes. 

In general, each actuator “channel” should respond adaptive to every error 
signal, either independently or as part of a modal filter output. When the number 
of error sensors is greater than the number of actuators ( k > q ) ,  this combining 
of error sensors allows each actuator signal to be optimized. When the number 
of actuators is larger than the number of error sensors ( q> k ) , the error signals will 
be repeated for multiple actuators redundantly. This will in general still work, 
but there is a potential problem with linear dependence of actuator channels. Note 
that in Eq. (15.3.10) the actuator transfer function S is inverted. For multichannel 
ANC, S is a q.vy matrix and the error propagation and transducer paths are modeled 
as a q s k  matrix for each frequency. This allows each actuator a path to each error 
sensor. However, the actuator matrix S must be invertible, which means that 
the columns of S must be linearly independent and each element on the main diag- 
onal of S must be nonzero for all frequencies. An example of linear dependence 
between ANC channels can be seen for a two channel system where both actuators 
and both error sensors are co-located. As such, the columns of the S matrix are 
linearly dependent. Channel I can interfere with channel 2 and the error sensors 
cannot observe the effect. Thus, the control effort can go unstable without correction 
instigated by the error signals. One can design around the actuator linear dependence 
problem by care choice of actuator and error sensor location. Another method is to 
apply a singular value decomposition and “turn of f ’  the offending actuators at selec- 
ted frequencies. This is a significant source of complexity in robust design of a 
multichannel ANC system. 

With p reference sensors, q actuators, and k error sensors the multichannel 
Filtered-X algorithm poses a problem: how does one filter p reference signals with 
the q.vk S E  transfer function estimate to produce p “filtered-x” ( r , in Figures 34-36) 
signals for use by the adaptive algorithm? We adopt a “copy/combine” strategy 
to support the matrix interfaces and the ANC design goals. If p > y  (more reference 
channels than actuators) the control filters for the extra reference channels can 
be calculated in parallel where the outputs are summed at the actuators. For 
p<q  the reference signals are simply copied into the extra channels. Now we have 
k filtered-x signals (one for each error channel) and we need to adapt the p.vq 
ANC control filter frequency domain coefficients. For k>y  (more error channels 
than actuators) the extra filtered-x signals are combined for each actuator channel. 
In  other words, more than y filtered-x signals and error signals contribute to the 
adaptive update for a particular control filter element. When k<y (more actuators 
than error sensors) the extra actuator channels are updated with the same filtered-x 
signals and error signals as other channels at the risk of causing linear dependence. 
This is less risk than i t  sounds because the actual transfer functions between indi- 
vidual actuators and a particular error sensor may be different enough to support 
linear independence of the channels. 

Active Noise Attenuation Using Feedback Control is best applied in situations 
where the closed-loop response has a time constant significantly shorter than the 
period of the highest frequency to be controlled. This is because the feedback loop 
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time delay determines that available bandwidth for stable active attenuation. Gen- 
erally speaking, active feedback control is well suited for “smart structures” where 
the vibration sensor and actuator are closely-located, the wave speed is very high, 
and therefore the control loop delay is very short compared to the period of the 
frequencies to be actively attenuated. This arrangement can be seen as a basic regu- 
lator circuit for very low frequencies. As one attempts to employ active feedback 
control at  higher frequencies, one must limit the control bandwidth in accordance 
with the loop delay creating a “tuned regulator”. Because of the devastating 
quickness of divergence in a high-gain tuned regulator, adaptive techniques are best 
executed off-line where one can apply stability gain margin analysis before updating 
the feedback controller. 

Figure 37 depicts a basic feedback control system which can be optimized using 
what is known as ARMAX control. ARMAX stands for Auto Regressive Moving 
Average with auxiliary input and describes a modern digital adaptive control tech- 
nique for feedback systems (the Filtered-X algorithm is a feedforward system). 
Before we get into the details of ARMAX control, let us examine the basic feedback 
control system where the plant ( H [ z ]in Figure 37) has some gain Ho and delay z.This 
delay is inherent to all transducers but is particularly large in electromagnetic 
loudspeakers and air-acoustic systems where the sound propagation speed is rela- 
tively slow. The delay response for most sensors in their passband is usually quite 
small if the frequency response is flat. For piezoelectric transducers embedded into 
structures, the delay between sensor and actuator is especially small. This delay 
determines the available bandwidth and amount of stable active attenuation. 

A” tit-1 

Figure 37 ARMAX Control can be used to optimized the design of a digital feedback 
control system for active attenuation of noise, but it is well-advised to operated the feedback 
controller with all filters non-adaptive to avoid instability with high-gains. 
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The delay in the plant will cause a linear phase shift where the phase becomes more 
negative as frequency increases. At some high frequency, what was designed as 
low frequency stable negative feedback become unstable positive feedback. 
Therefore, one typically designs a compensator filter ( G [ z ] in Figure 37) which 
attenuates the feedback out-of-band to maintain stability. 

To examine the feedback control system stability problem in its most basic 
incarnation (a whole textbook has been devoted to this subject countless times), 
we’ll consider a “perfect transducer” model where the net response from the elec- 
trical input to the actuator to the electrical output of the error sensor is simply 
H(s)=Hoe-’‘’’‘. Our compensator G(s) is a simple 1st-order low pass filter defined 
by 

1 1 
m .  =- (15.3.1 1 )G(s) = 

1 +j o / q  ‘ RC 

which can be implemented a variety of ways. The compensator has a flat frequency 
response up to (11, and then decreases at  a rate of -6 dB per octave as frequency 
increases. Placing two such filters in series gives a 2nd-order ( - 12 dB/oct) filter, 
four filters in series yields a 4th-order (24 dB/oct), and eight filters in series yields 
a sharp cutoff of (48 dB/octave). Figure 38 compares the magnitude and phase 
of these filters designed with a 300 Hz cutoff frequency. While the higher order 
compensators provide a sharp cutoff and a lot of attenuation for high frequencies, 
there also is considerable phase change in the cutoff region, As will be seen, this 
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Figure 38 Comparison of the magnitude and phase of a lst, 2nd, 4th, and 8 th  order low 
pass filter designed to attenuate signals above 300 Hz. 
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phase change is the source of considerable difficulty (and art) in designing stable 
feedback control systems. 

The open-loop response is simple the H(s)G(s)product, or 

(1 5.3.12) 

where "n" is the order of the filter (2nd order, etc) also denoted as the number of 
poles in the open-loop system. For the open-loop response to be stable, all of its 
poles must lie in the left half s-plane. However, if the open-loop system is unstable, 
the closed-loop response can still be stable, which is a useful and interesting aspect 
of feedback control. Open-loop stability implies that there are no poles of H(s)G(s) 
in the right haw s-plane while closed-loop stability inzplies that there are no zeros 
of 1+ H(s)G(s) in the right haws-plane. The closed-loop response of the feedback 
control system is seen to be 

(1  5.3.13) 

where the denominator of Eq. (1  5.3.13) is known as the characteristic equation for 
the closed-loop response. The closed-loop responses for our system with either 1st, 
2nd, 4th, or 8th order low pass filters in seen in Figure 39. The 8th-order (8-pole) 
response is actually unstable, which will be explained shortly. The zeros of the 
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Figure 39 Closed-loop responses with a gain of 3 and 100 p s  delay showing the 4-pole 
system marginally stable and the phase of the 8-pole system showing an unstable response. 
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characteristic equation are the closed-loop system poles. Therefore, the character- 
istic equation can have no zeros in the right half s-plane if the closed-loop response 
is stable. 

Solving for the characteristic equation zeros and testing to determine their 
location is quite tedious, but can be done in a straightforward manner using numeri- 
cal techniques. The Routh-Hurwitz criterion is a method for determining the 
location of the zeros (in either the left or right half planes) for a real-coefficient 
polynomial without actually having to solve for the zeros explicitly. However, 
the Nyquist criterion is a more appealing graphical solution to determining 
closed-loop system stability. For our simple system with no open-loop poles in 
the right half plane, one plots the real verses imaginary parts of the open loop 
response H(s )G(s )for s=+ .joo to s =j0 taking care to integrate around any poles 
of the characteristic equation on the jw axis. 

The "Nyquist plots" for our system can be seen in Figure 40. Since we have a 
low pass compensator G(.s), all the open-loop response plots start at  the origin 
corresponding to (11= +jw.As the contour integral (counter clockwise around 
the right-half s-plane) progresses down the s=jw axis, the H(s)G(.v)plot spirals 
out in a general counterclockwise direction. Obviously, if it intersects the critical 
point [ - 1 ,  j O ] ,  the characteristic equation is exactly zero and the closed loop 
response diverges. What is less obvious is that if the Nyquist plot cwc*ir*c~lc~.s(that 
is lies to the left of the critical point), the closed-loop system is unstable because 
there will be at least one zero of the characteristic equation in the right half s-plane. 
Figure 40 clearly shows the 4th order system stable, but nearly intersecting the 
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Figure 40 Nyquist plot of the open-loop H[s]G[.s]response showing the 8-pole system 
encirclement of the [- 1.01 coordinate indicating instability. 
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critical point while the 8th order system encircles the critical point indicating 
instability. 

But, the closed-loop response seen in Figure 39 shows no sign of instability in 
the magnitude of the 8th order compensator closed-loop response. Why? The 
answer can be seen in the fact that frequency response magnitudes provide no in-
formation about time causality. The phase response clearly shows a sizable phase 
shift of nearly 271 through the cutoff region. Recall from Section 3.3 that positive 
phase shifts imply a time advance (due to perhaps a time delay in the transfer func- 
tion denominator). The 8th order response in Figure 39 and 40 is unstable because i t  
is noncausal. The effect of increasing the gain is to expand the Nyquist plot of 
Figure 40 in all directions. The effect of increasing the time delay is to rotate 
the Nyquist plots clockwise, significantly increasing the chances of encirclement 
of the critical point. Lowering the compensator cutoff frequency will move the 
Nyquist plots towards the origin at high frequencies which buys some gain and 
phase margin. Phase margin is the angle between the point at high frequencies where 
the open-loop gain is unity and the real axis on the Nyquist plot. Gain margin is 1 
over the magnitude of the open-loop gain where is crosses the real axis, hopefully 
to the right of the point [ - 1,  jO]. If the compensator does not attenuate sharply 
the high frequencies, the Nyquist plot widely encircles the origin many times as 
frequency increases due to the plant delay z. These wide encirclements cause ripples 
and overshoot to be seen in the closed-loop responses, all of which with a gain of 3.0 
show a little over 12 dB active attenuation at  low frequencies. Clearly, the design 
goal for robust active attenuation using feedback control is to have as short a time 
delay as possible in the control loop and to use a low-order compensator to avoid 
too much phase shift in the cutoff region. This is why embedded piezoelectrics with 
extremely short response delays work so well in smart structures designed to atten- 
uate vibrations using active electronics. Even active hearing protectors, with nearly 
co-located loudspeakers and error microphones, get only 12-1 5 dB of active attenu- 
ation over a bandwidth of up to 1-2 kHz. An additional 20-25 dB of high frequency 
attenuation can happen passively if the hearing protectors are of the large sealed 
tYPe. 

Applying ARMAX control offers no relief from the stability physics of 
feedback control systems, only an approach which allows one to exploit (with some 
risk) the known closed loop response to gain greater attenuations over a wider band- 
width for periodic noise disturbances. If one knows the loop delay precisely, and can 
be sure that the loop delay will be unchanged, a periodic noise waveform can be 
predicted “d“ samples into the future. This follows a whitening filter where one pre- 
dicts the waveform one sample into the future to derive the whitened error signal. 
The compensator G(s) is design to invert the minimum phase response of H ( s )  
and provide a “cl-step ahead” linear prediction of the control signal 21, +ell, ~ 

Clearly, this is risky business because if the control loop delay or noise disturbance 
suddenly change, the transient signals in the control loop can quickly lead to diver- 
gence and/or nonlinear response of the actuators. ARMAX control has been suc- 
cessfully applied to very low bandwidth problems in industrial process controls 
( 1  I ) ,  among other applications. One of the nice features of ARMAX control is that 
one can, with least-squares error, drive the closed-loop response to produce any 
desired waveform or have any stable frequency response, assuming a high fidelity 
plant actuator is used. 
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ARMAX control starts by assuming an ARMA process for the noise disturb- 
ance 1 2 , .  The ARMA process has innovation w f ,  which is zero mean Gaussian white 
noise. 

( 1  5.3.14) 

Taking inverse z-transforms one obtains 

K M 

(15.3.15) 
k=O n1= 1 

The plant transfer function is also assumed to be a pole-zero system, but we will 
separate the delay out so we can say that the pole-zero system is minimum phase. 
The delay t corresponds to d samples in the digital system. 

H[z]= U[+-&.Bk l  , - [ I  (1  5.3.16)
A[z] 

Taking inverse z-transforms one gets 

( 1  5.3.17) 
p=o y= 1 

The ARMAX output y ,  is the noise of Eq. (15.3.15) minus the plant output of Eq. 
(15.3.17) we can write a closed-loop system transfer function relating the ARMAX 
output to the noise innovation. 

(1  5.3.18) 

Solving for the compensator G[z]which drives ~ I z ]to w[:] (in other words, com-
pletely whitens the ARMAX output), one obtains 

G[Z]= --4 4  ,+d ( C b l  1) (15.3.19)
B[z] D[z] 

But, for active noise attenuation purposes, one can do  slightly better by not com- 
pletely whitening the noise, but rather just whitening the noise poles and leaving 
any zeros in the noise alone. The result is that ARMAX output will be driven 
to the MA process defined by W[z]C[z]A[z]. 

(15.3.20) 

The result in Eq. (15.3.20) becomes even more interesting one considers that the 
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polynomial product B[z ]D[z ]is just the AR part of the control signal U , .  

U[ - ]= 
W[z]C[z ]A[z ]- Y[z ]A[z ]D[z ]  (1 5.3.21) 

B[z] D[z]  

Equation (15.3.21) tells us that one can simply whiten the control signal U ,  to obtain 
the necessary system identification to synthesize GCA[z ] .However, because B[z]con-
tains the net gain of the minimum phase plant Wz] ,and a whitening filter operation 
to recover B[z]D[z]will have a leading coefficient of zero, one must have an estimate 
of the plant gain and delay in order to properly scale B[z]D[z]and employ the 
feedback control for active attenuation of periodic noise. 

The ARMAX characteristic equation is 

1 + H [ z ] G ~ , ~ [ z ]  
1 

~= 
A [23D[z] 

(1 5.3.22) 

which by design has no zeros to cause closed-loop instability. The polynomials in the 
denominator are also minimum phase, which helps stability. But, the closed-loop 
gain is very high if the plant has sharp resonances ( A [ z ]has zeros near the unit circle), 
or if the noise disturbance is nearly sinusoidal (D[z ]has zeros near the unit circle). 
With this high loop gain, any miscalculation of the plant delay, or change in the 
plant response, can lead to near instant divergence of the signals in the feedback 
loop. If we use the compensator given in Eq. (15.3.19), we have to be concerned 
that the noise is persistently exciting such that C[z]has no zeros on the unit circle 
and that the poles of the plant M z ] are inside the unit circle. This is another reason 
why the compensator given in Eq. (15.3.20) is desirable. Figure 41 shows an example 
ARMAX active attenuation result for a 50 Hz sinusoid noise disturbance and a 
slow-adapting LMS whitening filter. The control effort is deliberately slowed with 
initial small open-loop gain to prevent the start up transient from driving the 
feedback loop into instability. ARMAX active attenuation systems are specifically 
tuned to the plant transfer function and noise disturbance characteristics and 
not well-suited for nonstationary plants or disturbance signals. 

15.4 SUMMARY, PROBLEMS, AND BIBLIOGRAPHY 

This chapter presents some very important models for electrical noise, transducer 
performance, and noise cancellation techniques. These concepts are very much 
characteristic of intelligent sensor systems, which recognize signal patterns, have 
self awareness of system health, and have the ability to adapt to environmental 
changes such as changes in noise interference. Building a physical foundation 
for this requires an examination of how noise is generated, how transducers work, 
and how to minimize or even remove the effects of noise. In Section 15.1 we present 
well-accepted models for several types of electrical noise. Thermal noise, can also 
be generated mechanically in damping materials. This is quite interesting both 
practically and physically. An understanding of the signal features of the various 
types of noise (thermal, shot, contact, and popcorn) allows an intelligent sensor 
system to determine the cause of a given noise spectrum on one of its sensors. Section 
15.2 provides a very brief overview of common sensor technology used in acoustic 
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Figure 41 A R M A X  Attenuation of a 50Hz sinusoids sampled a t  1024 Hz using a 10 
coefficient LMS whitening filter and a slow-responding adaptive feedback control algorithm. 

and seismic systems. These transducers are certainly more interesting than 
low-bandwidth sensors such as temperature, pressure, force, etc., because of their 
signal processing physical models for analysis of the frequency response. The trans- 
ducer can be seen as a reversible device which can serve as both a sensor and 
actuator. One can model the transducer or sensor as a frequency response function 
which has a variable SNR over the bandwidth of interest. The variations in the 
SNR are the source of much interest to an intelligent sensor system. Section 15.3 
presents some applications of adaptive signal processing in canceling or attenuating 
unwanted noise signals. Signal can be canceled adaptively “on-the-wire” in what 
we call adaptive noise cancellation, or physically in the medium which is being sensed 
in the more difficult, active noise cancellation. With feedforward adaptive con- 
trollers, the reference signal which is coherent with the error signal can be nearly 
completely canceled. Using feedback control systems, a reference signal is not 
required but the unwanted noise can only be attenuated by the feedback control, 
not completely canceled. For feedforward cancellers, one often seeks a reference 
signal which is well time-advanced relative to the error signal. For feedback control, 
the error sensor and actuator response must have as little delay as possible to allow 
significant cancellation over as wide a bandwidth as possible. 

Active noise control is a fine example of an intelligent sensor system physically 
interacting with its environment by introducing cancellation waves to improve its 
performance. Such integrated adaptive control also provides the added benefit of 
transducer transfer functions, which can provide valuable information about system 
health. By identifying patterns in the electrical noise and system transfer functions, 
the intelligent sensor gains a level of “self-awareness”, or even sentient (having 
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the five senses) processing. Input impedances and reciprocity calibrations of trans- 
ducers can also be used as part of an intelligent sensor systems ability to assess 
the health of the sensors and transducers attached to it. For example, the voltage 
sensitivity for a piezoelectric transducer will change depending on whether i t  is firmly 
attached to a massive base or if its loosely hanging from its connecting cable. By 
examining patterns in the background noise, the intelligent sensor system can deter- 
mine if an electrical connection or semiconductor problem has occurred. Examin- 
ation of the error and control spectra in an ANC system can determine the 
reachability of the cancellation, coherence of the reference signals to the noise, 
and the response of the ANC actuators. The intelligent controller can then apply 
some fuzzy syntax to deciding whether the control emphasis should be on learning, 
avoiding instability, or ANC performance. For frequency-domain adaptive pro- 
cessing, the fuzzy control strategy can vary across frequency as needed. 

Concluding Remarks 

The purpose of this book has been to attempt to put together spatial, temporal, 
sensor information and adaptive signal processing algorithms towards the goal 
of developing meaningful sensor system intelligence. While it  is not practical to cover 
every algorithm, or variant of algorithm which can be used as part of this lofty 
engineering quest. What we have done is to assemble the major topics in basic signal 
processing, sensor systems, adaptive processing, pattern recognition, and control to 
integrate the basis for intelligent sensor systems as a foundation. The reader is 
strongly encouraged to consult the many excellent texts currently available which 
provide far more rigor and detail than presented here. Our goal has been to provide 
the non-electrical engineer an entry to both basic and advanced topics in intelligent 
sensor signal processing as well as provide the electrical engineer some physical 
insight into practical applications of signal processing technology. There are even 
a few things here and there which are original in this book. The risk of doing this 
has been substantially reduced by validating every Figure plot using Matlab script. 
These scripts and data sets will eventually be made available on a CD ROM for 
interested readers who contact the author. This book is really a hierarchal con-
glomeration of many other texts with a few unconventional derivations. It represents 
a body of knowledge necessary to do work in the sensor signal processing area. The 
author and his students have frequently referred to its contents during the 5-year 
writing of the book. Hopefully, enough detail and references are included to allow 
rapid initial learning, resources for further more detailed research, and appropriate 
examples for continued reference. The writing process was both joyful and humbling. 

PROBLEMS 

1. Sketch the spectral shapes and typical time-domain plots of thermal, 
contact, and popcorn noise. 

2. What is the amount of dB attenuation provided by a 1 mm thick cylin- 
drical copper shield on a co-axial cable for a 120 vrms 60 Hz cable located 
0.1 m away? 
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3. Explain how two single-conductor CO-axial cables can be used to provide a 
balanced differential sensor connection where the shield is floated out to a 
“two-wire” type sensor. 

4. If one could replace the magnet on a loudspeaker with another which 
produces a magnetic field in the voice-coil gap 10 times greater, what 
happens to the driver resonance and damping? 

5. A MEMS accelerometer has sensitivity of 0.1 V per g and an equivalent 
resistance of 10 MSZ. What is the SNR in dB for a 0.001 g 5 Hz sinusoid 
where the dc current is 10 ma? 

6. A pair of microphone transducers in a 5 cm3 air-filled cavity are exposed 
to an acoustic signal. Mic A responds with 10 times more voltage than 
Mic B. A current of 20 ma rms is applied to Mic B and Mic A responds 
with I vrms. What is the sensitivity of Mic A in V/Pa? 

7. The coherence between a reference signal and error signal sensor is only 
0.90 in a potential feedforward ANC system. Assuming no feedback 
to the reference signal and that the error plant is known or can be 
measured with great precision, what is the maximum dB cancellation 
possible? 

8. For the “active SE plant identification” what would the “SE” estimate 
converge to if the error signal were completely driven to zero? Assuming 
the SE identification injected noise is uncorrelated with the reference 
signal, if the reference signal noise is completely canceled, what is the 
residual error signal level? 

9. For a multichannel feedforward ANC system, explain why the transfer 
functions between actuators and error sensor of different channels should 
be as independent as possible. 

10. A hydraulic actuator is used to stabilize a heavy gun barrel on a ship. The 
transfer function of the actuator to a vibration sensor on the gun barrel 
reveals a delay of 200 msec over a bandwidth from 0.1-3 Hz. Using 
feedback control, how much stable attenuation of the ships motion 
can be achieved over the 3 Hz bandwidth? How about 1Hz bandwidth? 
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Appendix 

Answers to Problems 

CHAPTER 1 

I .  (a) Accelerometer output f 0.25 volts. 1 I .5 dB =20 log (gain), :.gain = 
3.758. Voltage at A / D  input is f0 .9395 volts. 14-bit A / D  has range +213 
- 1 to - 213, or +8191 to - 8192. Maximum A / D  input voltage is 
0.000305 x 8192=2.5 V. Numerical range of input is f3080. 
(b) A gain of 10 is needed, or 20 dB. The closest available gains are 20.5 dB 
and 19 dB. Since 20.5 dB would cause clipping, 19 dB is selected, or a linear 
gain of 8.9125. The A I D  input is f 2 . 2 2 8  giving a numerical range of 
f 7 3 0 5 .  The SNR is therefore 7305:l or on a dB scale, 77.3 dB. Before 
gain adjustment it  was 69.8 dB. 

2. (a) Available signed %bit SNR is 127:1 or 42 dB. Therefore .j? can be 
25 kHz, half the Nyquist rate giving over 48 dB attenuation above SO kHz. 
(b) A 16-bit signed A / D  has f32767 range or 90.3 dB SNR. Iffk is about 
12.5 kHz, over 96 dB attenuation is possible above 50 kHz. 
(c) For a 100 kHz sample rate, the attenuation at 50 kHz is 48(50 k -.I;.)/.fc 
dB (i.e. 48 dB iffc =25 kHz). Since the attenuation back ata/> is twice that 
at the Nyquist rate, 48(100 -2fc)/fc=90.3 is the minimum attenuation 
needed giving a maximumfc of 25,765 Hz. 

3. (a).fs must be at least 1.5 Mhz 
(b) the Doppler-shifted frequencies can lie between 4.99667 Mhz and 
5.00334 Mhz giving a minimum bandwidth of 6666.67 Hz. With the analog 
signal bandpass-filtered properly, a complex-sample A / D could gat her 
666.67 complex samples per sec. A real A / D  system could sample at 20000 
samples per sec to represent the data, but would not allow the distinction of 
positive and negative Doppler. 

4. Assuming the sound is sinusoidal, the peak level is 1.41 times the rms, or 1 .S 
Pascals peak (conservatively). We therefore would expect a maximum volt- 
age of, say, 20 mV from the microphone. A reasonable gain for the 
microphone would be 500, or about +54 dB. 

589 
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The vertical distance of 1.O m is sampled 525 times giving a spatial sample 
interval of 1.9 mm. At least two spatial samples per object dimension 
are needed to insure unaliased video, or 3.8 mm. A high contrast tweed 
jacket with dark and light weaves less than 1/8" apart would look pretty 
confusing to viewers! 
With 30" between the holes, the car will appear to be moving the fastest 
when the wheel turns only 15" between the 1 /30 sec even or odd scans. 
This speed is 0.771 m/turn times (1124) turns/sec, or 0.0916 m/sec which 
corresponds to about 0.2 mph. As the car moves faster than 0.2 mph, 
the holes appear to be moving backward slower and slower until the 
car is moving at about 0.4 mph, when the holes appear nearly stationary. 
(a) Only 39.0625 samples per sec. 
(b) 1.445 Ghz. 
(a) The offset binary data greater than 32767, say 32768 is misinterpreted 
as -32767 (complement the bits and add 1). The waveform plot looks 
pretty odd. Note that the largest offset binary value of 65535 maps to 
- 1 in 2's complement. 
(b)  The opposite situation produces a similar waveshape. 

CHAPTER 2 

1 .  Just follow through the proofs as given in section 2.1. 
2. Note that z = cJT s = 0 +jco.A stable signal is one where it stays bounded 

or decays as time increases. The real part of s is thus limited to be less than 
or equal to zero (left-half s-plane), which maps to the region on or inside 
the unit circle on the z-plane. 

3. When Ix  1 = 1 ,  the scaling on the z-plane amounts to a frequency shift in 
equation (2.1.13), which is the same as if u were pure imaginary in equation 
(3.1.13). 

4. Note that functionally, s N (1  - z - ' / T ) .This functional similarity can also 
be seen by noting that s = ( l /T) lnz  = (l/T)((l - 2-I) + z z = l ( l / n )  
( 1  - z - ' ) ~ ) .Therefore, to a first approximation at least, the two operations 
can be seen as equivalent. 

5.  Computer model experiment - self explanatory. 

CHAPTER 3 

1. A 2nd-order FIR can be used where the two zeros are on the unit circle at  
the angles fn(8000/22,050), or f65.3 degrees. The FIR coefficients 
are bo= 1, bl = -0.8357, and b2= 1 The output p(n)=x ( n )-0.8357s 
( n  - 1 )  +x(n  - 2). 

2. If 10 Hz resolution is sufficient, the length of the FIR must be at least 100 
msec. With a sample rate of 50 kHz, about 5000 FIR coefficients are 
needed. 

3. (c) 
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4. (a) 
5 .  By writing the non-minimum phase ARMA filter as the product of a mini- 

mum phase filter (poles and zeros inside the unit circle) and an all pass 
filter, one is left with a pair of zeros at  the origin (giving two unit delays) 
as the ARMA filter's non-minimum phase zeros move out to infinity. 
Therefore, the system delay increases the further zeros are outside the unit 
circle. 

CHAPTER 4 

1. Let xl [k+ 11= x2[k], x2[k+ 11 = u[k] - a2xl[k]- a,x2[k] as in Eq. (4.1.4.) 
The output y[k] for input u[k], is: y [ k ]= blxl[k]+ hox2[k]as in Eq. (4.1.6). 

2. Using the guidelines in Eq. (4.1.21), T <  2[/to& i= R / 2 L =  2500, = 
5 x 108. Therefore, the minimum T for stablility is 10 psec and the 
recommended T is 1 psec. 

3. c( is 0.10 from the 10% requirement. Using 4.2.8 /3=0.005267 and 1' is 
0.0002774. 

4. One could use a gradient along a +45" direction such as: 

0 -1 -2 
-v+45 = - 1  0 - 1 1  

2 1 0 

5.  A convolution in the time domain of a filter impulse response with itself is 
equivalent to squaring the filter frequency response. This is evident viewing 
Figures 4.4.3 and 4.4.6. 

CHAPTER 5 

1. The difference between the two sinusoids is 72 Hz. For one bin to lie 
in-between the two peaks, the spectral resolution must be 36 Hz. This cor- 
responds to an integration time of 1 /32 or 31.25 msec. At 100,000 samples 
per sec, 3125 samples are the minimum needed in the D F T  calculation to 
resolve the two sinusoids. 

2. An FFT requires a theoretical minimum of Mog2N operations. The total 
operations per FFT is N(2 + log2N), or 1152, 12,288, and 122,880, for 
N = 128, 1024, 8 192, respectively. Given 25,000,000 operations available 
from the DSP, the maximum number of FFTs per sec is 21,701, 2,034, 
and 203, for N =  128, 1024, and 8192, respectively. The computational 
times are simply 46 psec, 493 psec, and 4.93 msec. (Note: actual DSP 
FFT algorithms will have much additional overhead depending on coding 
efficiency - looping vs. inline code. A typical 1024-point FFT on a 25 
MFLOP DSP is several msec, not half a msec). 

3. Given a real .U( t )  placed in the imaginary part of the FFT input sequence 
with zeros in the real part of the input sequence, the imaginary part of 
the resulting complex spectrum would be symmetric in frequency while 
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the real part of the complex spectrum would be skew symmetric. Therefore, 
the true real spectrum is found by summing the positive and negative fre- 
quency bins of the imaginary bin of the FFT output. The true imaginary 
spectrum is found by subtracting the negative frequency bins from the posi- 
tive frequency bins of the real part of the resulting FFT output. 

4. The narrowband correction factor is found by matching the window inte- 
gral to a rectangular window. The integral of N*(u)=1 - n / N  from 
12 =0 to N is simply % N ,  as opposed to N for the rectangular window. 
Therefore the narrowband correction factor is 2.00. The broadband cor- 
rection factor is found by matching the square-root of window integral 
squared to the the same for the rectangular window. This result for 
our window is the square root o f f  giving a correction factor of 312or 1.732. 
The broadband correction matches rms levels in the time domain to the 
sum of the rms bins in the frequency domain. 

CHAPTER 6 

1. The mean in the magnitude-squared bin is CJ; / N or 2.3 14 mv’. The variance 
is d/(N’M) where M = 15, or 2 jiv4 making the standard deviation f1.4I6 
m+. The FFT resolution is 44,100/ 1024 or 43 Hz per bin. The noise level 
spectral density is therefore 53.81 jtv’/Hz. 

2. The broadband correction factor for the Hanning window is about 1.65 
from Table 5.1. Therefore the levels in question 1 would be too low by 
a factor of 1 / (  1.65)’. The observed noise spectral density would be approxi- 
mately 19.765 pV’/Hz. 

3. Yes, the leakage errors requiring Hanning or other windows are most 
noticable for frequency responses with strong peaks and/or  dips. 

4. We seek a normalized variance of 0.0025. Using Eq. (6.2.21) we find 67 
averages are needed. 

5 .  Following Gauss’s theorem, one computes the rzormul intensity to the sur- 
face at the available points, assigning a “patch” of the surface to each 
normal intensity. Multiplying each normal intensity by its respective patch 
area and summing gives the total radiated power. If the source is outside 
the surface, the measured power is zero, since what intensity enters the 
surface also leaves. 

CHAPTER 7 

1 .  With respect to the origin, let sensor 1 be at a distance r l  and angle 0 1 ,  
sensor 2 be at a distance r2 and angle U‘, and sensor 3 be at  a distance 
r j  and angle Oj. If the plane wave arrives from an angle U moving at speed 
c, the propagation time from sensor k to the origin is simply 
( r x/c*)cos(O- O x ) .  The phase difference between sensor .j and sensor k at 
frequency (o radians / sec is simply: 
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Using the phase difference between sensors 1 and 2 and the phase difference 
between sensors 1 and 3, we can solve two equations for the unknowns sin0 
and cos0. 

( 1 ’ 1  cos 81 - 1’2 cos 02) ( 1 ’ 1  sin 01 - 1-2 sin 0 2 )[z]
= [ ( 1 ’ 1  cos 01 - 1’3 cos 03) (t-1 sin 01 - 1’3 sin 0 3 )  

The inverted matrix can be seen as an array shape weighting matrix, which 
when applied to the measured phase differences gives the sine and cosine of 
the plane wave. A simple arctangent calculation using the result con-
veniently gives the angle of arrival. 

2. Let the array elements be numbered 1-16 from left to right where sensor 1 
is our phase reference. The value of kdcos0 =0.1778. The steering vector 
which makes the summed array output a maximum at 80- is 

For an approaching wave, all the sensors to the right of sensor 1 are slightly 
“ahead” in phase for the 80” arrival angle. Therefore, subtracting the 
appropriate phase from each sensor output puts all the array elements 
in-phase with sensor 1. 

3.  The radius is I’ = 1 m and the angular sensor spacing is 22.5‘. For the array 
with sensor 1 at  O 1  = 180, sensor 2 at O2 = 157.5, ... ,sensor 9 at  O9 =0, .... , 
sensor 13 at  Q l 3  =270, ... , and sensor 16 at  O I 6  =337.5 degrees the phase 
relative to the origin for a particular sensor and a plane wave arriving from 
direction 0 is 

The steering vector for direction 8’ is 

The circular array response as a function of wavenumber k and direction 0 
with the main lobe of the beam steered to 8’ is 

/V N 

i= 1 i= 1 

4. Wsis symmetric 3 x 3 filter with a value of - 7 in the center (2,2 position) 
surrounded by ones. A Fourier transform of the sequence [ + 1 - 7 + 13 
gives a wavenumber response of 

I(!??)= 2cos(;!?1) - 7 

which is - 5 at the zero wavenumber and -9 at m = fN / 2 .  The larger 
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amplitude at  the higher wavenumbers increases the "sharpness" of the 
image. 

CHAPTER 8 

1 .  The best way to model the exponent is to use logarithms. Let 4' = log T and 

'4.15 
0.0 -0.005 60 120 180 240 2.95 

-0.005 1.1 I [ 1  1 1 1 1.751 
,0.55 

H ( 1 )  is -0 .02  and p=  - l/H(1)=50. To=e5.356=212"'C.  

2 .  No. But, orthogonal basis functions are the best choice because the 
covariance matrix is by definition diagonal. The basis functions do have 
to be linearly independent (full rank) to insure that the covariance matrix 
is invertible. 

3.  Yes. If the underlying error is not a linear function of the basis functions, 
the squared error will not be quadratic, thus a unique '' least squared error" 
solution cannot be defined. Even with multiple error minima to contend 
with ,one can obtain a solution, but one is not guaranteed that i t  is the 
"best" solution. 

4. Substituting in the optimal H coefficients in the squared error sum we have 

C H C  = .VH-F - H H ( X H H ) H o-H,H(XHH)+ H H ( X H H ) H  

= .PH.V - ( 2 H f  - H H ) ( X H H ) H  

where Ho is the optimal (least-squared error) set of coefficients and we note 
that the squared error sum is a scalar. If H = Ho then 

Dividing the sum of the squared error by N gives the desired result. 
5 .  (a) For the linear moving average model stock markets use, one simply 

averages the previous 4 days of data to get an estimated value for Friday 
of 1824.25. However, one could also interpret a "linear model" as a 
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straight-line fit using 2 coefficients. Consider the following: 

1257 

= The covariance is [ P O[ ::::] [ i i] [ :2]
1200 1 4  

1.5 -0.5and its inverse is 1-0.5 0.2 

giving coefficients of ho = 125 1.5 and hl = -15.5. The Friday prediction is 
1174. Sell! 
(b) Using a basis function including a 5-day period sinusoid, plus an offset 
constant we have 

1 0.5878 [ The covariance is [:2”51 -0.5878 
1200 1 -0.951 1 

and its inverse is 0.25 0.40 O 1 
giving coefficients of h o  = 1212.8 and tq = 17.9. The Friday prediction is 
1212. Buy! Note how the sinusoid is an orthogonal basis function. Which 
model is best? Basis functions ought to be based on known physics or sig- 
nificant trending experience. Call a broker! 

6. Self-explanatory . 
7. Self-explanatory. 
8. Self-explanatory. 
9. Yes. The price will drop to $104 by closing time. The model is simply that 

tomorrow’s price is a daily rate (weekly slope) plus some base price 
(intercept). Let the ordinate for Monday be 1, Tuesday 2, Wednesday 
3, and Thursday 4, etc. 

- H - - 1 - H -
H = ( X  X )  X y 

1 1 1 11 , 3 4 1  

Friday’s price should be 107.5 -0.7’5 = 104. Sell at 105 and cut your 
losses. Note: computerized stock trading is extremely volatile at times 
due to false correlations, human emotion, and above all else, occasional 
misinformation. Least-squares modeling works best for very large obser- 
vation sets and relatively simple models. 
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CHAPTER 9 

1. Self-explanatory. 
2. M2 multiples and M’ additions/subtractions, or simply M’ MACs 

(multiply/ accumulates). 
3. The number of MACs and Divides for the RLS algorithm are M3+ 

2M’ + 2M plus 2 divisions, or 270,464 MACs and 2 DIVs, plus another 
65 MACs to compute the filter output and error signals. The RLS Lattice 
requires M’ + 13M + 4 MACs, plus 3M + 1 divisions, or 4,832 MACs 
and 193 DIVs, plus another 64 MACs to compute the filter output. 
The LMS only requires 3M + 3 MACs, plus 1 division, or 195 MACs plus 
1 DIVs, plus another 65 MACs to conipute the filter output and error 
signals. 

4. The RLS and LMS algorithms are virtually the same in terms of operations 
for the Weiner filter problem (input and output available). However, the 
Weiner lattice requires about (depending how one codes the algorithm) 
3M more MACs plus an additional M divides, plus an additional M’ 
MACs for the Levinson recursion. Thus the total is seen to be 
2M2+16M + 4  MACs, plus 4M + 1 DIVs, or 9220 MACs, plus 257 DIVs, 
plus another 64 MACs to compute the filter output signal. The RLS Wiener 
lattice requires nearly twice the computation of the regular lattice when 
M = 64. 

5 .  Use random noise as the unknown system input signal. It has the narrowest 
eigenvalue spread and will therefore allow the LMS to perform as 
efficiently as the RLS algorithm. 

6. Okay, this one is not very obvious but damn useful. I t  is called a Schur 
Recursion. Start by post-multiplying the lattice error signals by j’,, 

and taking expected values. 

The above can be written in terms of so-called “gapped” cross correlation 
functions. 

Note that g ; ( k ) = R A ,  where Rk=E{y , ,  y n - k ) ,  the input signal 
autocorrelation to be whitened and, that g,+(k)= O  for k = 1,2, . . . , p ,  and 
g i ( k )=0, for k =0, 1,2,...,p - 1.  It also follows from the forward and 
backward predictors that gfr (k)= g;(p -k)”. The PARCOR coefficients 
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are solved using g;+,(P + 1)  = 0 and g;+l(0) =0. 

g;(P+ 1)
K;+, = 

g; (P) 

Schur Recursion summary: 
( 1 )  let g t ( k )=R k ,  k =0,1,2 ,...,M 
(2) for p=O,l, ...,M - 1 

(a) compute PARCOR coefficients 

(b) update g;+,(k)  for p + 2  5 k 5 M 

(c) update g;+,(k)  for p +  1 5 k 5 M 

7. Assume the mean square value for the input is 2.0. 

2 0 6 2 0 0 0 
1 2 7 6 2 217 216 

30 1 7 7 .- 217 217 
- 1  0 8 7 2 218 21 7 

2 - 1  12 8 0 0 0 

8. (a) Assuming the mean square value for the signal is 2.0, let p = 0.5 

2 2 0 0 0 
1 1 0 2 217 

-0.5 0 -0.5 1 217 
- 1  - 1  -0.25 0 218 

1.75 2 0.25 -1 0 

(b) For the 5 given numbers the mean square is 2.4 and p,,, = 0.4 
(c) p = 5.0 

2 2 0 0 0 
1 1 0 2 217 

-10 0 -10 1 217 
-1 -1 +40 0 218 

-38 2 +40 - 1  0 

Clearly, the large p is leading to instability. 
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9. We know that for a converged lattice, the projection operator tends 
towards the identify matrix and the likelihood variable tends towards unity 
as given in equation (9.4.12). Equation (9.4.29) clearly shows that the 
forward and back ward error variances should tend to be equal under this 
circumstance. 

10. No, the Cholesky factorization is only guaranteed to work for the back- 
ward error signal variances since the forward variances are not guaranteed 
to be orthogonal. 

CHAPTER 10 

1. The maneuverability index is given using (10.1.38) and is 0.10. Equations 
(4.2.8) and (4.2.1 1 )  give tracking gains of 0.3475 and 0.0739 for a and 
P, respectively. 

2. The airplane heading 110 (20 degrees South of East) and the radar mea- 
surement error variance is 100m2 in all directions. The East-West, or 
x-direction component of measurement noise is 93.97m' and the 
North-South, or y-direction noise is 34.20 m2. 
Since the airplane is not maneuvering we can consider the x-y directions 
independently. Solving equation (10.1.25) directly using equation (10.1.30) 
for the updated (steady state) state error covariance one obtains 

The above equations are very useful for a "covariance analysis" to test the 
underlying assumptions used ot construct a tracking filter. If the observed 
state errors do not match the theoretical steady-state errors above, either 
the maneuverability index, measurement, or process noises need 
adjustment. The velocity state error in the x-direction is 
(93.97)(0.03517)= 3.3 m2/s2 and in the y-direction is 1.2 m2/s2.  

3 .  Self-explanatory. 
4. A weighting factor of 0.01 = 1/ 100 or 1% requires 100 times the obser- 

vations of a recursive update with a weighting factor of unity. This has 
the effect of creating a sliding "memory window" where the data within 
is combined in the estimate. In the lattice recursions, an exponentially- 
decaying memory window of approximate length N sample is denoted 
as c( = (N - l ) /N,  or 0.99 for N =  100. 

5 .  Consider the symmetric nature of the embedding process. For the AR 
coefficients, the leading coefficient must be unity. The M A  coefficients 
are scaled by the lattice except for the leading ones, bo and do. 

6. Consider the prediction error for the Mth-order embedded model. The 
scaling for the lattice Levinson recursion is straightforward. 
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7. For a converged lattice the likelihood variable (1 - y,,J approaches unity, 
thus making the a priori and a posteriori error signals equivalent. 

8. Self-explanatory. 
9. Since the reference signal spectrum is conjugate multiplied by the error 

signal spectrum, the oldest M error samples in the 2M sized buffer should 
be zeroed. One could also zero the oldest M samples of the reference 
and use a full error signal buffer. Noting that a spectral conjugate is 
the same as a time reversal, one could calculate Xi(w){Ei(w))*instead 
of {Xi (w))*Ei(w) ,zero the newest M samples of either buffer prior to 
the FFTs, and extract the first M samples of the FIR response in reverse 
order if desired. 
The effect is that the cross correlation (from the inverse FFT of the con- 
jugate frequency domain multiply) will have any circular correlation errors 
confined to the largest lags. These can be simply omitted when one wants an 
FIR filter. 

10. The error spectrum is calculated from a 2M-point FFT. If one updated the 
FDLMS algorithm every sample the effect on the error signal spectrum 
would not be observed significantly until over M samples (over half an 
FFT buffer) is filled with the new error results. Therefore, the FDLMS 
algorithm would keep adapting leading to over-corrections. It is rec- 
ommended that no more than 50% FFT buffer overlap be used and that 
data windows be avoided in the FDLMS algorithm. 

CHAPTER 11 

1. For both (a) and (b) the spectral SNR is 30.1 dBV (1OlogN or the 
magnitude expressed on a dB scale). Why? The spectral density of the sig-
nal and noise is constant in a 1-Hz FFT bin (the spectral resolution of 
both FFTs). There is no improvement in SNR with the 8192 FFT because 
the bandwidth has been increased, allowing more of the white noise energy 
into the FFT data buffer. To increase the spectral SNR, one has to inte- 
grate longer in physical time, which decreases the noise level in the 
narrower FFT bins relative to the signal level. 

2. Twenty trials per sec, 3600 sec/hr, 24 hr/day, 30.417 dayslmonth means 
52,560,000 trials per month with no more than 1 false alarm, or a P,,, 
of 0.000001902°~. Using the approximation for low Pfu with a Gaussian 
magnitude detector in Eq. (1 1.2.6) we estimate the relative threshold using 

or 
T z [ - ln(0.0000000 1902)]& z 6.042 
Therefore, setting the absolute detection threshold at  a level 6.042 times the 
background noise standard deviation (or an absolute level of 6.042 x 10 ~ 

m/sec) should give the required false alarm rate. 
3. The derivation is seen in equations (1 1.1.17-23). The result for high SNR is 

seen in equation (1 1.1.25). 
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4. Note the following: ~ e - ' ~ i / , x= -fe-". A useful detection system would be 
a narrowband signal detector in the frequency domain. The Rayleigh pdf 
describes the magnitude spectrum in a given bin, while the integral of 
the pdf gives the probability of detection, which is conveniently Gaussian. 

5 .  Using the characteristics in equation ( 1  1.1.17) it  can be seen that the vari- 
ance of M-averages is reduced by a factor of 1 / M .  The standard deviation 
therefore is reduced by the square-root of 1 /M.  

6. (a )  No, the complex phasors for each FFT bin would add incoherently. 
Thus, the sum of the phasors in each FFT bin would tend to add to zero. 
(b)  In this case, we are forcing coherence at the FFT bin corresponding 
to the sinusoid, whether a sinusoid is present or not, this bin would 
coherently add while all the other bins would tend to sum to zero. (c) Yes, 
in this case the SNR should increase so long as the phase and frequency 
of the sinusoid are stationary. This is the same effect as time-synchronous 
averaging except i t  is being accomplished by phase synchronization in 
the frequency domain. 

7. The relative detection threshold T for 1% false alarm rate is about 2.597 
times the noise magnitude. For 0.1% false alarm, T is increased to about 
3.346. If the absolute detection threshold stays the same, the noise 
magnitude must decrease by about 0.776, or pretty close to 1 over the 
square-root of two. Therefore, simply averaging two signal magnitude 
observations together before applying detection would appear to reduce 
the false alarm rate by nearly a factor of 10. 

8. Form an analytical model relating the mean path lengths, frequency, and 
wave speed to received signal amplitude. Determine the statistics by 
calculating the characteristic functions for the two path densities, 
multiplying in the frequency domain, and inverse transforming. Repeat 
the procedure with the Rician to obtain the signal plus noise probability 
density function. The detector's false alarm rate is determined from the 
noise statistics and detection threshold alone. The propagation path 
fluctuations affect the probability of detection by lowering i t  and 
broadening the density over a wider range. 

CHAPTER 12 

1 .  100 samples. See equation (12.1.28). Note that the variance of the variance 
estimate is 04/50for the case of 100 averages. 

2. Assuming a very high SNR and an arrival angle near broadside, equation 
( 12.2.1 1 )  provides a straightforward assessment of the best possible bear- 
ing error, which is 0.03 105 /SNR. An SNR of only 10 ( 10 dB) gives a bear- 
ing error variance of only 0.1779 degrees. This is because of the large 
number of sensors and the spacing of about 0 .3 i .  

3 .  (a) Sensor spacing is 2n/16m or 0.39267m. T o  avoid spatial aliasing 
i/i/> 2. Therefore, f < 1909.859 Hz 
(b)  Consider a symmetric spacing where 8 sensors are located at angles 
(2n+l)n/16, rz = 0, 1 ,2 , . . . , 7  relative to the x-axis, with a mirror image 
below the x-axis. The plane wave arrives along the x-axis passing sensors 
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(numbered counter-clockwise from the positive x-axis) 1 and 16 first, then 2 
and 15, 3 and 14, and so on, passing sensors 8 and 9 last. The phases. 
relative to sensors 1 and 16 are determined by the distance on the x-axis 
between sensor pairs, the speed of the wave, and the frequency. 
The distance on the x-axis between the 1-16 and 2-15 sensor pairs is 
C O S ( T ~ / ~ ~ ) - C O S ( ~ T ~ / ~ ~ ) ,or 0.1493 m. The wavelength of a 1 kHz wave in 
water in 1.5 m. The phase difference between sensors 1-16 and 2-15 is 
therefore 0.6254 radians, or 35.83 degrees. 
With 16 sensors, one can theoretically solve the eigenfunctions to resolve 
up to 15 sources at  the same frequency. 
The array beamwidth is a function of aperture and wavelength, not the 
array shape or number of elements. Using the line array response in 
equation (12.2.16) one can approximate the -3dB response as the angle 
where ikLsinO equals about 1.4, where L is the aperture and k is the 
wavenumber. 

fmax 200Hz 1 kHz 2 kHz L C 

1909.859 Hz NA f19.53 f9.62’ 2 m  1500 
828 Hz f8.844” f l . 7 6 “  f0.88’ 5 m  345 

Note that if f > fmaxgrating lobes will be present in the beam response. 
Using equation (1  2.3.11) we find the maximum distance for the scan plane 
to be 8.66 cm. Let’s choose a scan distance of 5 cm giving a resolution 
at  120 Hz of 28.79 cm, or  about 1/10 of a wavelength. 
Spherical wave spreading loss is - 20 loglo R or -6 dB/range doubling. 
Circular wave spreading is - 10 loglo R 
No surface losses or scattering on the water surface 
100- lOlOglo (1000)- lOloglo X > 4 0  dB, 1Ologlo X = 3 0  dB, X =  103 = 
1000 m. 

CHAPTER 13 

1. Consider the following diagram 

Plane Wave @ 60 deg 

2 
)i

I 3 

Assuming the wave passes sensor 3 first, then 2, and finally one, the phase 
of the wave at sensor 2 is kdcosO radians delayed relative to sensor 3, 
and the phase at sensor 1 is 2kdcosO delayed relative to sensor 3 (k is 
the wavenumber, d is 1 m and 0 is 60 degress). T o  “steer” the array 
response to 60 degrees, we need to add the appropriate phase to each array 
element in the frequency domain such that the wave from 60 degrees has 
the same phase at all 3 elements. Adding the “steered” array element 
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outputs produces an array gain of 3 in the steered direction of 60 degrees. If 
the raw element outputs are denoted as X = [ X ~ ( ~ ) X ~ ( C U ) X ~ ( W ) ]the steering 
vector is s = [ 1e-jkd cos Ue-j2kd cos 03 T or S = [e+j2kdcosn e+jkdcoso I]?
depending on the desired net phase shift. The steered array output is simply 
X S .  Note that k = m/lO,OOOand d = 1 so that the steering works for fre- 
quencies up to 5 kHz, where the spacing is half a wavelength. 

2. Assume the array elements are arranged counter-clockwise with element 1 
on the x-axis at  < 1,0  >, element 5 on the y-axis at  < 0, 1 >, element 
9 at .c -1,0 >, etc. If the plane wave arrives from 0 degrees (along the 
x-axis in the -x direction), element 1 is passed first, followed by 2 and 
16, then 3 and 15, and so on. The steering vector which allows the summed 
array output to be coherent in the 0 = 0 degrees direction is 

Note that the phases of the steering vector elements are relative to the 
phase of the plane wave at  the origin. Because the wave is approaching 
from 0 degrees, the y-axis coordinates of the array elements are not a fac- 
tor. Multiplying the array element spectral outputs by the steering vector 
above make each element output coherent with the phase of the wave 
at the origin, thus giving an array gain of 16 in the 0 degrees direction. 
For an arbitrary direction 0, the steering vector is 

()+sin 01 -jk[cos( n/  16)cos Il+sin(n/ 16) sin U] . . .S(c0,) = [e-$[cos e 

e-jk[cos([n-I]n/16)cosn+sin([n-l]n/16)sin 01 . . .  
e-jk[cos( I5n/  16)cos ()+sin( 15n/  16)sin 011T 

To plot the beam response over -n < 8’ < +n,  simply replace 0 with 0 - 0’. 
The wavenumber range for propagating waves is k 5 (o/c where CO is the 
radian frequency and c is the wave speed. For waves k > u / c (i t  can happen 
in the nearfield of a complicated source), the wavelength is smaller than the 
plane wavelength and the wave collapses upon itself and is thus termed 
“evanescant”. Waves traveling faster than c are (at least in acoustics) 
called supersonic, have wavelengths larger than the plane wave, and 
wavenumber smaller than k = co/c. An array beamformer coherent 
amplifies a given wavenumber, which usually, but not always, is associated 
with a specific temporal frequency. 

3. This is done following equations ( 1  3.1.5-9) using an LMS step smaller than 
the sum of the squared array element outputs. The LMS calculated steering 
vector elements cause a null in the source direction, so inverting the filter 
gives a beampattern to amplify the source relative to the background. 

4. Equation (13.3.1) shows the Vandenburg matrix for 3 coherent sources. 
Comparing this to the example in equations ( 1  3.1.1-4) it can be seen that 
the off-diagonal covariance elements will have source phase information. 
Under realistic conditions, the source phases are not exactly stationary, 
thus some time averaging will cause the source phases and background 
noise to appear uncorrelated. Under conditions with sources phases coher- 
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ent (Vandenburg matrix), the off-diagonal phase and amplitude is not 
solely due to the angles of arrival. Therefore, the spatial information is 
corrupted by the source phases, and the eigenvectors are not orthogonal. 
Thus, the “nulls” of the signal eigenvectors beam responses will not neces- 
sarily correspond to the other source directions. 

5. When the MVDR steering vector is steered to one of the sources, the 
steering vector is a signal eigenvector of the covariance matrix. By 
definition, its nulls are in the direction of the other sources. 

6. Assume the sensors are in a straight line but spaced d = 2/15 m apart with 
f a d  standard deviation, say along the x-axis. We can make a good approxi- 
mation assuming a << d in that ( l /d  (ld)(l - a/d + a2/d2- . . .). Thus 
equation (12.2.11)  can be used 

A (1 -7)00 = = 1.81”f-a d1 6 a n S N R d  d 

7. The trick here is to represent the MLS sequence not as 0 and l’s, but as a -1 
and +1 signal for autocorrelation purposes. Depending on how you 
initialize the shift registers, you get an MLS sequence like 001 1101, or 
11  110100, etc. We started with bits 1-3 equal to 100, giving an output 
of 0. The output for the [3,1]MLS sequence is XOR’d with bit 1 to generate 
bit in the next set. The next set of bits is 110 with and output 0, then 11  1 
with output 1, 011 with output 1, 101 with output 1, 010 with output 
0, and finally 001 with output 1. Thus the [3,1] sequence is like 001 1101, 
then repeats exactly. 
Representing the sequence as a bipolar signal gives -1 - 1 + 1 + 1 + 1 
-1 + 1. It is straightforward to show that the 0th autocorrelation lag is 
7 and all other lags are -1. All MLS sequence have this unique property 
where the Oth is 2N - 1 and the remain lags are -1. MLS sequences also 
have the nice property that any two sequences of the same length have 
a bounded crosscorrelation, thus allowing individual sequences to be 
recovered from a communications band with many MLS channels. 

8. The spread spectrum signal can be seen, on average, to be the time domain 
product of the carrier sinusoid and a square-wave with period 50 ms. The 
spectrum is therefore the convolution of a delta function at  the carrier 
frequency, and a sinc function about 40 Hz wide. The actual signals 
are randomized somewhat. But as the chip rate increases, so does the effec- 
tive bandwidth or  the spread spectrum signal. 

9. As the chip rate approaches the sample rate, the corresponding sinc func- 
tion in the frequency domain covers the entire bandwidth of the digital 
signal. 

10. As the chip rate increases, so does the signal bandwidth and the ability to 
resolve multipath propagation in time and space. The longer the MLS 
sequence length, the larger the net time delay can be observed between source 
and receiver. Thus, to measure a travel times for a range R m, the sequence 
length should be longer than 2R /c  seconds to insure that at most half a buffer 
overlap exists between the received and transmitted waves. 
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CHAPTER 14 

1 .  Recall that the 2 x 2 covariance matrix can be diagonalized by a simple 
coordinate rotation. The square root of the diagonal matrix elements give 
the major and minor axis, and the rotation angle comes directly from 
the eigenvector matrix. 

2.5 -3.2 
-3.2 5.5 1 

Since the eigenvector rotation matrix is orthonormal 

0.00 Of' 

The following equation is then solved for 

0 = cos 0 . 4  sin O,4(5.5 - 2.5) + (-3.2)(cos' 0 , 4  sin' 

1O.4 = -tan-'  (c131)5} = -57.56''
2 

The diagonal elements are 

a:, = (2.5)cos' + (-3.2)2 cos 0.4 sin 0 , d  + (5 .5 )  sin' f3,4 = 7.5341 
0 5 ~= (2.5) sin' (1.4 - (-3.2)2 cos 0.4 sin 0'4 + (5 .5 )cos' = 0.4659 

2. The rotation angle for class B is +85.62" while the standard deviations for 
the major and minor axis of the ellipse are 2.24 and 1.31, respectively. 

/ \ 

I \ 
I I 
\ I 
\ /
\ /
\ 

% - '  

1 I 1 1 1 1 1 

1 2 3 4 5 6 7 
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3.  Recall equations (14.1-4). However, the features are not uncorrelated thus 
requiring the multichannel density in equation (14.1.9). Note that a capital 
"P" denotes a probability, while a lower case "p" denotes a probability 
density. The probability for class i i 'k  given feature, is 

where for a 2-element feature vector S, the conditional density for S given 
class it'k is 

The covariance determinant for class A is IC.41 = 1.8735 and class B is 
3.3634. The conditional density for our feature vector [4.35 5.56IH is 
p(x1A) =0.00011745 and p(x1B) = 0.0097296. The sum of the class con- 
ditional probability densities times there respective class probabilities is 
0.0044664. Evaluating Baye's theorem we have the probability of class 
A is 1.97% and class B is 98.03% 
It is important to carry out Baye's theorem in calculating the maximum 
liklihood class. While the above example is straightforward, with many 
classes and each class having unique probabilities, the correct class is often 
no determined by the minimum Mahalanobis distance (the maximum con- 
ditional density). 

4. Task must be completed as a computer assignment. 
5.  Task must be completed as a computer assignment. 
6. The crest factor is the peak relative to the rms voltage. The sinusoid is 

obviously 70.7 mv rms, thus the peak amplitude for a crest factor of 
25 is 1.767 v. 

7. The harmonic distortion at  200 and 234 Hz is 5%. The inter-modulation 
distortion is 10% at 17 Hz and 217 Hz (sum and difference frequencies). 
The total signal distortion assuming no other harmonics are detected is 
seen as 3%. 

8. See Figure 14.2.16. The choice of segmentation order and direction is up to 
the reader. However, once the numbers are defined as mathematical lines, 
coordinates, and directions, simple vector algebra allows rotation, scaling, 
and translation, etc. 

9. Using equation (14.3.1) assuming zero acceleration of the temperature, it 
can be seen that in 20 minutes the vessel temperature should reach 1000°C. 
With T equal 1 minute and zero acceleration, the 2-state transition matrix 
can be defined as 

where 20 the transition is defined for 20 samples into the future. The pro- 
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cess noise is 

400 20
aN)=[ 20 1 ] 
Assuming the state error covariance is diagonal, equation (14.3.3) becomes 

1 2 0  2 5 0  I 0 400 20 825 40 
P ( N + 2 0 1 N ) = [ ~  I ] [  o 1][20 I ] + [  20 I ] = [  40 I ]  

The covariance rotation angle is only a couple of degrees, so we can 
approximate the standard deviation of the temperature as 28.7 and tem- 
perature rate as I .  Therefore the ratio CTF/CTR= 28.7 in equation (14.3.6). 
The standard deviation of the time prediction is 1.836 times 28.7 or 52.7 
minutes. In other words, we’re predicting 20 minutes until the vessel 
reaches 1000°C where 68.4% of the time our (crude) prediction should 
be within 432.7 minutes. While not a super precise prediction because 
of the variance of the raw temperature readings, i t  is still statistically 
useful. 

10. The survivor rate is defined in equation (14.3.7) as the time integral from 
the current time to infinity of the time prediction density function. A plot 
of the survivor rate is 

Note how the probability of surviving (vessel temperature below 1O O O T )  is 
at 50% at the predicted time of 20 minutes. 

3 

TLFeBOOK



607 

0.026 

Answers to Problems 

The hazard rate is found to be 

1 I I I I 

0.024 -

0.022-

0.02 -

0.016 -

I 1 I 1 I0.010 10 20 30 So 50 
Min 

The maximum hazard rate actually occurs at  30 minutes, rather than the 
predicted failure time of 20 minutes. This is rather interesting and useful 
because the hazard rate is the ratio of the density function over the survivor 
rate. Depending on the shape of the two functions in the quotient, the peak 
hazard may not be at the predicted failure time. 

CHAPTER 15 

1 .  See Figures 15.1.1-3. 
2. From equation 15.1.10, one finds 287 dB of electrical shielding. However, 

for magnetic shielding the skin depth is 8.517 mm (from equation 
15.1.13-14 where po = 73.136). The absorption loss from equation 
(15.1.15) is only 1 dB while the magnetic reflection loss is about -1.2 dB, 
thus the net magnetic shielding can be seen as 0 dB! The current induced 
into our coaxial cable depends on the current flowing in the 120 vrms power 
cable and the differences in inductance between the coaxial and power 
cables. 
The external inductance of parallel wires is well known to be 10.95 cosh ' 
(r/d), where d is the conductor diameter and r is the distance between them. 
If the power cable is 10 AWG (2.6 mm diameter with 3.15 mR/m re- 
sistance) and the coaxial cable center conductor is 24 AWG (0.51 mm diam- 
eter with 83 mR/m resistance), the inductance from the power cable to the 
coaxial center conductor is seen to be about 65 H, giving an impedance 

0 
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at 60 Hz of 24.6 kR. If the two cables run along side each other for 100 m, 
an induced ac current in the coaxial center conductor which is 0.3 15 / 24600, 
or 12.8 x 1OP6 times the current in the power cable. That may appear small 
until one considers, say 20 amperes in the power cable and 1 ma current 
from a sensor. The SNR in the coaxial center conductor is only 1 /0.256 
or +11.8 dB. Next to ground loops, magnetically induced noise are the 
most common noise problem to sensor cables. This is why sensor should 
drive a low impedance coaxial line with as high a current as possible. 

3. One simply ties the shields of each co-axial cable together at each end, 
grounding the shield preferably at the instrumentation end. The negative 
(grounded in a single-ended connection) terminal of the sensor is passed 
through the center connector of one co-axial cable while the positive (signal 
output) of the sensor is passed through the center conductor of the other 
co-axial cable. 

4. Increasing the magnetic flux “B” in the motor factor “Bl” has no effect on 
the driver resonance frequency since the effect on diaphragm mass and 
stiffness is canceled in the resonance calculation. However, equation 
( 1  5.2.8) clearly shows how an increase in BI increase the system damping. 
Equation ( 1  5.2.9) also shows that the stronger magnet increases the acous- 
tic pressure generated by the loudspeaker. Equation ( 1  5.2.1 1 )  shows that 
the voltage generated by a geophone in response to velocity also increases 
with a stronger magnet. 

5. The signal voltage from a 0.001 g sinusoid (assume rms) is 100 pV. Thermal 
noise is small (the problem is not defined at  high temperatures) at 387 nV in 
a 1-Hz band. Shot noise is seen as 56.56 pA, or 565 pV across a 10 MR 
resistance in a 1-Hz band. Contact and popcorn noise are ignored because 
we don’t know the material constants. Therefore, in a 1-Hz band the 
SNR is 100/565 or -15 dB. The minimum detectable acceleration in a 
1-Hz band is seen as around 0.006 g’s. For broadband signals it  is much 
worse because the SNR can be seen as 20 log (0.2/B!), where B is the band- 
width in Hz. 

6. Equation (15.2.38) gives the reciprocity constant for a cavity J =jcoC,d. 
where CA is V,d/(pc’) ,and VA is the cavity volume in m3. 

-M.4 = ,/(5.45 x 10-8) (o.~20)(’U) = 5.22 nzV/Pa 

7. The “SE” plant is known and the “PE” plant can have error due to the low 
coherence. Recall from Section 6.2 for a coherence of 0.9, the “real-time” 
( n =  1 )  transfer function error magnitude is about 23% and phase error 
is 13 degrees. Both of these correspond to an error of about 23%) for 
the cancellation wave. Therefore, the maximum cancellation is only about 
12.7 dB - quite poor. 

8. The SE plane estimate would also converge to zero - not good! With the 
reference noise completely canceled, the residual error noise would be wSE, 
there w is the injected noise. 
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9. For complete independence, the S matrix is diagonal and easily invertible. 
If two or more channels are highly correlated (i.e. cross transfer functions 
nearly identical to main-diagonal transfer functions), the channels are 
linearly dependent. Thus the “S” matrix is not invertible. Physically, 
the two channels can “fight each other” without any effect seen in the error 
signals. This is a significant concern for multichannel ANC and has 
recently been solved using Gram-Schmidt Orthogonalization (F. Asano, 
Y. Suzuki, and D. C. Swanson, “Optimization of Control Source Configur- 
ation in Active Control Systems Using Gram-Schmidt Ortho-
gonalization,” IEEE Tram Speech and Audio Proc., 7(2), pp. 2 13-220, 
March, 1999.) 

10. A time delay of 200 ms results in a phase shift of 3.77 radians at 3 Hz. This 
means that negative (canceling) feedback at very low frequencies can turn 
into positive (unstable or oscillating ) feedback near 3 Hz. The maximum 
stable feedback gain is slightly less than unity (0 dB) in magnitude. This 
results in less than 6 dB cancellation at 0.IHz tapering off to no cancel- 
lation near 3 Hz. 
If the bandwidth were limited to 0.1 Hz to 1.O Hz, the 200 ms delay results 
in a maximum of 1.257 radians phase shift at 1 Hz. One could use a 
low-pass filter in the feedback path as a “compensator” and achieve some 
attenuation such that the net phase shift at, say 2 Hz, is less than E radians, 
and the net feedback gain is slightly less than unity at 2 Hz. Assuming a 
negative feedback gain of X below 1 Hz, the vibration cancellation in 
the 0.1 Hz to I Hz decade would be -20 log(l/[l + XI) dB. 
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Acoustic: 
A, B, and C weighting, 230-231 

Compliance, 536 

Dipole, 169 

Field theory, 160 

Holography, 385, 387 

Impedance, 535 

Intensity, 158, 162, 163 

Multipath, 347 

Plane waves, 158 

Propagation, 397 

Radiation impedance, 536 

Sensors, 532 

Volume velocity, 535 

Wave equation, 161-162 


Active: 
Attenuation, 576 

Cancellation, 591 

Intensity, 175 

Sonar, 11,  158 


Adaptive: 
Beamforming, 407 

Block processing, 21 8-220 

Control, 57 1,576 
Convergence speed, 241 

Frequency domain LMS, 312 

Filtering, 2 17 

Lattice filters, 252, 257 

Line enhancer, 566 

Linear predictor, 565 


[Adaptive] 
LMS filters, 215, 241 

Neural networks, 460 

Null-forming, 4 13 

Projection, 22 1 

Projection operator, 223 

Recursive least squares, 237 

Signal separation, 522, 566 

Stochastic approximation, 241 

Whitening filter, 50, 241, 246, 252 

Wiener filters, 218, 265 


Adiabatic, 160 

Akaike information criteria, 422 

Algebraic Riccati equation, 283 

Aliasing, 9-1 2, 26 

a-P-7 tracker, 62, 291 

Amplitude modulation, 485 

Analog-to-digital conversion (ADC), 5 


Complex signals, 8, 11-14 

Delta-sigma conversion, 16 

Successive approximation, 5 


Angle-of-arrival estimation, 188, 192, 195 

Aperture, 159, 184 

ARMA filters: 

Bootstrapped error, 296 

Innovation, 582 

Normalized bootstrap, 298-304 


Autocorrelation, 140 

Matrix, 220 

Relation to PARCO coefficients, 253 
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[Autocorrelation] 
Relation to power spectrum, 127 


Automatic target recognition, 454 

Autoregressive (AR) filters, 47, 293 

Autospectrum, 147 


Babinet's principle, 350 

Backward prediction: 

Lattice filters, 250 

LU factorization, 266, 421 


Backward prediction error, 25 1 

Basis function, 218, 224 

Bayes' theorem, 455 

Backprojection algorithm. 210 

Beamforming, 186, 324, 373 

Bearing estimation, 361, 368 


Beamforming, 1 1 ,  190 

Cramer-Rao lower bound, 362 

Incoherent multipath, 373 

Phase-difference methods, 189, 368 


Bending waves, 167 

Measurement of. 177 

Wavelength, 178 


Bilinear transformation, 28, 32 

Bispectrum, 141 

Block processing, 2 18-220 


Calibration: 
Frequency bin, 130 

Reciprocity, 559 


Capillary vent, 553 

Causal systems, 21, 50 

Central limit theorem, 63, 131 

Central moments, 132, 135, 139 

Channel impulse response, 436 

Characteristic equation, 579 

Characteristic function, 139 

Charge amplifier, 558 


Displacement (capacitance), 558 

Force gauge, 549 

Geophone (velocity), 54 1 

Hydrophone, 550 

Loudspeaker, 536 

MEMS, 555 

Microphone: 

Condenser, 55 1 

Electret, 555  

Ribbon, 540 

Vent effect, 553 


Chi-square distribution, 135, 333 

Cholesky factorization, 266, 42 1 

Circular convolution correction, 1 1 1 ,  314 


Index 

Classification maps, 460 

Coherence function, 148 

Coherent: 

Multipath resolution, 430 

Signals, 407-408 


Comb filter, 47 

Computer-aided tomography (CAT) scans, 

203 

Computational complexity, 270-27 1 

Com pu ter vision , 49 7 

Condenser microphone, 55  1 

Confidence interval, 136 

Constant false alarm rate (CFAR). 328. 

339-340 

Practical approximations to, 343 345 


Contact noise, 525 

Convergence rates, 24 1 

Convolution, 24, 29 

Correlation canceler, 564 

Covariance matrix, 457 

Covariance sequence, 140 

Cramer-Rao lower bound, 362 

Crest factor, 479 

Cross-correlation, 30, 329 

Cross-spectra, 1 1.  147 


Decimation, 72 

Detection threshold, 333 

Diesel engine acoustic signature, 78 

Digital filtering: 

AR filters, 47, 293 

Bilinear transformation in, 32 

Design using Fourier transform, 44 

Eckart filter, 1 1  I - 1  13 

MA filters, 44, 47 

Mapping s-plane poles and zeros to 

z-plane, 32-4 1 

Matched filters, 113 

1-D spatial filters, 186 

Physical scaling of impulse response, 

32 -34 
2-D filters, 72, 196 


Gradient, 72 74 

High pass (sharpening), 75-77 

Low pass (softening), 76 77 

Nonlinear, 78 -79 
Sobel edge enhancement, 75 


Whitening filters, 296 

Digital-to-analog conversion (DAC), 80 


Complex signals, 14 

Oversampling reconstruction filters, 

80 -85 
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Direction-finding, 189 

Directivity index, 383 

Discrete Fourier transform, 95 

Dispersive waveform, 20 

Distortion detection, 141 

Doppler frequency shift, 1 1 ,  158 

Double / direct lattice algorithm, 268 

Dynamic feature tracking, 501 


Eckart filter, 111-113, 372 

Eigenvalues, 243, 248 

Eigenvector methods, 414 


MUSIC method, 422 

MVDR beamforming, 425, 427 

Null synthesis, 429 

Physical meaning of, 417 

Relation to projection operators, 430 


Electro-mechanical equivalence, 534, 575 

Electromagnetic mechanical transducer, 533 

Electrostatic transducer, 54 1 

Embedding technique, 299 

Ergodic process, 145, 346 

Error power gradient, 248 

Estimators: 

Cramer-Rao lower bound, 362 

Exponential decaying memory, 237 

Mean, 132, 367 

Mean-square, 128, 132 

Statistical metrics, 133, 367 


Evanescant fields, 389 

Exponential decay function, 334 


False alarm rate, 339 

Far-field, 164, 325 

Fast Fourier Transform (FFT), 101 

Fisher information matrix, 365 

Forward-backward array gain, 193 

Forward prediction, 25 1 

Forward prediction error, 25 1 

Fourier transform, comparison of temporal 

and spatial, 378 

Fovea, 497 

Frequency modulation, 488 

Functions of random variables: 

Additionisubtraction, 331 

Division, 51 1 

Multiplication, 333 

Square root 334 


Gauss, Frederick Carl, 217 

Gaussian magnitude density function, 338, 


34 I 


Gauss's law, 165 

Generalized delta rule, 462 

Generators: 

Random noise, 433 

Sinusoids via AR filters, 251 

Spread-spectrum signals, 434 


Geophone, 54 1 

Geosynchronous. 277 

Givens rotation, 419 

Gram-Schmidt orthogonalization, 256 

Grating lobes. 190, 381 


Harmonic distortion, 142 

Helmholts-Huygens technique, 350. 386 

Hidden markov model, 477 

Higher-order moments, 138 

Hilbert space, 222 


Lattice filters, 252 

Orthogonal projections in, 223 

Projection operator, 223 

Relation to eigenvector methods, 222, 


429430 

Span, 222 


Hilbert transform, 13, 44, 105. 490 

Hydrophone, 549 

Hypothesis testing, 344 


Image enhancement, 196 

Impulse response, 19, 186 

Incoherent sources, 325, 347, 409 

Independent signals, 335, 409, 410 

Innovation signals, 295, 298, 582 

Intelligent sensor systems, 45 1 

Intensity, 158 


Acoustic, 163- 164 

Electromagnetic, I68 
Vibrational, 165 


Inverse "whitening" filters, 296 


Jacobian relationship, 335-336 

Jacobi transformation, 419 

Jerk state, 62, 64, 65 

Joint probability density, 335 


Kalman filtering, 282 

Cost function, 278 

Dynamic feature tracking, 501 

Joseph form of state error variance. 284 

Kalman gain, 239, 280 

Measurement covariance. 278, 280 

Process noise covariance, 283 
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[Kalman filtering] 
Relation to maximum likelihood, 284 

State error covariance, 278, 280 

State transition matrix, 282 

State vector, 279, 281 

Target tracking, 68, 277 


Kurtosis, 139 


LaPlace transform, 2 1 

Lattice filters, 252 


Backward error covariance, 261 

Backward error signal, 26 1 

Bootstrapping, 307 

Cholesky factorization, 266 

Cross-correlation parameter, 262 

Dou ble-direct algorithm, 268 

Embedding ARMA systems, 304 

Forward error covariance, 260 

Forward error signal, 260 

Generalized multichannel, 309 

Initialization, 263 

Levinson recursion, 254 

Likelihood parameter, 259-263 

RLS Wiener lattice, 265-266 

Whitening lattice, 252 


Least-Mean Square (LMS) algorithm, 241 

Accuracy and convergence rate, 243 

Convergence dependence on input signal, 

243-248 

Frequency domain, 31 1 


Leptokurtic, 139 

Levinson recursion, 254 

L’Hopital’s rule, 94 

Likelihood variable, 259 260 

Linear independence, 458 

Linear systems, 19 

Lomb transform, 1 16 -1  18 

Loudspeaker, 534 

LU factorization, 266, 421 


Magnetic field measurement, I79 
Mason equivalent circuits, 544 

Mass-spring damper, 28-30 

Matched field processing, I 1 1-1 13, 324, 


328, 333 

Matrix inversion lemma, 238-239 

Maximal length sequence (MLS), 433-436 

Maximum likelihood, 455 

Mechanical compliance, 536, 553 

Mechanical mobility and impedance, 144 

Micro electromechanical system (MEMS), 

555 


Index 

Minimum description length, 422 

Minimum phase, 36-50 

Modulation index, 485 

Moment, 132 

Monopole, 164 

Multidimensional density functions, 457 

Multi-layered media, 400 

Multipath estimation, 45, 349, 373 

MUSIC adaptive beamforming, 418 

MVDR adaptive beamforming, 425 


Narrowband detection, 333, 337 

Narrowband modulation, 485 

Nearfield, 164, 325, 529 

Noise cancellation: 

Adaptive, 522 

Active, 522 


Noise models: 
Contact noise, 525 

Ground loops, 531 

Popcorn noise, 527 

Shot noise, 524 

Thermal noise, 523 


Noise-to-signal ratio (NSR), 156 

Nonstationary processes, 566 

Normal modes, 145, 166 

Null synthesis, 427 

Nyquist plot, 580 

Nyquist rate, 9, 10 


Orthogonal decomposition, 259 

Orthogonal projection, 224, 259 

Ort hogonali ty: 

Backward error signals, 266 

FFT bins, 88, 94 


Orthonormal, 418 


Parameter estimation error, 365 

PARCOR coefficients, 25 1 

Parseval’s identity, 127-1 30 

Particle velocity, 163 

Piezoelectric effect, 544 

Plane waves, 159 

Platykurtic, 139 

Point source, 158, 384 

Point spread function, 186 

Polyspectra, 14 I 

Popcorn noise, 527 

Power spectral density, 127 

Power spectrum, 129 

Prediction error, 62 
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Probability, 13 1 

Probability density function, 13 1, 135 


Of detection, 327 

Prognostics, 506 


Projection, 222 

Algorithm, 240 

Decomposition, 259 

Operator, 223 


Propagation: 
Atmospheric, 397 

Multipath, 347 

Refraction, 398 

Time delay, 145 

In turbulence, 403 


Poynting vector, 158 

Pseudo-reduced order technique, 427 

Psychophysics of sight, 496 


Radon transform, 206 

Random variables: 

Average, 332 

Complex, 134 

Independent, 112 

Mean, 132 

Moments, 132 

Probability density, 13 1 

Scaled, 330 

Square-root, 333 

Standard deviation, 132 

Summed, 331 

Variance, 132 


Rayleigh, probability density, 334 

Reactive intensity, 175 

Receiver operating characteristics (ROC), 

327 

Reciprocity calibration, 559 

Recursive estimation, 237 

Recursive least-squares (RLS), 238 

Reduced-order technique, 427 

Reflection coefficient: 

Lattice PARCOR coefficient, 254 

Physical, 351, 400 


Resolution: 
Acoustic hologram, 391 

Bearing, 372 

Spatial, 378 

Spectral, 94, 96 


Ribbon microphone, 541 

Riccati equation, 283 

Rician probability distribution, 328, 335 

Rotational vibration, 490 

Routh-Hurwitz criterion, 580 


Sampling, 5 

Complex, 8, 11-14 

Frequency, 7 

Hilbert transform, 13 

Offset binary, 6,16 
Oversampling, 39 

Quadrature, 13 

Spatial, 378 


Schur algorithm, 250 

Seismic sensing, 541 

Sentient systems, 357 

Shift-invariance property, 23 

Shot noise, 524 

Sidelobe, 1 1 1 ,  192 

Signal: 

Distortion, 483 

Features, 478 

Image features, 495 

Separation, 522, 570 

Shielding, 528 


Signal to noise ratio (SNR), 134 

Sinc function, 94 

Sinusoids: 

FFT calibration of, 134 

Generation by AR filter, 251 


Skewness, 139 

Spatial aperture, 378, 391 

Spectral density, 127 

Spectral leakage, 100 

Spherical waves, 159 

Stability metric, 5 16 

Stable signal, 19, 49 

State variables, 57-62 

Stationary signals, 128 

Statistical: 

multipath, 350 

pattern recognition, 455 


Stochastic approximation, 241 

Superresolution array processing, 4 13 

Synchronous averaging, 137 

Syntactical pattern recognition, 469 

System identification, 242 


Thermal noise, 523 

Toeplitz matrix, 253 

Tracking filters, 62, 68, 277 

Transducers, accelerometer, 545 

Transfer function: 

Coherence, 148, 156 

Error model, 152, 157 

Relation to pole-zero filters, 145 

SNR effect, 156--157 
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Transistor noise, 524, 527 

Trispectrum, 141 


Ultrasound, 323, 328 

Uneven Fourier transform, 1 15 

Uniform probability density, 132 

Unit circle, 21 

Unit impulse function, 20 


Vandermode matrix, 43 1, 446 

Variance, 132 

Vector: 

Intensity fields, 171-173 

Representation of linear filtering, 219, 


238-243 

bration sensing, 176 


avelength, 323, 349 

Wavenumber, 323 

Waves: 

Intensity, 158 

Plane, 159 

Propagation, 11  


Index 

White noise: 
Effect on LMS convergence, 243-248 

Frequency domain calibration of, 

145-147 

Whitening filter, 50, 241, 246, 252, 563 

Wideband modulation, 485 

Widrow-Hoff LMS algorithm, 241 

Wiener filter, 242, 563 

Windows, 101, 106 


Beamforming applications, 19 1 

Broadband calibration of, 108 

Exponential, 109 

Hamming, 108 

Hanning, 106 

Narrowband calibration of, 107 

Parzan. 108 

Welch. 108 


Yule-Walker equation, 253 


Zero mean Gaussian (ZMG) noise, 62 

Zeros: 

Filter polynomials, 44, 47, 293-294 

Nulls in beampatterns, 186 


Z-transforms, 19, 2 1-26 
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